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Abstract
Rock mass classification systems are used to estimate deformability modulus. This study offers a relationship to estimate 
deformability modulus using geomechanical rock parameters such as rock quality designation (RQD), Uniaxial Compres-
sive strength test (UCS), joint condition (Jc), joint spacing (Js), dynamic modulus (Edyn), and groundwater condition (Wc). 
Dilatometer tests (DMTs) were performed on 88 samples taken from Khersan dam-II. Then, the collected data were analyzed 
using machine learning methods (MLM) and statistical methods. The analyses were performed using different types of MLM, 
i.e., Multivariate Non-Linear Regression (MNLR), Support Vector Regression (SVR), and Copula-based methods. These 
analyses revealed that the SVR model predicted the values of rock mass deformability modulus (Em) with the determination 
coefficient (R2) of 0.868. In comparison, the Copula-based and MNLR power methods predicted Em with an R2 of 0.851 
and 0.866, respectively. The cross-validation (CV) technique shows that SVR is the best-designed model for predicting Em. 
Also, MLMs provided an alternative and effective way to predict Em. Overall, the statistical analysis was an efficient tool for 
selecting the best parameters and correlations of data for Em.
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Introduction

The deformability modulus (Em) is among the essential 
properties of intact rock, affecting the large-scale engineer-
ing behavior of rock mass. The stress-to-strain ratio during 
loading a rock mass, both in elastic and inelastic behavior, 
is known as rock mass Em (Sousa and Grossmann 2022). Em 
is commonly used as an input parameter in empirical and 
numerical relationships to determine the engineering behav-
ior of rock mass (Saedi et al. 2019). This parameter provides 
the basis for structural design and stability analyses (Li et al. 

2020; Wu et al. 2020). Em is a factor in the design of rock 
structures, indicating the deformation properties of the rock 
mass (Aksoy et al. 2022). This parameter is determined by 
field and laboratory tests, such as dilatometric tests (DMTs), 
radial loading, and plate-jacking method. Unpredictable 
conditions of formation, high cost, operational problems, 
and time-consuming are the factors that expose some prob-
lems when conducting these tests (Ko et al. 2016). Using 
the standard procedures for Em estimation in in-situ tests 
is very difficult. These difficulties can be overcome using 
regression models that directly measure Em (Aboutaleb et al. 
2018; Ceryan et al. 2021). Researchers have investigated 
the effect and relation of Em with rock discontinuity (Wu 
et al. 2020). The Em of rock mass is a complex and sensitive 
parameter that is measured using highly advanced methods 
and techniques. In the past two decades, machine learning 
methods (MLMs) have been widely used in geotechnical 
engineering (Abdallah 2019; Aengchuan and Phruksaphan-
rat 2018), tunneling and engineering geology (Ghorbani 
et al. 2021; Marcher et al. 2020), and for rock material and 
composite material. These methods have high efficiency in 
data processing and do not require conducting time-con-
suming, expensive in-situ experiments (Sun et al. 2020a; 
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Xu et al. 2022). MLMs can develop a relationship between 
complex and high-dimensional variables (Zhang et al. 2020). 
Various MLM has been used in geoengineering (Zhao et al. 
2018) to predict seepage behavior (Xiao and Zhao 2019), 
rock mechanics (Huang et al. 2021; Xia et al. 2019) slope 
stability (Đurić et al. 2019; Huang et al. 2022), the mechani-
cal and physical properties of rocks (Salimi et al. 2019), and 
interpolation and stratification of multilayer soil property 
profile (Zhao and Wang 2020). In this respect, Sun et al. 
(2020b) showed that the support vector regression (SVR) 
method provides the best predictive model for determining 
rough rock fractures. Alemdag et al. (2015) used statistical 
and artificial neural network (ANN) methods to estimate 
the Em. In another study, the effect and application of Em on 
the fracture rock mass were estimated using the equivalent 
discrete fracture network (E-DFN) under uniaxial compres-
sion (Ma et al. 2020). Hasanipanah et al. (2022) applied 
the Levenberg–Marquardt algorithm (LMA), conjugate gra-
dient (SCG), and Bayesian regularization (BR) algorithm 
in the cascaded forward neural network (CFNN) MLM to 
determine Em. In another effort, four ANNs were built to 
determine the influences of overburden stress on Em (Tok-
gozoglu et al. 2021). Fathipour-Azar (2022) applied various 
machine learning (ML) models to estimate triaxial rock mass 
strength. Several machine learning (ML) models, such as 
SVR, Gaussian process regression (GPR), and ANN, have 
been designed to predict the elastic modulus of magmatic 
rock (Ceryan et al. 2021). Meng et al. (2018) applied the 
back-propagation neural network technique to find the effec-
tive fracture propagation zone in gypsum rock. The indirect 
estimation is the most cost-effect technique for Em predic-
tion. In this respect, Fattahi (2021) developed a relevance 
vector regression (RVR) model for the indirect prediction 
of Em. (Babanouri and Fattahi 2018) used SVR to construct 
a constitutive model for rock fracture to estimate the shear 
and peak displacement.

The present research aims to extend the use of geo-
mechanical parameters in Em estimation. A significance 
index of geo-mechanical parameters is assigned to each 
parameter’s effect and relation with Em. This index repre-
sents the influence of a single parameter among the entire 
parameters network on Em. Statistical analyses were estab-
lished to determine the best parameters for the Em. Finally, 
multiple MLMs were conducted with SVR, Copula method, 
and multivariate nonlinear regression (MNLR) to validate 
the reliability of the best design model for Em. The Copula 
method used in this study can exhibit the structure depend-
ence between two or more random variables. Five depend-
ent variables and one independent variable relationship 
were determined in this case. The present study is the first 
effort to use the Copula method to forecast Em regarding the 
complications in the relationship of variables dependency. 
In general, this study aims to provide optimal predictive 

models where the correlation between the input variables is 
not an unfavorable parameter. Therefore, the K-fold Cross-
validation (CV) method was used to determine the models’ 
forecasting ability. The results confirmed the capability of 
predictive models using these input parameters.

Study area and data collection

Khersan Dam-II is located about 2 km southwest of Lorde-
gan city in Chaharmahal and Bakhtiari Province (Iran) on the 
Khersan River. The coordinates of the study area are 50 36° 
E and 31 25° N in the southwestern part of Zagros. Access 
to the dam location is possible by a 2-km long asphalted road 
from Lordegan through the villages of Qale-e-Madresh and 
Abchnar. Abchnar village is almost 6 km long from the vil-
lage of Shamalk on the right bank of the river and the dam 
axis. The stratigraphy of the Khersan Dam-II site consists 
of four low-upward-folding rock units, i.e., Asmari (lower, 
middle, and upper), Gachsaran, Aghajari, and Quaternary 
deposits, including slopes, crumbs, and river uplifts. Almost 
all structures of the dam site except the surface power plant 
are located in the upper Asmari. These structures consist of 
thick to medium-layered limestone, with regular layering 
and a small percentage of thin-layer limestone to marl lime, 
are shown in the geological map of the dam site in (Fig. 1).

Exploratory operations were carried out in the first phase 
of studies of the Khersan Dam and Power Plant Design. 
These operations included drilling boreholes and galler-
ies and conducting laboratory tests, including the Uniaxial 
Compressive Strength test (UCS) and field dilatometry test. 
Rock quality designation (RQD), Joint condition (Jc), joint 
spacing (Js), and groundwater condition (Wc) data were 
obtained to determine Em through the rock mass classifica-
tion (RMR) system. This project used a flexible dilatometer 
and volume change measurement method to determine the 
Em. Thus, within wells with a diameter of 1 mm and a pre-
determined depth, the dilatometer is sent as a metallic cyl-
inder with rubber cladding. Afterward, compressed air with 
stepwise pressure values of 1, 2, and 3 MPa was entered into 
the space between the middle part and the rubber cladding 
in a borehole. In the meantime, borehole wall deformability 
values   were recorded at each step. Of the 149 dilatometric 
test data that determine the Em in the left and right flanks 
of the dam, only 88 of the dilatometric test results matched 
with other data from exploration boreholes and field surveys. 
The results of laboratory and field experiments are divided 
into two quantitative and qualitative forms (Table 1). In this 
section, experiments are conducted, and the collected results 
are corrected to increase the validity of probabilistic models. 
Next, the outlier values  are removed from the final estima-
tion calculations.
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Methodology

Statistical methods

Today, statistical analysis is among the most commonly 
used tools in engineering geology, rock mechanics, civil 

engineering, hydrology, and petroleum engineering. In this 
section, we offer a relation for estimating Em using geome-
chanical parameters of rock. R software was used for esti-
mating  Em, regarding its high efficiency and ease of use for 
complex calculations (Charbel and Hassan 2021). One of 
the features of this software is to perform computational 

Fig. 1  a The location of Chaharmahal and Bakhtiari Province (Iran), b the location of Lordegan in the Bakhtiari Province, and c the Geological 
map of the site location of Khersan Dam-II

Table 1  Khersan Dam-II 
site Laboratory and Field 
Parameters data

Standard 
deviation

Average Max Min Number The parameters studied

90.2 41.5 00.12 68.0 88 Modulus of deformation (GPa) Dilatometer test
75.3 49.7 45.19 24.1 88 Dynamic modulus of elasticity (GPa) Laboratory tests
73.30 34.100 230.00 59.00 88 Uniaxial compressive strength (MPa)
7.24 17.62 100.00 19.00 88 RQD (%) Field experiments
22.6 71.19 00.30 00.9 88 Joint Conditions
13.5 04.12 20 5 88 Joint spacing (m)
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operations such as multivariate regression, principal com-
ponent analysis, and function analysis (Górecki and Smaga 
2019). For this purpose, the statistical data of dilatomet-
ric experiments at the Khersan dam-II site were analyzed 
using R software, and standard statistical indices were 
used to select the appropriate regression models. The data 
in R software were first identified by sensitivity analysis, 
followed using various estimation methods to estimate this 
modulus.

Machine learning methods (MLMs)

In this paper, Em is predicted using (1) the log-linear 
approach, (2) the SVR approach, and (3) the Copula 
approach. The previous section mentioned that log-linear 
predictive modeling could lead to better results than linear 
models. Recently, MLMs have offered new possibilities for 
solving complex problems related to regression issues. In 
addition, machine learning regression methods directly use 
data to train a model without knowledge of the predictor-
target relationship (Abdallah 2019). The SVR method has 
good stability and generalization abilities to solve complex 
and high-dimensional problems (Kang and Li 2016). There 
are two types of support vector machine (SVM), namely 
(1) the function fitting performed by SVR and (2) pattern 
identification used by support vector classification (Kavak-
lioglu 2011). SVR is widely used in engineering geology 
and geotechnical engineering, such as for rock fracture and 
Blast-Induced Rock Movement (Sun et al. 2020b; Yu et al. 
2020). The significance of the Copula method is handling 
multivariate analysis and dependence modeling. In addition, 
it can decompose the multivariate joint distribution function 
into all of its marginal (univariate) distribution functions and 
a Copula function (Qian et al. 2020). Copula theory plays an 
important role in hydrology problems, geotechnical reliabil-
ity analysis, engineering geology, rock mechanics, and wind 
engineering. Therefore, it has received increasing interest 
regarding its high accuracy compared with other methods 
(Abdollahi et al. 2019; Gaidai et al. 2019; Ismail et al. 2018; 
Zhou et al. 2019). In this study, MNLR, SVR, and Copu-
las method were applied to develop prediction models to 
study the influence of the geomechanical parameters such 
as the UCS, RQD, joint condition (Jc), joint spacing (Js), 
dynamic modulus (Edyn), and groundwater condition (Wc) 

on Em. These analyses were performed using R-software. 
Statistical indices were used to evaluate the performance of 
prediction models and compared the predicted values with 
the actual values. These indices include root-mean-square 
error (RMSE), mean absolute error (MAE), and coefficient 
of determination (R2). Equations (1) and (2) give expressions 
of MAE and RMSE, respectively.

Results

Results of statistical analysis

Descriptive statistics are applied to summarize data in an 
organized manner to describe the univariate analysis of data 
and the various relationship between them. Descriptive sta-
tistics is an essential part of data analysis that provides the 
foundation of inferential statistics. Tables 2 and 3 provide 
univariate descriptive statistics of the data. Here, Table 2 
summarizes the descriptive statistics for the continuous data 
(i.e., Em, Jc, UCS, RQD, and Edyn). Also, Table 3 presents a 
frequency table for the non-continuous data (i.e., Js and Wc). 
The univariate analyses show that Em and Jc are almost sym-
metric, but UCS, Edyn, and RQD are asymmetric (i.e., highly 
right-skewed, right-skewed, and left-skewed, respectively). 
An extreme asymmetry is observed in Wc. In addition, RQD 
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Table 2  Descriptive statistics 
for continuous data

n Min Max Mean Median SD Skew Kurtosis

Em (GPa) 88 0.68 12.00 5.59 5.80 2.79 0.06 – 0.29
Jc 88 9.00 30.00 19.71 20.00 6.22 0.07 – 1.12
UCS (Mpa) 88 59.00 230.00 100.34 93.50 30.74 1.52 3.81
RQD (%) 88 19.00 100.00 62.17 66.00 24.71 – 0.14 – 1.41
Edyn (GPa) 88 1.24 19.45 7.5 7.32 3.75 0.31 0.06

Table 3  Descriptive statistics for non-continuous data

Js Wc

Category Frequency Category Frequency

5 12 0.01 4
8 15 4 7
10 26 7 7
15 16 10 22
20 19 15 48
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and Jc are heavy-tailed relatives of a normal distribution, but 
UCS is light-tailed.

Figure 2 presents the relationships between the consid-
ered data. The upper panel shows the Pearson correlation 
between the continuous variables and the box plots for the 
combinations between the continuous and the non-contin-
uous variables. In addition, the lower panel shows the scat-
ter plots with fitting smooth nonlinear curves between the 
continuous variables and the dot plots for the combinations 
between the continuous and the non-continuous variables. 
Finally, the diagonal panel represents the density plots of the 
continuous variables and the bar plots of the non-continu-
ous variables. Figure 3 shows a heatmap of the correlation 
matrix of the dataset containing the data and the natural log-
arithm of continuous data. The Pearson correlation can only 
reflect a linear relationship of variables but ignores other 

relationship types. Hence, the natural logarithm of continu-
ous variables was considered because of the possibility of 
exponential nonlinear relationships. Figure 4 illustrates a 
heatmap of Spearman’s correlation coefficient matrix of the 
data. Spearman correlation can determine whether there is a 
monotonic association between variables. Also, Spearman’s 
correlation coefficient is invariant to monotone transforma-
tions, such as the natural logarithm transform. Analyzing 
the relationships between the data show a nonlinear relation-
ship between the data. The logarithm of Em has a stronger 
relationship with predictor variables than Em. Hence, we 
considered the log-linear technique to model the data.

Next, we used the best subsets method to identify the 
best-fitting models. During regression modeling, elimi-
nating unessential variables will make the model easier 
to interpret, less susceptible to data overfitting, and more 

Fig. 2  The Scatterplot matrix of the data
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Fig. 3  Heatmap of Pearson’s 
correlation coefficients of the 
continuous data and their natu-
ral logarithm

Fig. 4  Heatmap of Spearman’s 
correlation coefficients for Em
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generalizable. Best subsets regression is an exploratory 
model-building regression analysis that compares all pos-
sible models using a specified set of predictors and displays 
the best-fitting models. The result of the best subsets regres-
sion analysis is summarized in Table 4. We used predicted 
R-square (Pred.R-sq), estimated error of prediction (MSEP), 
and Sawa’s Bayesian Information Criteria (SBIC) to identify 
the best-predicting models. Models with larger Pred.R-sq 
values or smaller MSEP or SBIC have better predictive abil-
ity. In the log-linear approach, the results of the best subset 
regression analysis are proposed by modeling Em based on 
logEdyn, Edyn, Js, UCS, Wc, RQD, and Jc, in the order of their 
appearance. Table 4 shows that the model in the 6th row 
(containing predictors logEdyn, Edyn, Js, UCS, Wc, and RQD) 
and the model in the 7th row (containing predictors logEdyn, 
Edyn, Js, UCS, Wc, RQD, and Jc) are the best candidates for 
predicting models of Em, in the order of their appearance.

Results of MLMs for rock mass deformability 
modulus (Em)

Result of Copulas method

The Copula method was implemented using R-software to 
determine the Em. As can be seen from Fig. 5, R2 = 0.85 for 
Em in the Copula method. Em is a dependent variable, and 
the other four variables (i.e., Jc, UCS, RQD, and Edyn) are 
independent variables. In Copula MLM for the Em, 1 for 
deformability modulus (Em), 2, 3, 4, and 5 for joint condi-
tion (Jc), Uniaxial Compressive Strength (UCS), rock quality 
designation (RQD), and dynamic modulus (Edyn), respec-
tively, have been used. As a result, four Copula method trees 
were developed. In Tree 1, pair of parameters is prepared 
with a ratio of one parameter and another. The pair of param-
eters, such as deformability modulus and dynamic modulus, 
provides the best result with a par value of 1.76 and a τ value 
of 0.69 are presented in Table 5. The graphical models of all 

Copula trees are presented in Fig. 6. In Tree 1, the pair of 
Em with UCS provides the second-best result with a Tau (τ) 
value of 0.46 (Fig. 7). Moreover, the pairs of Em with Jc and 
RQD give the τ value of 0.41 and 0.41, respectively (Fig. 7). 
In Copula Tree 2, the pair of parameters was prepared with a 
ratio of one parameter and two others. In Tree 3, the pair of 
parameters was prepared with a ratio of two parameters and 
the other two parameters. Finally, in Tree 4, pair of param-
eters was prepared with a ratio of two parameters and the 
other three. It is noteworthy that all these Copula trees pro-
vided an independent relationship between the parameters 
are presented in Table 6.

SVR use to predicate deformability modulus

In this study, Em was also predicted using the SVR method. 
The model was constructed by the e1071 package, which 
is the first and most intuitive package in R software. The 
UCS, RQD, Jc, Js, Edyn, and Wc were selected as the model’s 
inputs. The SVR model was constructed based on the kernel 
function type of the Radius Basis Function (RBF). The ker-
nel function can transform data from a nonlinear to a linear 
form. The SVR results are presented in Table 9. As can be 
seen, the models can accurately predict  Em with  R2 = 0.868 
(Fig. 8). Overall, three SVR models were developed for  Em 
are summarized in Table 7.

Predicating deformability modulus by MNLR

Power Multivariate Nonlinear regression was applied to deter-
mine the effect of geomechanical parameters on the Em. In 
the MNLR method, Em is a dependent variable, and UCS, 
RQD, Jc, Js, Edyn, and Wc are independent variables. A total 
of 21 MNLRs were developed for Em, in which the hybrid 
MNLR model provides the best results. The hybrid MNLR 
model is the second-best model among all the machine learn-
ing models and provides a relationship, as shown in Eq. (3). 

Table 4  Best subsets of 
regression

Pred. R-sq predicted R-square of the model, MSEP estimated error of prediction, assuming multivariate 
normality, SBIC Sawa’s Bayesian Information Criteria

Number of 
predictors

Predictors Selection criteria

logEdyn Edyn Js UCS Wc RQD Jc log Jc logUCS Pred. R-sq MSEP SBIC

1 * 0.899 4.276 – 263.579
2 * * 0.913 3.622 – 276.911
3 * * * 0.916 3.187 – 286.519
4 * * * * 0.924 2.884 – 293.354
5 * * * * * 0.919 2.740 – 295.999
6 * * * * * * 0.921 2.668 – 296.591
7 * * * * * * * 0.921 2.629 – 296.122
8 * * * * * * * * 0.918 2.637 – 294.367
9 * * * * * * * * * 0.916 2.671 – 291.923
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Furthermore, the results of the hybrid MNLR are very near to 
SVR. The results of nonlinear regression analysis to predict 
Em (R2 = 0.866) are presented in Fig. 9.

Comparisons between MLMs

One of the significant challenges in MLMs is to check the 
model accuracy of unseen data to know whether the designed 
model performs well. To evaluate the model’s accuracy, we 

(3)
Em =0.4675 × Edyn1.3641 × 0.9220

Edyn
× 1.0023

UCS

× 1.1262
I(JS=20)

× 1.0020
RQD

.

need to test it against those data points that were not present 
during the model training. Using R-programming language, 
CV is one of the best methods for checking the accuracy of 
the machine learning model. CV is a standardized technique 
for testing the performance of a predictive model. In this 
process, a part of the data set is saved, which will not be used 
in the model training. When the model is ready, this spe-
cific dataset is used for testing purposes. The CV method is 
divided into two types: (1) non-exhaustive CV (e.g., K-fold 
CV, holdout method, repeated random sub-sampling valida-
tion) and (2) exhaustive CV included (e.g., leave-p-out CV 
and leave-one-out CV).

The K-fold CV method was used to find the best-
designed machine-learning models for Em. This method 
is one of the most accurate and reliable methods for test-
ing machine learning models. The CV technique divides 
the data into equal K subsets (folds). Of these K-folds, 
one subset is used as a validation set, and the remaining 
is applied in the training model. The K-fold CV method 
was used for SVR, Copula Method, and MNLR to find 
the best MLM for Em. For these MLMs, fitting models 
were built by the K-fold CV technique. In the K-fold 
CV method, 25 models were constructed, including 19 
MNLR, 1 Copula method model, and 3 SVR models. 
Model training was based on 84 observations and tests of 

Fig. 5  Scatter plots of the 
predicted Em from the Copula 
method

Table 5  The results of the Copula Tree 1 for Em

Tree No. 1

Pair C-vine Par-1 Par-2 Tau

1,5 BB7 1.76 4.62 0.69
1,4 Survival BB8 2.96 0.88 0.41
1,3 BB7 1.61 0.46 0.46
1,2 BB7 1.57 0.41 0.41
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fitting model 4 that were left out randomly (K-fold CV, 
where K = 4). The number of repetitions of the process is 
also considered 100. Results showed that the SVM Model 
25 is the best-designed model for the Em. However, this 
model’s output is very slightly different from SVR Model 
24. Moreover, the hybrid-MNLR Model 17 is the second-
best-designed machine learning model for Em (Fig. 10). 
The Copula method model did not provide good results for 
Em. Besides, the coefficient of variation (ratio of standard 

deviation to average) of R2, RMSE, and MAE factors in 
100 repetitions of K-fold CV is 0.004, 0.013, and 0.009, 
respectively, summarized in Table 8.

In the following, we outlined the overall performance of 
various models presented in this work in predicting the Em 
values based on RMSE. Table 9 summarizes the comparison 
of all statistical indices (MSE, RMSE, and MAE) for differ-
ent models.

Fig. 6  The graphical models of 
all Copula trees for Em

Fig. 7  The results of the Copula 
Trees 1 and 2 for Em
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Conclusion

Rock mass deformability is one of the most demanding, 
sensitive, and complicated subjects in engineering geology, 

civil engineering, rock mechanics, and petroleum engineer-
ing. In this respect, it is necessary to determine the effect of 
different geomechanical parameters, e.g., Uniaxial Compres-
sive Strength test (UCS), rock quality designation (RQD), 
joint condition (Jc), joint spacing (Js), dynamic modulus 
(Edyn), and groundwater condition (Wc), on the Em. For 
this purpose, different modern and reliable machine learn-
ing and statistical methods were used. Statistical analysis 
is a straightforward technique to select the best parameters 
and the quantitative analysis of Em data. These methods are 
significantly less time-consuming and low-cost than other 
methods, such as In-situ field tests. The SVR model provided 
more realistic and correct results for Em. In comparison, 
Copula methods for Em do not provide excellent results due 
to less data availability. Multivariate Non-Linear Regres-
sion (MNLR) is the second-best machine learning model for 

Table 6  The results of the Copula Trees 2, 3, and 4 for Em

Tree-2 Tree-3 Tree-4

Pair C-vine Pair C-vine Pair C-vine

2,5;1 Independ-
ence

3,5;2,1 Independ-
ence

4,5;3,2,1 Independence

2,4;1 Independ-
ence

3,4;2,1 Independ-
ence

2,3;1 Independ-
ence

Fig. 8  Scatter plots predicted by 
SVR for Em

Table 7  Results of SVR model 
for Em

Model SVM (Types) Parameters Cost Epsilon

SVM-model-1 eps-regression
SVM-Kernel: radial

Js, Wc, Jc, UCS, RQD, Edyn, 7 0.2

SVM-model-2 eps-regression
SVM-Kernel: linear

Js, Wc, Edyn, logEdyn, UCS, logUCS, 
RQD, logRQD, Jc, logJc

14 0.3

SVM-model-3 eps-regression
SVM-Kernel: linear

Edyn, log Edyn, UCS, Js20, RQD 4 0.2
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Fig. 9  Scatter plots predicted by 
hybrid MNLR for Em
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Em-Insitu test

Em.copula

Em-hybrid
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Fig. 10  The comparison of all machine learning models for Em

Table 8  K-fold cross-validation results of all machine learning models

M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10 M.11 M.12

R2 0.584 0.777 0.791 0.785 0.803 0.785 0.784 0.798 0.773 0.796 0.787 0.801
RMSE 2.199 2.146 1.374 1.367 1.321 1.41 1.411 1.345 1.394 1.357 1.36 1.338
MAE 1.624 1.553 0.987 0.978 0.961 0.991 1.005 0.988 1.085 0.977 0.97 0.966

M.13 M.14 M.15 M.16 M.17 M.18 M.19 M.20 M.21 Copula
M.22

SVR1
M.23

SVR2
M.24

SVR3
M.25

R2 0.782 0.793 0.844 0.857 0.866 0.86 0.826 0.848 0.849 0.851 0.867 0.834 0.868
RMSE 1.42 1.266 1.101 1.051 1.017 1.039 1.179 1.087 1.08 1.074 1.016 1.139 1.014
MAE 1.006 0.969 0.817 0.795 0.8 0.783 0.826 0.841 0.833 0.817 0.79 0.865 0.796
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predicting Em. The results showed that Em directly correlates 
with a dynamic modulus (Edyn) compared to the UCS, RQD, 
and Jc. Furthermore, Em has the weakest relationship with 
geomechanical parameters such as Js and Wc. It is notewor-
thy that both Js and Wc are classified as non-continuous. 
Overall, this research effectively predicts the Em by solving 
the high-dimensional and nonlinear relationship between the 
Em and the mentioned parameters.
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