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Abstract
Year-round flow consistencies of the central Himalayan springs are extremely important for addressing rural water demand. 
As the prediction of Himalayan spring high-flows is expected to provide better opportunities for the management of excess 
runoff, this study aims to develop a data-driven model for predicting joint-fracture and depression type spring high-flows of 
the Kosi watershed of central Himalaya, India. Five machine learning algorithms are used with combinations of predictors, 
such as standardized anomaly of rainfall, pH, electrical conductivity and water quality index of spring water. The discharge 
and predictor parameters are used from a total of 06 springs distributed across the watershed, and monitored during January, 
2019 to December, 2020 at monthly interval. Due to asymmetric relationships between model predictors and spring discharge, 
model performances are tested for the predictor time lags of 0–2 (= 60 days). A total of ten experiments are carried out, 
and model performances during training and testing are evaluated using receiver operator characteristics. The discriminant 
analysis classifier, in combination with rainfall and electrical conductivity as predictors, is found to be the best model for 
predicting spring high-flows.

Keywords  Himalayan springs · High-flow · Prediction model · Machine learning

Introduction

The Indian Himalayan region (IHR) is a source to more 
than 03 million natural fresh water springs that supports 
approximately 50 million rural and urban population for 
their daily household freshwater demand (NITI Aayog 
2018; Kumar et al. 2019; Panwar 2020). Springs of the IHR 
occur in the intersects of sloping surfaces and imperme-
able strata, and most of the spring discharges are through 
unconfined-perched aquifers with complex conduit networks 
that primarily depend on precipitation and recharge area 

characteristics, such as subsurface geology, soil properties 
and dominant land-use and land-cover (Negi and Joshi 1996, 
2004). Springs of the IHR are primarily joint/fracture (JT), 
depression (DP) and contact (CN) types, and during the last 
couple of decades, diminishing spring discharges in the IHR 
is becoming a major concern for sustainable water manage-
ment (Valdiya and Bartarya 1989; Tambe et al. 2012; Daniel 
et al. 2021) In fact, NITI Aayog of the Government of India 
has surmised that approximately 50% of all the springs of 
IHR might have become ephemeral (NITI Aayog 2018) pri-
marily due to climate and socioeconomical changes (Agar-
wal et al. 2012). As a result, acute water scarcity is becoming 
eminent within the region, and there is a need for field-based 
spring recharge activities.

To mitigate the fresh water scarcity in the IHR, sustain-
able water management through spring recharge activi-
ties is gaining interest among the local and governmental 
agencies (Rathod et al. 2021). However, the spring revival 
activities are often implemented with limited knowledge 
on the aspects of springshed geohydrology, groundwater 
flow regime, and linkages to water input through rainfall, 
resulting in limited success (Dass et al. 2021). Since spring 
discharges are highly variable with respect to changes in 
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the geology, geomorphology, and rainfall climatology, irre-
spective of anthropogenic pressure, replication of a uniform 
spring revival model across the IHR is presumed to be non-
productive. One of the major concerns with spring revival 
activities over Himalaya is the absence of sufficiently long 
spring discharge data. Therefore, long-term changes in the 
spring discharge behavior, as a response to changes in the 
environmental parameters, are relatively poorly quantified. 
The relative absence of long-term discharge and water chem-
istry data from different spring types has further impaired 
the development of numerical model/s for predicting 
changes in the spring flow behavior.

During the last few decades, advance nonlinear and non-
stationary data analytical tools, particularly deep learning 
and machine learning methods are increasingly used for 
predicting spring discharges across the world. For example, 
a least-squares base lumped-parameter model was used by 
Zhang et al. (1996) for predicting Karst spring discharge in 
the USA; Granata et al. (2018) used three machine learning 
algorithms (i.e ., regression tree, random forest, and support 
vector regression) for predicting Karst spring discharges of 
Italy. Similarly, artificial neural networks were also used 
by Lambrakis et al. (2000), Hu et al. (2008), Fiorillo and 
Doglioni (2010), and many other for predicting Karst spring 
discharges across the world. Recently Cheng et al. (2020) 
have used multilayer perceptron and memory–recurrent neu-
ral network with support vector regression for predicting 
spring discharges of China; and Wunsch et al. (2021) have 
used the 2D convolution neural networks (CNN) for extract-
ing meteorological parameters for predicting Karst spring 
discharges using 1D CNN. However, due to lack of suffi-
ciently long spring discharge and associated environmental 
data at a monthly or daily scale, no attempt is made until the 
date to develop spring discharge model for Himalaya. Since 
successful prediction of the spring discharge characteristics 
using simple geohydrological parameters is presumed to be 
highly beneficial for framing targeted spring revival activi-
ties for long-term sustainable water management in the IHR, 
this study is primarily focused on predicting JT and DP type 
monthly spring high-flows of a central Himalayan watershed 
using five very powerful and commonly used machine learn-
ing algorithms, namely Naïve Bayes classifier (NBC), kth 
nearest neighbor classifier (KNN), support vector machine 
classifier (SVM), decision tree classifier (DTC) and discri-
minant analysis classifier (DAC). Since year-round flow con-
sistencies of the central Himalayan springs are extremely 
important for addressing rural water demand, this study is 
primarily focused on predicting spring-high flows, where 
high-flows are defined following a discharge-based criteria. 
Moreover, spring high-flows of the Himalayas are mostly 
wasted as surface run-off, not being stored or used by the 
local communities for use in the lean period. Subsequently, 
we anticipate that a proper prediction of high-flows will 

be beneficial for local communities to devise water aug-
mentation structures for storing the excess flow for future 
use. Therefore, with the machine learning classifiers and a 
combination of simple geohydrological parameters as pre-
dictors, this study attempts to develop a data-driven intel-
ligence model that can predict JT-DP type monthly spring 
high-flows of a central Himalayan watershed. The geohydro-
logical parameters considered in this study are standardized 
anomalies of rainfall, pH, electrical conductivity (EC) and 
water quality index (WQI). The rationale for selecting these 
parameters for predicting spring discharge was twofold, (i) 
pH, EC, and WQI were assumed to be the best proxies of 
soil and geological factors, and (ii) rainfall was assumed to 
be the best control of aquifer properties and spring high flow.

Methods

Description of study area and springs

The study was carried out in the Kosi watershed of Utta-
rakhand, India (Fig. 1). The watershed covers an area of 
approximately 1863 km2 wherein the major channel is the 
Kosi river which is stream and spring-fed with the aver-
age annual discharge varying between 0.8 and 790.0 m3 s−1. 
Almora and Nainital are the two major districts within the 
watershed where an average of 50% of the total potable 
water supplies is made using springs, streams, and chan-
nel sources (Kumar et al. 2019). The fresh water vulner-
ability of Kosi watershed is high. The Takula and Ramgarh 
administrative blocks within the watershed are facing high-
est potable water scarcity (Kumar et al. 2019). The aver-
age annual rainfall of the basin is around 1200 mm, and 
the summer monsoon contributes around 740 mm rainfall 
with average numbers of heavy rainy days is 2.48 per season 
(Mukherjee et al. 2015, 2016; Mukherjee 2021). The region 
is also expected to receive higher summer monsoon rainfall 
and lower winter-season wet days by the end of this cen-
tury under a warmer climate, hence, the natural springs and 
associated aquifers are expected to be affected significantly 
(Mukherjee et al. 2019; Ballav et al. 2021). A total of six 
springs (i.e., Kunagarh Dhara at Betalghat, Astola Naula at 
Bhujan, Bairoli Naula at Bairoli, Shiv Naula at Someswar, 
Jakh Naula at Dhaura, Laxmi Ashram Naula at Kausani) 
across the watershed were monitored, and locations of the 
springs, obtained through GPS (Garmin etrax30x, USA), are 
provided in Table 1. Among all the springs, only the Betal-
ghat spring has surface out-flow, therefore, locally termed 
as ‘Dhara’. Elevations of all the springs varied from 809 to 
1750 m.a.s.l. All the springs are owned by local communi-
ties, and spring water is used for daily household activities. 
The dominant land-use land cover of each spring is provided 
in Fig. 2 for an area circumscribing 500 m upslope. It is 
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noted from Fig. 2 that except for Someswar spring, which is 
dominated by silt, the rests of the springs were mostly domi-
nated by agricultural lands or forested vegetation. Similarly, 
except for the Someswar and Kausani springs, which are 
depression (DP) springs, the rest of the springs are joint/
fracture (JT/FR) in nature. Springs at the higher elevations 
of the Kosi watershed, i.e., at Dhaura and Kausani, are domi-
nated by quartzite and mica schist, whereas the Betalghat 
spring at 803 m is dominated by dolostone (CaMg(CO3)2).

Data description

All six springs across the watershed were monitored at a 
monthly interval during January, 2019 to December, 2020. 
Monthly discharges of these springs were computed by aver-
aging single-day observations carried out at 1000, 1300, and 
1600 h Indian Standard Time (IST). The discharges were 
manually measured using stopwatch and a measuring cylin-
der as indicated by Negi and Joshi (2004). Two sample t tests 
were carried out using discharge data between the pairs of 
all the springs to identify variability of mean flow. The null 
hypothesis considered for the t-test was that the pair-wise 
difference between discharges of two springs has a mean 

Fig. 1   Location of springs over 
the Kosi watershed
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equal to zero at 95% confidence interval. A rejection of the 
null hypothesis would indicate that the discharges of both 
springs are having nonzero mean and are governed by asym-
metric processes. We found that among the 15 combina-
tion pairs of discharges, null hypothesis was always rejected 
at 95% confidence interval indicating that the discharge 

characteristic of each spring was unique. Electrical conduc-
tivity (EC, μS cm−1) and pH of each sample was measured 
instantaneously using pHep Tester (accuracy = ± 0.1 pH, 
Hanna Instrument, Romania) and DiST3-HI98303 EC Tester 
(accuracy = ± 2% full scale, Hanna Instrument, Romania). 

Table 1   Descriptions of springs used for monthly data collection

Name Location Elevation (m) Aspect [slope range] Spring type Dominated rock type Q60 L m−1

Kunagarh Dhara at Betal-
ghat

29° 32′ 58.0″ N 
79° 21′ 19.1″ E

809 Westerly [21.4°–23.7°] FR/JT Dolostone 4.03

Astola Naula at Bhujan 29° 31′ 23.6″ N
79° 28′ 44.6″ E

931 South-easterly [14.4°–
16.7°]

FR/JT Quartzite 0.18

Bairoli Naula at Bairoli 29° 32′ 01.3″ N
79° 38′ 32.8″ E

1331 Southerly
[14.4°–16.7°]

FR/JT Gneiss 17.23

Shiv Naula at Someswar 29° 46′ 46.7″ N
79° 36′ 17.6″ E

1381 South-easterly [5°–7.3°] DP River deposit upon 
Quartzite

14.13

Jakh Naula at Dhaura 29° 34′ 40.1″ N
79° 40′ 31.2″ E

1530 Southerly [5°–7.3°] FR/JT Mica schist and 
Quartzite

0.64

Laxmi Ashram Naula at 
Kausani

29° 50′ 17.8″ N
79° 36′ 29.4″ E

1749 South-westerly [12°–
14.4°]

DP Quartzite 1.02

Fig. 2   Land-use land cover maps of each selected spring for an area circumfusing 500 m upslope. Subplots (a–f) are for Betalghat, Bhujan, Bai-
roli, Dhaura, Someswar, and Kausani, respectively
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Subsequently, monthly averages of discharge, pH and EC 
were produced.

In order to carry out detail physico-chemical analysis 
of spring-water, similar to discharge measurements, sam-
ples were collected in sealed 500 ml containers at 1000, 
1300, and 1600 h IST at the day of sampling, and analyzed 
in the Central Laboratory Facility of GBPNIHE, Almora, 
India, for sodium (Na+), potassium (K+), calcium (Ca2+), 
magnesium (Mg2+), chloride (Cl−), sulfate (SO4

2−), alka-
linity as HCO3

−, and nitrate (NO3
−) in mg L−1. The instru-

ment details were similar to Rani et al. (2021) and standard 
laboratory practices as per Bureau of Indian Standard (BIS 
10500 2012) were followed. Subsequently, monthly aver-
ages were produced. Data could not be collected for a total 
of three months due to logistical issues. Discharge, pH, EC, 
and water chemistry data for these months were gap-filled 
using simple linear interpolations. Since rain guages were 
not operational at each spring location, rainfall data near to 
each spring location was extracted from the monthly gridded 
rainfall products of CHIRPS version 2.0 of Climate Hazards 
Group Infra-Red Precipitation with Stations having a spa-
tial resolution of 5 × 5 km (https://​www.​chc.​ucsb.​edu/​data/​
chirps). There were a total of 06 pixels of rainfalls near to 06 
springs were used. The rationale for using CHIRPS data was 
its suitable conformation to observation over Uttarakhand 
state of India (Banerjee et al. 2020).

Hydrological analyses

To comprehend the basic hydrological characteristics of 
each spring considered in this study, auto-correlation (acf) 
and cross-correlation (ccf) analyses with rainfall were car-
ried out followed by assessment of linkages between spring 
water chemistry and rainfall. Finally, flow duration curve 
(FDC) was produced for each spring to assess the cumu-
lative response of geo-hydrological factors affecting flow 
regime and to identify the high-flow threshold. As indi-
cated by Mayaud et al. (2014) and Dass et al. (2021), the acf 
provides an estimate of memory of the system whereas the 
ccf would indicate linear relationships between discharge 
and rainfall. Therefore, acf and ccf information was used 
to extract information on aquifer behavior. The acf for each 
spring discharge time series was computed for time lag 1–12 
to consider the annual signatures. Similarly, the ccf for each 
spring was estimated using discharge and rainfall time series 
for a time lag period of 1–12 months. The time lag informa-
tion where statistically significant ccfs were obtained were 
further used in the high-flow prediction models. Once the 
uni- and bivariate analyses were carried out, FDC of indi-
vidual spring was produced to assess the flow characteristics 
of each spring irrespective of occurrences. Subsequently, 
frequency distribution plots of flows of all the springs 
were produced and high-flow events were identified using 

threshold discharge values. Identified high-flow threshold of 
each spring was further used for dichotomous categorization 
of flow time series used for prediction model. Water chemi-
cal properties of all the springs were carried by categorizing 
chemical facies using piper diagrams. The monthly water 
quality indices (WQI) were produced for each spring using 
the methods of Brown et al. (1972) and Gebrehiwot et al. 
(2011) where the WHO standards for drinking water of Na+, 
K+, Ca2+, Mg2+, Cl−, NO3

−, SO4
2−, and pH were consid-

ered. The WQI values were further considered for predicting 
spring high-flows.

Classifiers and applications

The multifactor prediction of spring discharge was carried 
out using five very powerful commonly used machine learn-
ing classifiers, i.e., NBC, KNN, SVM, DTC and DAC. Brief 
descriptions of all these models with application procedures 
are provided below.

Classifiers

The NBC is a simple but powerful machine learning algo-
rithm developed on the principal of Bayesian probabilistic 
classifications wherein posterior probabilities of a hypoth-
esis are obtained by combining data based on new evidences 
with prior probabilities of the same hypothesis. The NBC 
constructs a Bayesian model assigning probability of pos-
terior class to an instance as: P(Y = yj|X = xi), where it could 
be assumed that a data are composed of n cases as xi, with 
i = 1 to n having p attributes as xi = (xi1, xi2, …, xip). Further, 
y ∈ {y1, y2, ...., yc} indicating each instance belongs to only 
one class. As indicated in Berrar (2019), machine learning 
predictive models produce a score (s) for each instance of xi 
which is used to quantify the degree of class memberships of 
a certain case in yj. In case of positive or negative instances 
such that y ∈ {0, 1}, a predictive model can be classified as a 
‘ranker’ or a ‘classifier’. In a ranker, scores are used to order 
instances from most likely to most unlikely. The ranker can 
be considered as a classifier when a threshold (t) is used 
in a ranking score such that{s(x) ≥ t} = 1 . An instance is 
assigned to a class in a NBC using P(Y = yj|X = xi). There-
fore, it is assumed in NBC that predictors of a model are 
conditionally independent when class information is avail-
able. Subsequently, observations are assigned to most likely 
classes by the NBC, and density of predictors within each 
class is estimated with model posterior probabilities. The 
conditional probabilities of NBC classifier were estimated 
in this study using the kernel density estimation as the ker-
nel density estimation demonstrates very good efficacy for 
imbalanced data (Murakami and Mizuguchi 2010).

The KNN classifier is a supervised machine learning non-
parametric algorithm which is initiated through searching a 

https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
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specific number of nearest neighbor within the training data 
set. The KNN classifier works on the principle of calculat-
ing distances on n number of characteristics. The distance 
calculation could be Euclidean, Manhattan or other. There-
fore, unlabeled observations are assigned to a class which 
is most similar to a labeled class. The model performance 
is highly dependent on the choice of number of neighbors, 
and the value of number of neighbors should be such that 
the model does not over or under fit data (Zhang 2016). The 
number of neighbor for fitting the training data of this study 
was kept to be 17 after a small sensitivity study associated 
to best performance of the model.

Similar to the KNN, SVM is a supervised machine learn-
ing algorithm, and data are classified by the SVM by finding 
the best hyperplane separating two different classes (Gutier-
rez 2015). Therefore, a best hyperplane would have highest 
difference with no data points between two classes. The sup-
port vectors are those data points that are closest to the class 
separating hyperplane. The SVM are highly versatile and 
memory efficient. The SVM can have the Gaussian radial 
basis function (RBF), linear kernel and user customized ker-
nels. However, the kernel function used in this study was 
RBF as it is found to perform better than the linear kernel 
(Savas and Dovis 2019).

The DTC is also a nonparametric supervised machine 
learning algorithm. The DTC predicts the target variable 
using simplified decision rules of training data. The root is 
considered as the base of the tree, subsequently, multiple 
branches are designated as nodes. The categorical separa-
tions of classes are carried out at each node (Namous et al. 
2021). Algorithm for finding best split in the categorical 
predictor was used in this study using 2c − 1 − 1 combinations 
of c categories.

The linear discriminant analysis classifier (DAC) is 
widely used in categorization studies. The DAC classifi-
cation technique is applied with the assumption that data 
distributions of different classes are Gaussian. Therefore, 
the classifier function estimates parameters of Gaussian dis-
tribution of each class during training. Class categorization 
using DAC is being carried out by searching for smallest 
misclassification cost function, and the method assumes 
common population covariance matrix for all the classes 
(Sifaou et al. 2020).

Application procedures

To implement the classifiers, the high-flows of all the springs 
were identified from their FDCs (details of FDCs are pro-
vided in “Flow duration curves (FDC)”). The Q60 discharge 
value of each FDC was considered as the threshold or lower 
limit of spring high-flow implying that any discharge value 
greater than Q60 value of each spring was considered as 
high-flow. The Q60 threshold limit was 10% higher than the 

50% sustainable flow limit of Tarafdar (2013) identified for 
the springs of central Himalaya. Once the high-flow thresh-
old is identified for each spring (Table 1), the discharge 
time series for each spring was converted into a dichoto-
mous series of H and L, where H indicates high-flow and L 
indicates low-flow. Finally, a dichotomous series with 144 
samples with H and L was produced by combining all the 
discharge time series. A total of 74 values were classified as 
L, whereas the remaining 70 values were H. This 144 sample 
H and L time series was used as predictand for the models.

To find out the best data driven intelligence model that 
can predict JT-DP type spring high-flows a combination of 
10 numbers of experimental simulations were carried out 
using standardized anomaly of rainfall, pH, EC, and WQI as 
predictors (Table 2). Standardized anomaly of pH (pHa), EC 
(ECa) and rainfall (Ra) was computed for each parameter of 
individual spring as: Da =

(

Di − D

)

∕�D , where Di was the 
monthly value, D was the monthly average value during 
2019–20, and �D was the standard deviation of monthly 
value. Since WQI was inherently scaled, no standardized 
anomaly of the WQI was estimated. To obtain a robust 
model, each simulation was carried out using bootstrapping 
method where 2/3rd of the all the data points, i.e. 96 samples 
were randomly used to train the model and the rests 48 ran-
dom samples were used for model validation. The bootstrap-
ping procedure was applied for 100 times. Finally, ensemble 
mean of model predictions for training and testing data was 
computed using receiver operating characteristics (ROC) 
having 1 − specificity and sensitivity, where specificity 
included selectivity or true negative rate, and sensitivity 
included hit rate or true positive rate (Fawcett 2006). The 
rational for using ROC analysis, rather than the traditional 
ANOVA test/t test, for evaluating the model performances 
of this study, is that we converted our data into a 

Table 2   Total number of experiments with combinations of predic-
tors, time lag used for each predictor and classifiers used for model 
development are indicated

Experiment Predictor/s Time lag Classifiers

E1 Rainfall anomaly (Ra) Lag = 0–2 NBC, KNN, 
SVM, DTC, 
DAC

E2 pH anomaly (pHa) Lag = 0–2 – Do –
E3 EC anomaly (ECa) Lag = 0–2 – Do –
E4 WQI Lag = 0–2 – Do –
E5 Ra + pHa Lag = 0–2 – Do –
E6 Ra + WQI Lag = 0–2 – Do –
E7 pHa + WQI Lag = 0–2 – Do –
E8 Ra + pHa + WQI Lag = 0–2 – Do –
E9 Ra + pHa + ECa Lag = 0–2 – Do –
E10 Ra + ECa Lag = 0–2 – Do –
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dichotomous series (or binary classifier) of high flow and 
non-high flow. Consequently, the best evaluator criterion for 
the model performance is accuracy, which is represented in 
the ROC analysis through Sensitivity (true positive rate) and 
Specificity (true negative rate). On the contrary, ANOVA 
and traditional t-test is focused on assessing how well the 
mean of a variable is modeled, which is not the primary 
intention of the model verifications of this study. As the area 
under ROC curve (AUC) shows model accuracy predicting 
dichotomous events (Negnevitsky 2001), the prediction 
accuracy classification based on the highest AUC was used 
to evaluate each model performance.

Results and discussions

This section is organized such that “Spring hydrodynamics”, 
“Flow duration curves (FDC)” and “Seasonal water chemis-
try” describe individual spring geo-hydrological properties, 
nature of the flow duration curves and variation in the spring 
water chemical constituents. “The high-flow predictions” 
elaborates details of the numerical modeling carried out for 
categorizing high-flow as a response to rainfall.

Spring hydrodynamics

A spring hydrograph is expected to provide recharge and 
storage potential with aquifer transmissive properties 
through retardation response of rainfall. Furthermore, 
a spring hydrograph could be similar to surface stream 

hydrographs if the aquifers are unconfined and have quick 
response time to rainfall input (Kresic and Bonacci 2010). 
The spring hydrographs were primarily analyzed with 
respect to general retardation response to rainfall throughout 
the observation period.

All the selected springs of this study are perennial, and 
their monthly discharges (Q) varied between 0.146 and 
19.76 L m−1 (lpm). The monthly average highest discharge 
was noted for the Bairoli spring (18.22 L m−1), whereas the 
monthly average lowest discharge was noted for the Bhujan 
spring (0.288 L m−1). Irrespective of springs, the median 
discharge was 1.08 L m−1. The average annual discharges 
of springs at Betalghat, Bhujan, Bairoli, Someswar, Dhaura, 
and Kausani were noted to be 7.34, 0.28, 18.2, 15.4, 0.65, 
and 1.08 L m−1, respectively. Therefore, as per the modified 
Meinzer classification of springs (Meinzer 1927; Springer 
et al. 2008), Bhujan and Dhaura springs were fifth order, 
Betalghat, Someswar, and Kausani springs were sixth 
order, and Bairoli spring was seventh order. Irrespective of 
spring locations, the average monsoon period rainfall during 
2019–20 was 971.9 mm which was around 231.9 mm higher 
than the long-term average of 740 mm (Mukherjee et al. 
2015). The rainfall amount had asymmetric impact on the 
discharge properties of springs, and the same can be noted 
in Fig. 3, and it can be noted that the Betalghat spring had 
the fastest response to rainfall. Further impacts of rainfall on 
discharges are analyzed using ccfs below.

The acf of individual spring discharges are provided in 
Fig. 4a. In order to identify the generalized signatures of 
acfs, the ensemble averages were also produced. The acf 
values of all the springs were approximately equal to 0 at 

Fig. 3   Monthly average dis-
charges (L m−1) of springs are 
presented with monthly total 
rainfall (mm) during January 
2019 to December 2020. The 
vertical lines are standard errors
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time lag 4 (= 120 days); whereas the positive ‘memory 
effect’, that is when acf = 0.2 after Mayaud et al. (2014), 
was noted for an approximate lag of 2 (= 60 days) when all 
the springs were considered. The maximum acf = 0.75 at lag 
1 (= 30 days) was noted for Bhujan spring, whereas lowest 
acf = 0.32 at lag 1 (= 30 days) was noted for Bairoli spring. 
However, if the rate of change of acf with time lag is con-
sidered till acf = 0, fastest diminishing auto-correlation was 
observed for the Kausani spring followed by Someswar and 

Betalghat springs indicating relatively lower storage capaci-
ties of aquifers contributing to these springs. On the con-
trary, Bairoli spring had the lowest diminishing rates of acf 
indicating relatively prolonged memory effects and higher 
storage capacities of aquifers. As indicated by Dass et al. 
(2021), fastest diminishing auto-correlation of the Kausani, 
Someswar and Betalghat springs could be linked to bigger 
fractures with broader network of flow paths and evolved 
geological fractures resulting relatively lesser memory 

Fig. 4   Auto-correlation func-
tions (acf) and cross-correlation 
functions (ccf) of each springs 
are provided in subplots (a) and 
(b). The dashed line at acf = 0.2 
indicates statistically accepted 
value as of Mayaud et al. (2014)
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effects. On the contrary, relatively higher memory effects of 
Bairoli springs could be linked to smaller fractures with nar-
rower drainage network and constrained geological fractures.

The ccf of individual spring discharge and total monthly 
rainfall is provided in Fig. 4b. It can be noted from the ccfs 
that the time delays between monthly rain and discharge 
vary significantly. Asymmetric relationships between rain-
fall and discharges at 95% CI, indicating high dependency 
of springshed output to rainfall input, could be noted for 
Betalghat and Someswar springs where rainfall resulting 
enhancement in the discharges within a monthly lag period 
of 0–2 (= 0–60 days). The maximum ccfs of Betalghat and 
Someswar were 0.74 and 0.49 at 95% CI, respectively. How-
ever, relative dependency of springshed output to rainfall 
input was also noted for the Bairoli and Dhaura springs hav-
ing highest ccfs of 0.29 and 0.285 at lag periods of 03 and 
01 months, respectively, but not at 95% CI Rest of the two 
springs, i.e. Bhujan (min ccf = − 0.28 at lag time = 0) and 
Kausani (min ccf = − 0.44 at lag time = 0), were not hav-
ing any significant relationship between rainfall and dis-
charge. Therefore, order of rainfall on discharges could be 
summarized as: Betalghat > Someswar > Bairoli > Dhaura. 
Highest dependency of the Betalghat spring to rainfall could 
be linked to highest terrain slopes (= 21.4°–23.8°) among 
all the springs whereas the Kausani spring, having lowest 
dependency to rainfall, could be corroborated to large forest 
cover surrounding the spring (around 93%) with lower ter-
rain slopes (= 12°–14.4°). Since, the ccfs indicated monthly 
rainfall impacted discharge within a time lag period of 
0–2 months, irrespective of springs, the predictive models 
were tested for 0–2 month time lag of each predictor.

Flow duration curves (FDC)

The FDCs were analyzed with respect to (i) slope charac-
teristics where a steep slope indicates highly variable flow 
regime and a flatter FDC indicating aquifer storage with 
gradual discharge; and (ii) overall (Q10/Q90) and high flow 
(Q60/Q90) variability. Further, Q10/Q90 values were used to 
compare flow variability ratios following (Alfaro and Wal-
lace 1994). FDCs of all the springs are produced in Fig. 5. 
It can be noted from the general distribution of FDCs that 
flow properties of Bairoli, Someswar, and Dhaura springs 
were almost similar with moderately flat slopes sustained by 
the ground water discharges. Therefore, the Qmx/Qmn ratios 
(where, Qmx, Qmn represents maximum and mean discharges 
during the observation period) of these three springs were 
almost identical, 1.08, 1.10, and 1.04, respectively. Flat 
slopes in the upper-end of the FDCs were noted for all the 
springs, except for Betalghat, indicating that deep aquifers 
were mostly contributing to discharges, and these aquifers 
might evacuate, if not recharged through precipitation and 
ground water augmentation activities. Similarities in the 

upper-end of FDCs were also indicating that the physi-
ographic characteristics, particularly, sub-surface drainage 
distribution patterns of all five springs, except Betalghat, 
were comparable. Consequently, it can be stated that any 
spring revival activities should incorporate detail analyses 
of slope-characteristics of FDCs before ground augmenta-
tion. Except for the Betalghat spring (Q10/Q90 = 3.4) cat-
egorized as ‘moderately (well) balanced’, rests of all the 
springs were found to be ‘extraordinarily balanced’, i.e., 
Bhujan (Q10/Q90 = 2.12), Bairoli (Q10/Q90 = 1.14), Someswar 
(Q10/Q90 = 1.18), Dhaura (Q10/Q90 = 1.06), and Kausani 
(Q10/Q90 = 1.15), respectively (Meinzer 1927; Alfaro and 
Wallace 1994). The high flow variability of each spring 
was further quantified using Q60/Q90 values. Although the 
Betalghat spring was noted to have highest overall flow vari-
ability, the high-flow variability was lowest for the Dhaura 
spring (Q60/Q90 = 1.03) and highest for the Bhujan spring 
(Q60/Q90 = 1.31), indicating that the poor flow consistency 
of the Bhujan spring. The Q60 threshold value of each spring 
was provided in Table 2 and was used for producing the 
dichotomous time series of H and L flow and used for mul-
tifactor flow characterization.

Seasonal water chemistry

An earlier study on the spring water chemistry of upper 
Kosi watershed by Rani et al. (2021) has indicated that 
two types of hydro-chemical complexions were domi-
nant within the watershed during pre-monsoon summer 
periods, Ca2+–Mg2+–HCO3

− and Ca2+–Mg2+–Cl−. The 
Ca2+–Mg2+–Cl− complexions were reported to change to 
Ca2+–Mg2+–HCO3

− during post monsoon. However, irre-
spective of the spring locations and seasons, the general 
water chemical signatures (Fig.  6) indicated week acid 
(HCO3

−) exceeded strong acids (SO4
2− and Cl−) for all 

the six springs. Similarly, alkaline earths (Ca2+ and Mg2+) 
exceeded alkali (Na+). Therefore, it can be inferred that 
the dominant complexion for the six study springs was 
Ca2+–Mg2+–HCO3

− which did not show much variation 
with season. One of the significant features of Fig. 6 was 
that the Dhaura spring had no dominant cation type. Simi-
larly, monsoon rainfall was noted to minutely convert the 
Mg2+–Cl− complexion to Ca2+–Cl− for the Betalghat spring. 
On the contrary, monsoon rainfall resulted Ca2+–Cl− com-
plexion of Bhujan spring to be partially converted to be 
Mg2+–Cl−. Although rock outcrop of the Betalghat and Bhu-
jan springs clearly indicated the presence of dolostone and 
quartzite, the subsurface geology of Bhujan spring clearly 
indicated presence of dolomite with Ca/Mg = 1.36 (Table 3), 
which is in corroboration to Ca/Mg ratio near to unity for 
dolomite dominated springs (White 2010). Consequently, the 
average annual EC of Bhujan spring was noted to be high-
est (451.6 µS cm−1) among all the springs. As the average 
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annual NO3
− concentration was comparatively higher for the 

Someswar spring (6.99 mg L−1), it can be inferred that the 
anthropogenic contamination through leaching of sewage 
water might be the reason. However, the annual average pH 
levels of all the study springs (6.79–7.57) were within the 
potable range as per BIS. The average WQI values of the 
Betalghat, Bhujan, Bairoli, Someswar, Dhaura, and Kausani 
springs were 25.0 (± 2.9), 38.2 (± 5.7), 17.3 (± 1.8), 31.9 
(± 5.0), 17.4 (± 2.7), and 19.4 (± 2.6), respectively, where 
values in parentheses are standard deviations. Since, WQI 
values of all the springs were below 50, generic water qual-
ity of all the springs could be categorized as ‘excellent’ as 
per the BIS standards of India. The cumulative mean WQI 
time series with 144 data were further used for multifactor 
flow predictions.

The high‑flow predictions

The spring high-flow predictions were carried out using 
five machine learning classifiers for a total of ten experi-
ments (E1–10) having different combinations of predic-
tors with predictor time lags of 0–2 months. As indicated 
in “Application procedures”, a total of 96 samples were 
randomly used to train the model and 48 random samples 
were used for model testing. The bootstrapping simula-
tions were carried out for 100 times. The model perfor-
mances during training and testing of each experiment 
could be found in Figs. 7 and 8, respectively. In view of 
the extreme variability of JT-DP type spring flow proper-
ties, any AUC value between 0.6 and 0.7 was considered as 
‘acceptable’ and AUC value greater than 0.7 was consid-
ered as ‘good’ (Moriasi et al. 2007). Firstly, the individual 
experiment results were analyzed by highlighting the best 

Fig. 5   Flow duration curves (FDC) of all the study springs are produced using monthly discharge data
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predictor/s and best time lag based on mean AUC values. 
Finally, the best classifier for predicting the JT–DP spring 
high-flow over Kosi-watershed was selected by identify-
ing highest mean AUC during testing of an experiment at 
a certain time lag of predictors.

During the training and test simulations of the NBC, 
highest mean AUCs were noted to be 0.68 (± 0.05) and 0.68 
(± 0.07), respectively, when WQI was the predictor (experi-
ment E4) at lag = 2. Similarly, mean AUCs for training and 
testing of KNN were 0.66 (± 0.02) and 0.67 (± 0.05), respec-
tively, when Ra + pHa + ECa were predictors (experiment 
E9) at lag = 2. Mean AUCs for training and testing of SVM 
were 0.58 (± 0.01) when ECa was predictor (experiment E3) 

at lag = 1, and 0.62 (± 0.05) when Ra + ECa was predictor 
(experiment E10) at lag = 2. Therefore, identification of a 
best combination of predictors at a specific time lag using 
the SVM was inconclusive. However, training and testing 
results of the DTC was conclusive, and mean AUCs for 
training and testing were 0.67 (± 0.03) and 0.67 (± 0.05), 
respectively, when ECa was predictor (experiment E3) at 
lag = 2. Performance of the DAC was best among all the 
classifiers during training and test. Moreover, the impacts of 
changing predictors and time lag on the DAC performances 
were not significant as the average AUCs for training and 
testing, irrespective of predictors and time lag, were 0.70 
(± 0.002) and 0.71 (± 0.003), respectively. However, a finer 

Fig. 6   Piper plots of spring water ions during a summer (March–May), b monsoon (June–September) and c winter seasons (November–Febru-
ary)



	 Environmental Earth Sciences (2023) 82:85

1 3

85  Page 12 of 15

inspection of the DAC performance revealed best perfor-
mance was achieved when Ra + ECa was used as predictors 
(experiment E10) at time lag = 0, i.e., mean AUC during 
testing was 0.72 (± 0.02). Hence, except for the SVM, 
‘acceptable’ performances were noted for NBC, KNN, and 
DTC, and ‘good’ performance was noted for DAC. Finally, 
it can be concluded that JT-DP type monthly spring high-
flows could be predicted with acceptable confidence using 
standardized anomaly of rainfall and electrical conductivity 
with no time lag using the discriminant analysis classifier.

Summary and conclusions

A spring discharge prediction model is an extremely 
important tool for assessing long-term flow sustainability. 
The nonlinear and non-stationary data analytical methods 
provide excellent opportunities for developing such mod-
els wherein simple geo-hydrological parameters are used 
as predictors. However, in spite of life-supporting roles 
of the Indian Himalayan springs, all most no efforts are 
made to develop a spring discharge prediction model for 
the Indian Himalayas. In order to address this knowledge 
gap, this current study was aimed at developing a simple 
machine-learning-based model that could predict JT and 
DP type monthly spring high-flows of a central Himala-
yan watershed. Subsequently, five very powerful machine 
learning algorithms (NBC, KNN, SVM, DTC, and DAC) 
were used with combinations of simple predictors, such 
as standardized anomaly of rainfall, pH, EC and WQI. 
Spring discharges, pHs, ECs and spring water chemical 
properties were monitored during 2019–2020 on monthly 
basis from 06 numbers of JT-DP spring (a cumulative of 
144 data points for each parameter) of Kosi-watershed, 
Uttarakhand, India. All this six springs considered in this 
study are perennial and owned by the local community for 
daily water usages. Monthly discharges of these springs 
varied between 0.146 and 19.76 L m−1, and flow proper-
ties were either ‘moderately (well) balanced’ or ‘extremely 
well balanced’ as per the modified Meinzer classification. 
The annual average pH levels of all the springs (6.79–7.57) 
were within the potable range, and the dominant spring 
water complexion was Ca2+–Mg2+–HCO3

− having little 
variation with season. Asymmetric relationships between 
rainfall and discharges at 95% CI were noted when all the 
springs were considered, and rainfall resulting enhance-
ment in the discharges up to a monthly lag period of 2 
(= 60 days) were noted in few cases. As a consequence, 
model performances were tested for time lags 0–2. The 
spring high-flows were identified using the Q60 value 
of the FDC of each spring that varied between 0.18 and 
17.23 L m−1. Except for the WQI, standardized anomaly of 
rainfall, pH, and EC were used as predictors. A total of ten Ta
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Fig. 7   The mean area under 
curve (AUC) with standard 
deviations obtained using the 
receiver operating characteris-
tics (ROC) of all the training 
experiments for predictor(s) 
lag = 0–2 months are presented. 
The mean and standard devia-
tion values are obtained using 
100 bootstrapped samples. NBC 
Naïve Bayes, KNN kth nearest 
neighbors, SVM support vector 
machine, DTC classifier, DAC 
discriminant analysis classifier

Fig. 8   Same as Fig. 7 but for 
test cases
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different combinations of predictors with five classifiers 
were used in ten successive experiments for identifying 
the best choice. Each simulation was carried out using 
bootstrapping method, where 96 samples were randomly 
used to train the model and the rest of the samples were 
used for model validation. The bootstrapping procedure 
was applied for 100 times, and the ensemble means of 
model predictions of training and testing data were evalu-
ated using ROC having 1 − specificity and sensitivity. The 
measure of model performance was AUC. Mean AUCs 
during the training and testing of all the experiments were 
compared and it was noted that DAC was the best model 
for predicting spring high-flows. The best predictor was 
the combination of Ra + ECa at lag = 0 having mean AUC 
of 0.72 (± 0.02) during model testing.

This study is among the very few efforts where JT-DP 
type spring high flows of the Indian Himalayas are predicted 
using multiple hydro-geological factors. Results of this study 
indicated that the long-term monitoring of rainfall and elec-
trical conductivity of spring water alone would be sufficient 
to assess persistence of the JT-DP type spring high-flows in 
the central Himalayas. However, it is to be emphasized that 
the model performance could be improved by enhancing the 
temporal resolution as well as duration of the observed data. 
Similarly, model performance enhancement could further 
be carried out by including data from a higher number of 
JT-DP type springs. Since, rainfall climatology changes sub-
stantially across the Indian Himalayas, and the properties of 
aquifers contributing to spring discharges can substantially 
change with changing geology, a thorough investigation 
of hydrodynamical and geological properties of springs is 
extremely imperative before developing data derived model 
for a selected catchment.
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