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Abstract
Soil organic carbon (SOC) sequestration is closely linked to global climate change and soil quality. Secondary succession 
of agricultural abandonment under the Grain for Green Project (GGP) program generally promotes SOC sequestration in 
the karst region of southwestern China. This study investigated the controlling mechanism of enhancing SOC sequestration 
during secondary succession of agricultural abandonment, based on soil aggregation, soil erosion, and soil Ca dynamic. In 
the study area, croplands, shrub-grass lands, and secondary forest lands were regarded as the three stages during the second-
ary succession of cropland abandonment by the space-for-time substitution method. The proportions of water-stable and 
different-sized aggregates, SOC contents associated with aggregates, soil Ca contents and Ca/Al ratios, and soil erodibility 
K factors were analyzed in the soils at the 0–10, 10–20, and 20–30 cm depths. The proportions of macro-aggregates at the 
0–10 cm depth in the croplands (mean 61.3%) were significantly lower than those in the shrub-grass lands (mean 78.5%) 
and secondary forest lands (mean 81.6%). The SOC contents associated with macro-aggregates at the 0–20 cm depth in the 
croplands (mean 30.5 g kg–1) were significantly lower than those in the secondary forest lands (mean 52.2 g kg–1) but were 
slightly (not significantly) lower than those under the shrub-grass lands (mean 38.6 g kg–1). Soil Ca/Al ratios at the 0–20 cm 
depth in the croplands (mean 0.087) and shrub-grass lands (mean 0.105) were significantly lower than those under the 
secondary forest lands (mean 0.63). The proportions of water-stable aggregates increased and the K factor decreased after 
cropland abandonment. These results indicated that under the experiment conditions, soil aggregation increased, soil erosion 
reduced, and soil Ca accumulated during the secondary succession of agricultural abandonment. A conceptual model for 
enhancing SOC sequestration during the secondary succession of agricultural abandonment was proposed. This conceptual 
model suggests that the GGP program has a positive effect on SOC sequestration and soil quality in the karst region.

Keywords  Soil organic carbon sequestration · Agricultural abandonment · Secondary succession · Calcareous soils · Karst 
region

Introduction

Soil stores 1300–2000 Gt C (1 Gt = 1015 g), which is the 
largest C pool in terrestrial ecosystems, larger than the plant 
C pool (500–600 Gt) and atmospheric C pool (750 Gt) (Lal 
2004). The soil C pool consists of the soil organic carbon 
(SOC) pool and soil inorganic carbon (SIC) pool, in which 

the SOC pool is relatively active with an uncertain turnover 
time ranging from several weeks to several hundred years 
(Schmidt et al. 2011). Even a slight change in the huge SOC 
pool likely affects the atmospheric CO2 concentration; thus, 
SOC dynamics have important implications for global cli-
mate change and the human living environment (Yang et al. 
2016; Xu et al. 2018). The secondary succession of agri-
cultural abandonment is one of the land-use change types 
(Clark and Johnson 2011; Bell et al. 2020; Djuma et al. 
2020), which has been widely reported as an important fac-
tor affecting the SOC dynamic (Kalinina et al. 2019; Bell 
et al. 2021). Poeplau et al. (2011) reported that SOC storage 
gradually reduced during several decades after transforming 
forest and grasslands into croplands but it increased follow-
ing the secondary succession on the abandoned croplands. 
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In previous studies, the enhanced SOC storage during sec-
ondary succession of agricultural abandonment was mainly 
attributed to the elevated organic matter input derived from 
litterfall and roots due to the increased plant biomass (Gha-
foor et al. 2017). However, besides organic matter input, 
organic matter decomposition is another important factor 
affecting SOC storage (Jobbagy and Jackson 2000; Xia et al. 
2020). In addition to increasing recalcitrant SOC accumula-
tion, enhancing labile SOC stabilization in the soil environ-
ment can also slow down the decomposition rate of SOC 
or turnover rate of the total SOC pool (Juhos et al. 2021). 
Generally, the unprotected labile SOC has a relatively short 
residence time in soil ranging from several days to several 
months, which is not considered to affect global climate 
change (Wynn et al. 2006). However, with the alteration of 
soil environment under land-use change, the labile SOC can 
be stored on a larger time scale, which is also meaningful for 
global climate change. Chemical protection by association 
with multivalent cations, clay particles and physical pro-
tection by soil aggregates play important roles in enhanc-
ing SOC stabilization (Sollins et  al. 1996; Wright and 
Hons 2005; Kleber and Johnson 2010; Schmidt et al. 2011; 
Lehmann and Kleber 2015; Munoz et al. 2016; Chen et al. 
2020; Scott et al. 2021). It is necessary to determine the pri-
mary mechanism of SOC stabilization following a secondary 
succession of agricultural abandonment to understand the 
SOC sequestration potential during land-use change (Li et al. 
2012; Fan et al. 2020; Lan et al. 2020).

In the karst region of southwestern China, long-term and 
unsustainable agricultural activities have led to severe soil 
degradation, which is characteristic of soil erosion and nutri-
ent loss (Wang et al. 2019; Zhang et al. 2021; Han et al. 
2021; Liu et al. 2022). To restore the karst ecological envi-
ronment, many sloping croplands with a low crop yield had 
been abandoned under the Grain for Green Project (GGP) 
program since the beginning of the twenty-first century 
(Wang et al. 2017). The changes in SOC contents or storage 
during secondary succession of agricultural abandonment 
have been studied in the karst region (Xiao et al. 2018; Han 
et al. 2020; Lan 2021). Liu et al. (2020) reported that soil 
macro-aggregates (250–2000 μm) significantly affected SOC 
sequestration and Li et al. (2017) found that the replenish-
ment of soil Ca was the most important factor enhancing 
SOC storage. Soil exchangeable Ca2+ is the most important 
cation affecting SOC storage in the calcareous soils, which 
can combine soil organic matter (SOM) and clay minerals to 
enhance SOC stabilization (Lützow et al. 2006). Moreover, 
fine-sized OM–Ca2+–mineral complexes can bind together to 
form larger-sized soil aggregates, which further enhances the 
protection for SOC (Six et al. 2000). However, soil erosion 
can cause a decrease in SOC storage through the loss of dis-
solved organic carbon (DOC) and particulate organic carbon 
(POC) (Haring et al. 2013). Furthermore, soil erosion can 

indirectly affect SOC stabilization by destroying aggregate 
structure (Liu and Han 2020) and soil Ca2+ leaching loss 
(Li et al. 2017). In the karst region, enhanced SOC seques-
tration following a secondary succession of agricultural 
abandonment has been widely studied (Lan et al. 2020; Lan 
2021); however, understanding of the mechanism is lacking. 
The study objectives were to: (1) analyze the effects of soil 
aggregation, soil erosion, and soil Ca dynamic on SOC con-
tent and stabilization and (2) establish a conceptual model 
for increasing SOC sequestration during secondary succes-
sion of agricultural abandonment in the karst region. This 
research has implications for evaluating the influences of 
the GGP program on karst ecological restoration and global 
climate change.

Materials and methods

Study area

The study area is located in a small karst catchment with an 
area of 1.54 km2 (Chenqi catchment, 26°15′47–26°16′43″N, 
105°46′3–105°46′0.50″E), Puding county, Guizhou province 
of southwest China. This catchment has a typical karst land-
form, in which a valley is surrounded by three hills and a 
seasonal river flows from east to west (Liu et al. 2020). The 
altitudes of these hills reach up to 1524 m (above sea level) 
at maximum, while only 1310 m at the valley (Yue et al. 
2020). The karst region has a subtropical monsoonal climate, 
most of the rainfalls (> 80%) occur in the rainy season from 
May to October, with mean annual precipitation (MAP) of 
1315 mm. Season evapotranspiration (mean: 260 mm in 
spring, 330 mm in summer, 185 mm in autumn, and 115 mm 
in winter) is much lower than seasonal precipitation (Gao 
et al. 2016). The lowest and highest air temperatures gener-
ally occur in January (3–6 °C) and July (22–25 °C), respec-
tively, with a mean annual temperature (MAT) of 15.1 °C 
(Zhao et al. 2010). The soil on the hilltops and hillslopes 
is calcareous, mainly developed from the limestones of the 
upper and middle part of the Guanling Formation of the 
middle Triassic (Zhao et al. 2010), and classified as calcic 
Inceptisols in the soil taxonomy of the USDA (Soil Survey 
Staff 2014). The soil on the valley floor is a Quaternary 
deposit, which is mainly materials deposited from sur-
rounding hillslopes by soil erosion (Green et al. 2019). Soil 
thickness ranges from 0.3 to 0.5 m on the hilltops, 0.5–1 m 
on the hillslopes, and over 1 m on the valley floor. On the 
hilltops and hillslopes, the soil surface to 30 cm depth is a 
humic horizon (O), and the layer below 30 cm to bedrock 
includes an eluvial horizon (A), illuvial horizon (B), and 
parent material horizon (C). For the croplands on the valley 
floor, the soil surface to 30 cm depth is the cultivated hori-
zon. In the catchment, soil pH values range from 6.9 to 7.5 
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with minor spatial variation (Liu et al. 2019). Soil inorganic 
carbon (SIC) contents range from 0.83 to 42.03 g kg–1, and 
the soils close to bedrock generally have a high SIC content 
(Liu et al. 2020).

In addition to the ecological and environmental fragility 
of the Guizhou karst landform itself, long-term and unsus-
tainable agricultural management had further exacerbated 
soil degradation (Wang et al. 2019; Liu et al. 2020; Zeng and 
Han 2020). To alleviate and remediate the ecological prob-
lem of soil degradation, the GGP program has been carried 
out in the karst region (Wang et al. 2017). In the study area, 
the secondary forest lands on the hillsides were converted 
from terraced croplands 50 years ago, the shrub-grass lands 
at the foot of the hills have been transformed from terraced 
croplands for 3–8 years, and only the croplands on the valley 
floor remain in conventional cultivation (Liu et al. 2020). 
Thus, the zone of croplands, shrub-grass lands, and second-
ary forest lands show a vertical distribution in the catch-
ment. In the croplands, the main crops of maize (Zea mays), 
oilseed rape (Brassica napus), potato (Solanum tuberosum), 
and peanut (Arachis hypogaea) are planted in rotation from 
spring to autumn, while the fields lie fallow in winter. 
N–P–K fertilizer and urea provide about 300 kg ha−1 yr−1 
N, 85 kg ha−1 yr−1 P, and 6 kg ha−1 yr−1 K for crop pro-
duction, and farm manures are applied irregularly and non-
quantitatively (Li et al. 2018). In the shrub-grass lands, the 
main plant species are herbaceous plants including Imperata 
cylindrical, Setaria viridis, and Miscanthus sinensis, and 
low shrubs or trees including Berchemia sinica, Ilex macro-
carpa, and Pyracantha fortuneana. In the secondary forest 
lands, the main plant species are tall evergreen trees includ-
ing Litsea pungens, Padus racemosa, Pinus tabuliformis, 
Cinnamomum camphora, Camellia japonica, and Cyclo-
carya paliurus. In this study, the shrub-grass lands and 
secondary forest lands are regarded as the different stages 
following the secondary succession of abandoned croplands 
by the space-for-time substitution method (Blois et al. 2013). 
The photographs of the three stages were shown by Liu et al. 
(2020).

Soil sampling

Soil sampling was carried out in the Chenqi catchment in 
June 2016. At present, the proportional area of croplands, 
shrub-grass lands, and secondary forest lands within the 
Chenqi catchment is approximate 50, 20, and 30%, respec-
tively. In total, 18 sampling sites from different land-use 
types were randomly selected relative to the proportional 
area of within the catchment: 8 sites were in the croplands, 
5 sites were in the shrub-grass lands, and 5 sites were in 
the secondary forest lands, as shown by Liu et al. (2020). 
Distance between any two different sites under the same 
land-use type was 50–100 m. A soil pit (0.5 × 0.5 × 0.5 m) 

was dug at each site, and three duplicate soil samples were 
chosen from the three sides of the pit. Soil samples were 
collected from the top to the bottom at the 0–10, 10–20, and 
20–30 cm depth. In total, 162 soil samples were collected. 
The duplicate samples in each pit at the same depth were 
mixed as one composite sample.

Soil analysis

Soil samples were air-dried (25 °C) after removing obvious 
gravel and fresh coarse roots. A part of the samples was 
crushed by hand to make all particles pass through a 10 
mesh-steel sifter, which was stored as the sample of bulk 
soil (< 2 mm). The remaining soil samples were not crushed 
and were used for soil aggregate separation by the improved 
wet sieving method (Six et al. 1998). In detail, the dried soil 
samples were slowly wetted by capillary water absorption, 
then naturally disintegrated into a series of small-sized frac-
tions. These different-sized fractions were passed sequen-
tially through the 2000, 250, and 53 μm sifters in pure water. 
The aggregates over 2000 μm in diameter were crushed by 
a tweezer until all aggregates passed through the 2000 μm 
sifter. Macro-aggregates (250–2000 μm) and micro-aggre-
gates (53–250 μm) were collected after passing through 250 
and 53 μm sifters, respectively. The silt + clay sized fractions 
(< 53 μm) were extracted from the residual mixed liquid by 
centrifugation. The moist aggregate samples were dried in 
an oven at 55 °C until constant weight and then weighed to 
calculate their mass percent. The aggregates separated by 
the wet sieving method are water-stable aggregates (Emadi 
et al. 2009); thus, the proportion of water-stable aggregates 
is the summation of macro-aggregate and micro-aggregate 
proportions (Liu and Han 2020).

The samples of bulk soils and different-sized aggregates 
or fractions were ground in an agate mortar until all fine 
particles pass through a 200 mesh-nylon sifter. The pow-
der samples (< 75 μm) were soaked in 0.5 mol L−1 diluted 
hydrochloric acid for 24 h to remove carbonates (Midwood 
and Boutton 1998). The acid-treated samples were washed 
repeatedly with pure water until neutral liquid, and then 
dried (65 °C) and ground into powder (Liu et al. 2021c). 
The SOC contents of bulk soil, different-sized aggregates, 
or fractions were measured by a total organic carbon ana-
lyzer (Vario TOC cube, Elementar, Germany) in the Surficial 
Environment and Hydrological Geochemistry Laboratory, 
China University of Geosciences (Beijing). Standard soil 
substances (OAS B2152) were repeatedly measured to moni-
tor reproducibility. The relative standard deviations were less 
than 3%. Actual SOC content should be calibrated because 
of mass loss during removing carbonates, i.e., the measured 
SOC content is multiplied by the ratio of the sample mass 
after and before treatment (Liu et al. 2021b).
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To analyze Al and Ca contents of bulk soil, 50 mg powder 
sample was digested with a mixing solution including 3 mL 
pure nitric acid, 3 mL pure hydrofluoric acid, and 1 mL 
pure perchloric acid in a Teflon crucible (heat to 140 °C) for 
3 days (Liang et al. 2021). The digested solution was diluted 
to 25 mL in a glass volumetric flask with 2% nitric acid, used 
for the analyses of Al and Ca concentrations by an induc-
tively coupled plasma-optical emission spectrometry (ICP-
OES, Optima 5300DV, Perkin Elmer, USA) in the Center 
Laboratory for Physical and Chemical Analysis, Institute 
of Geographic Sciences and Natural Resources Research, 
Chinese Academy of Sciences. Blank samples and stand-
ard substance (GBW07404) of limestone soil were digested 
and measured similarly to the normal sample to monitor the 
recovery rate (over 97%) during the digestion procedure and 
the precision (± 0.1%) and accuracy during the analysis test 
procedure. The Al and Ca concentrations in the liquid used 
for analysis should be transformed into the contents in bulk 
soil (Liu et al. 2021a).

The soils in the study area are developed from weather-
ing of limestone (mainly calcites and a few impurities). The 
chemical reaction (CaCO3 + CO2 + H2O = Ca2+ + 2HCO3

–) 
determines the decrease in weathered rock (or soil parent 
material) mass during weathering. Thus, the contents of all 
elements in soils are variable during the rock weathering 
and soil formation processes. In geochemistry, the change 
in absolute content of one element does not confirm whether 
the accumulation or depletion of the element occurs during 
rock weathering and soil formation processes. However, the 
ratio of the element content relative to another nonmigratory 
element can eliminate the effects of rock weathering and 
soil formation processes on the element’s dynamic (Balls 
et al. 1997). Generally, Ca is an easily migratory element in 
soils and other environments (Gao et al. 2021; Wang et al. 
2021). In the study area, besides the effects of land-use 
change on soil Ca depletion or enrichment, soil Ca content 
is also affected by the limestone weathering and soil forma-
tion processes (Li et al. 2021). Aluminum is nonmigratory 
during the limestone weathering and soil formation pro-
cesses, therefore the ratio of soil Ca content to Al content 
(i.e., soil Ca/Al ratio) can indicate soil Ca accumulation or 
depletion during the secondary succession of agricultural 
abandonment.

Statistical analyses

Shapiro–Wilk (S–W) test was performed to detect nor-
mality for the proportions of different-sized aggregates 
or fractions, aggregate-associated SOC contents in bulk 
soils, SOC/SON ratios, soil Ca contents, and Ca/Al ratios 
in the soils at the different depths under different land-use 
types. Data should be transformed by logarithmic trans-
formation to meet the normal test if necessary. One-way 

ANOVA with the Least Significant Difference (LSD) test 
was performed to determine the differences in the propor-
tions of different-sized aggregates, SOC contents associ-
ated with different-sized aggregates, soil Ca contents, soil 
Ca/Al ratios, microbial residue C stock, and K factor in 
the same depth layer among different land-use types at the 
significance level of P < 0.05. The relationships of SOC 
contents with macro-aggregate proportions and soil Ca 
contents under different land-use types were determined 
by linear regression analysis, showing coefficients of r and 
associated P-value.

Results

Soil aggregate proportion

In the calcareous soils, macro-aggregates accounted for the 
largest proportion (> 60%) in all aggregates and fractions 
(Table 1). In the soils at 0–10 cm depth, the proportions of 
macro-aggregates (mean 61.3%) in the croplands were sig-
nificantly lower, while the proportions of micro-aggregates 
(mean 15.8%) and silt + clay sized fractions (mean 22.9%) 
were significantly greater, than those in the shrub-grass 
lands (mean 78.5, 9.2, 12.3%, respectively). Moreover, the 
proportions of macro-aggregates (mean 81.6%), micro-
aggregates (mean 8.1%), or silt + clay sized fractions (mean 
10.3%) in the secondary forest lands were not significantly 
different compared to those in the shrub-grass lands.

Micro-aggregate proportions in the soils at the 10–30 cm 
depth under the shrub-grass lands were not significantly dif-
ferent from those under the secondary forest lands and crop-
lands. The proportions of macro-aggregates in the soils at 
the 20–30 cm depth and the proportions of silt + clay sized 
fractions in the soils at the 10–30 cm depth were not sig-
nificantly different among the three land-use types. These 
results showed that the proportion of soil macro-aggregates 
increased but the proportions of micro-aggregates and 
silt + clay sized fractions decreased during the secondary 
succession of agricultural abandonment. Moreover, the vari-
ations of different-sized aggregates and fractions under dif-
ferent land-use types gradually weakened with increasing 
soil depth.

Water-stable aggregates accounted for 77–90% (wt.%) of 
all aggregates or fractions. The proportions of water-stable 
aggregates in the soils at the 0–10 cm depth under the crop-
lands were significantly lower than those under the shrub-
grass lands and secondary forest lands but were not signifi-
cantly different among the three land-use types in the soils 
at the 20–30 cm depth. This result showed that water-stable 
aggregates in the undisturbed surface soils significantly 
increased after 3 years of cropland abandonment.
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Aggregate‑associated SOC content in bulk soil

The SOC contents associated with macro-aggregates at 
the 0–20 cm depth under the secondary forest lands (mean 

52.2 g kg–1) were significantly greater than those under crop-
lands (mean 30.5 g kg–1), moreover, but neither was sig-
nificantly different from those under the shrub-grass lands 
(mean 38.6 g kg–1) (Fig. 1). However, the SOC contents in 

Table 1   The proportions of 
different-sized aggregates in the 
soils at different depths under 
different land-use types

The results are expressed as mean with standard deviation. Different lowercase letters indicate significant 
differences in the proportions of different-sized aggregates among land-use types, based on the one-way 
ANOVA with LSD test at the level of P < 0.05
CL cropland, SG shrub-grass land, SF secondary forest land

Land-use types CL SG SF

Soils at the 0–10 cm depth
 Water-stable aggregate proportion (%) 77.1 (5.7) b 87.7 (2.2) a 89.7 (4.4) a
 Macro-aggregate proportion (%) 61.3 (5.8) b 78.5 (3.7) a 81.6 (5.9) a
 Micro-aggregate proportion (%) 15.8 (2.1) a 9.2 (1.8) b 8.1 (1.6) b
 Silt + clay sized fraction proportion (%) 22.9 (5.7) a 12.3 (2.2) b 10.3 (4.4) b

Soils at the 10–20 cm depth
 Water-stable aggregate proportion (%) 81.2 (10.0) a 87.8 (1.6) a 90.3 (3.1) a
 Macro-aggregate proportion (%) 66.3 (14.8) b 79.3 (3.1) ab 82.6 (3.9) a
 Micro-aggregate proportion (%) 15.0 (5.9) a 8.5 (2.3) ab 7.7 (1.4) b
 Silt + clay sized fraction proportion (%) 18.8 (10.0) a 12.2 (1.6) a 9.7 (3.1) a

Soils at the 20–30 cm depth
 Water-stable aggregate proportion (%) 78.1 (15.7) a 85.8 (2.9) a 88.6 (5.2) a
 Macro-aggregate proportion (%) 64.0 (18.6) a 76.0 (3.7) a 81.2 (5.9) a
 Micro-aggregate proportion (%) 14.1 (5.1) a 9.8 (1.0) ab 7.4 (1.7) b
 Silt + clay sized fraction proportion (%) 21.9 (15.70) a 14.2 (2.9) a 11.4 (5.2) a
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Fig. 1   SOC contents associated with different-sized aggregates in 
the soils at different depths under different land-use types. The error 
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sized aggregates among different land-use types, based on the one-
way ANOVA with LSD test at the level of P < 0.05. CL cropland, SG 
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the soils at the 20–30 cm depth were not significantly dif-
ferent among the three land-use types. Similarly, the SOC 
contents associated with micro-aggregates and silt + clay 
sized fractions at all soil depths were not significantly dif-
ferent among the three land-use types. Additionally, the 
proportions of macro-aggregates significantly positively 
correlated with the SOC contents in bulk soils and the SOC 
contents of macro-aggregates in the croplands, and positive 
correlations (not significant) between them occurred in the 
shrub-grass lands and secondary forest lands (Fig. 2). These 
results showed that the SOC of macro-aggregates was more 
sensitive than that associated with micro-aggregates and silt 
+ clay sized fractions in response to the secondary succes-
sion of agricultural abandonment. 

Soil Ca content and Ca/Al ratio

The Ca contents in the soils under the secondary forest 
lands at the 0–20 cm depth (mean 33.1 g kg–1) were signifi-
cantly greater than those under the shrub-grass lands (mean 
8.0 g kg–1) and croplands (mean 6.9 g kg–1) but were not 
significantly different among the three land-use types in the 
soils at the 20–30 cm depth (Fig. 3a). In the soils at the 
0–20 cm depth, soil Ca/Al ratios under the secondary for-
est lands (mean 0.63) were also significantly greater than 
those under the shrub-grass lands (mean 0.105) and crop-
lands (mean 0.087), and the ratios in the shrub-grass lands 
were slightly (not significantly) greater than those in the 
croplands (Fig. 3b). Additionally, soil Ca contents and Ca/Al 
ratios were significantly positively correlated with the SOC 
contents in bulk soils under the three land-use types (Fig. 4).

Discussion

In the karst region, SOC sequestration is generally enhanced 
during the secondary succession of agricultural abandon-
ment, which has been widely reported in previous research 
(Yang et al. 2016; Liu et al. 2020). Increasing SOC seques-
tration is characteristic of increases in SOC storage and turn-
over time, and these are closely associated with the changes 
in SOC content and stabilization (Cotrufo et al. 2019). In 
the current study, the effects of soil aggregation, soil ero-
sion, and soil Ca dynamic on SOC content and stabilization 
are discussed to improve the mechanistic understanding of 
increasing SOC sequestration during the secondary succes-
sion of agricultural abandonment.

Enhancing soil aggregation

Soil aggregate formation and stabilization can significantly 
affect SOC dynamics after land-use changes or under dif-
ferent land-use management (Huang et al. 2010; Six and 
Paustian 2014; Zeng et al. 2018). The proportions of macro-
aggregates significantly increased during the secondary suc-
cession of agricultural abandonment (Table 1). This result 
indicates that soil aggregation gradually increases after 
cessation of agricultural disturbances, for example, tillage. 
Aggregates physically protect the SOC within them due to 
the role of aggregates in isolating oxygen, water, and micro-
organisms, which is crucial to enhancing SOC stabilization 
(Six et al. 1998; Oades and Waters 1991; Zhu et al. 2021). 
However, long-term tillage leads to mechanical fragmen-
tation of macro-aggregates, resulting in more SOC being 
exposed to the air and directly attacked by microorganisms 
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(Six et al. 2002). Thus, soil aggregation and SOC stabiliza-
tion in the croplands are generally weaker than those in the 
secondary forest lands. The SOC contents associated with 
macro-aggregates significantly increased during the second-
ary succession of agricultural abandonment, but the SOC 
contents associated with micro-aggregates and silt + clay 
sized fractions did not (Fig. 1). Furthermore, the SOC con-
tents associated with macro-aggregates positively correlated 
with the proportions of macro-aggregates at all stages of 
agricultural abandonment (Fig. 2). These results indicate a 
close link between macro-aggregates and SOC sequestration 

during the secondary succession of agricultural abandon-
ment. Generally, the response of macro-aggregates is more 
rapid to land-use change or land-use management compared 
to other smaller-sized aggregates (Franzluebbers and Arshad 
1997; Six et al. 2004). Conventional tillage management 
preferentially destroys macro-aggregates rather than micro-
aggregates (Franzluebbers and Arshad 1997), but the resto-
ration of macro-aggregates is also more rapid with the cessa-
tion of tillage. Macro-aggregate formation and stabilization 
are closely linked to SOC dynamic because macro-aggre-
gates provide physical protection for SOC (Liu et al. 2019). 
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Furthermore, 60–80% of SOC in the soils at the 0–30 cm 
depth was stored in macro-aggregates (Fig. 1). Thus, the 
restoration of macro-aggregates plays an important role in 
enhancing SOC sequestration during the secondary succes-
sion of agricultural abandonment. Soil aggregates not only 
promote SOC accumulation but also enhance its stabilization 
(Six et al. 1998; Six and Paustian 2014; Zhu et al. 2021). 
Liu et al. (2020) found that SOC within micro-aggregates is 
younger than that within macro-aggregates through a com-
parison between the 13C composition of SOC within dif-
ferent-sized aggregates in the calcareous soils of this study 
area. According to the aggregate hierarchy model (Six et al. 
2000), micro-aggregates occur within macro-aggregates 
during the formation process. Thus, the SOC contained in 
micro-aggregates is more stable because of multiple protec-
tions from micro-aggregates and macro-aggregates (Beare 
et al. 1994). During the secondary succession of agricultural 
abandonment, the restoration of macro-aggregates promotes 
the formation of interior micro-aggregates (Six et al. 2000), 
which is conducive to protecting the young SOC within 
micro-aggregates. More labile SOC is stabilized by micro-
aggregates with the increase in macro-aggregates after crop-
land abandonment, which slows down the turnover rate of 
the whole SOC pool.

The proportions of macro-aggregates in the croplands 
were significantly greater than those in the shrub-grass 
lands, but SOC contents between them were not signifi-
cantly different. These results indicate that the restoration 
of macro-aggregates is more rapid than SOC recovery dur-
ing the secondary succession of agricultural abandonment. 
The SOC storage (or content) in surface soils depends on the 
dynamic balance between organic C input rate and decompo-
sition rate (Jobbagy and Jackson 2000). The SOC input and/
or decomposition rate varies after a land-use change until 
reaching a new balance (Chen et al. 2021). In this study, 
SOC has gradually accumulated after cropland abandon-
ment, which implied a higher SOC input rate compared to 
its decomposition rate during the secondary succession of 
agricultural abandonment. The change in SOC input and/or 
decomposition rate is a long-term process, closely associ-
ated with the variations in soil properties, plant structure, 
and soil microbial community composition (Novara et al. 
2014). For example, Li et al. (2018) found that bacterial 
and fungal residue C stocks in the croplands were signifi-
cantly lower than those in the secondary forest lands but 
were not significantly different from those in the shrub-
grass lands in this study area (Fig. 5). This indicates that 
the restoration of soil microbial community composition is 
also a long-term process during the secondary succession 
of agricultural abandonment. But the restoration of macro-
aggregates is a relatively short-term process because the 
formation of macro-aggregates is significantly expedited 
with the cessation of tillage and vegetation recovery after 

cropland abandonment (Liu et al. 2019). Additionally, the 
proportions of different-sized aggregates and SOC contents 
associated with them were significantly different among the 
three land-use types in the topsoil (0–20 cm depth), but not 
in the soil below 20 cm depth (Table 1 and Fig. 1). The effect 
of agricultural abandonment on the formation and stabiliza-
tion of soil aggregates and related SOC has weakened in 
deep soil. This is mainly attributed to microbial processes, 
which are closely associated with the formation and stabili-
zation of soil aggregates and related SOC (Six and Paustian 
2014). For the topsoil, microbial community compositions 
and activities are mainly affected by the variety and quan-
tity of organic matters (as important material and energy 
sources) under different land-use types (Zhang et al. 2013). 
However, microbial quantity and activity will be restricted 
in deep soil due to the decreases in food sources and oxygen 
concentration (Luo et al. 2019). Guo et al. (2019) reported 
that soil microbial enzyme activity decreased with increas-
ing soil depth in this study area.

Reducing soil erosion

Soil erosion is an important force affecting SOC dynam-
ics (Haring et al. 2013). The karst region of southwestern 
China is a typical soil erosion area (Guo et al. 2017; Wang 
et al. 2019). Liu and Han (2020) assessed soil erodibility of 
surface soils under different land-use types by estimating 
the K factor in the Erosion Productivity Impact Calculator 
(EPIC) model in this study area. The K values of the soils 
at the 0–30 cm depth in the croplands were significantly 
greater than those in the shrub-grass lands and much greater 
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than those in the secondary forest lands (Fig. 6), demon-
strating that soil erodibility significantly decreases during 
the secondary succession of agricultural abandonment. The 
K factor in the EPIC model is estimated based on the vari-
ables related to soil structure, such as SOC content and the 
proportions of different-sized particles (Sharpley and Wil-
liams 1990). Water-stable aggregates also directly affect soil 
erodibility, because soil aggregates are the base unit of soil 
structure (Jastrow 1996). Additionally, water-stable aggre-
gates accounted for 77–90% of the total soil mass in this 
study (Table 1). Thus, the proportion of water-stable aggre-
gates should be considered when estimating soil erodibility. 
Soils containing many water-stable aggregates have a loose 
structure with many large-sized soil pores, which enhances 
soil permeability to resist runoff influences, i.e., reduces soil 
erodibility (Varela et al. 2010; Ding and Zhang 2016). In 
contrast, the surface soils with few water-stable aggregates 
are easily compacted by rainfall to form a soil crust. Soil 
crusts can enhance surface runoff and reduce water infil-
tration, which enhances soil erodibility (Goldshleger et al. 
2002). Generally, the proportion of water-stable aggregates 
is negatively correlated with the soil erodibility K factor. For 
example, Ren et al. (2019) reported that the proportions of 
water-stable macro-aggregates were significantly negatively 
correlated with the K factor in the Universal Soil Loss Equa-
tion (USLE) model. Liu and Han (2020) reported that the 
proportions of water-stable aggregates in the calcareous soils 
were significantly negatively correlated with the K factor in 
the EPIC model. In the study area, the proportion of water-
stable aggregates significantly increased and the K factor 
significantly decreased during the secondary succession of 

agricultural abandonment (Table 1 and Fig. 6), indicating 
that soil erosion also significantly decreased. Furthermore, 
based on field observation, vegetation coverage and canopy 
thickness increased during the secondary succession of 
agricultural abandonment, which reduces soil erosion by 
cushioning the force of rainfall on surface soils (Wang et al. 
2016). Reduced soil erosion following ecological restoration 
has been widely reported in the karst area (Zhu et al. 2018; 
Liu and Han 2020). Soil erosion can directly reduce SOC 
content through the loss of POC and DOC (Haring et al. 
2013). Moreover, soil erosion can cause soil Ca loss, which 
indirectly affects SOC content by hindering the formation 
of OM–Ca2+–mineral complexes and soil aggregates (as 
discussed in Soil Ca accumulation). Thus, soil erosion is 
closely linked to SOC dynamics. Liu et al. (2019) reported 
that SOC contents significantly increased with the increas-
ing proportions of water-stable macro-aggregates and with 
the decreasing K factor values during the secondary succes-
sion of agricultural abandonment. The reduced soil erosion 
after cropland abandonment is conducive to enhancing SOC 
sequestration.

Soil Ca accumulation

In the karst region, the weathering of limestones (mainly 
consisting of calcites) provides abundant Ca2+ into the cal-
careous soil (Li et al. 2017). Soil Ca in the croplands was 
depleted compared to that in the secondary forest lands 
(Fig. 3), mainly resulting from leaching loss and harvest-
ing (Guo et al. 2010). The soil Ca/Al ratios in croplands 
were slightly (not significantly) greater than those in the 
shrub-grass lands and significantly greater than those in the 
secondary forest lands (Fig. 3), indicating near-surface soil 
Ca accumulation during secondary succession of agricul-
tural abandonment. As the soil Ca content is constant at the 
stage of cropland, the Ca output flux by Ca2+ leaching must 
be equal to its input flux by limestone weathering. After 
cropland abandonment, Ca influx does not vary because the 
limestone weathering rate is constant. However, increased 
SOM promotes the formation of stable OM–Ca2+–mineral 
complexes against Ca2+ leaching (Kaiser et al. 2011). Addi-
tionally, reduced soil erosion restricts soil Ca2+ leaching 
loss (Liu and Han 2020). These factors lead to a decrease in 
Ca output flux and an accumulation of soil Ca. Soil Ca has 
depleted during long-term cultivation, but it can be replen-
ished during the secondary succession of agricultural aban-
donment. At the bottom of the soil layer, limestone weather-
ing produces dissolved Ca2+. Generally, dissolved Ca2+ rises 
into upper soil by capillary movement or is absorbed by the 
plant and then returns to surface soil through litter and root 
exudates (Burt et al. 2010).

Soil Ca contents and Ca/Al ratios were significantly posi-
tively correlated with SOC contents under the three land-use 
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types (Fig. 4), indicating a close link between soil Ca and 
SOC content at all stages of cropland abandonment. The 
bivalent Ca2+ can easily combine with OM and clay miner-
als to form stable OM–Ca2+–mineral complexes, which can 
enhance SOC content and stabilization (Kaiser et al. 2011). 
Moreover, soil Ca2+ is an important binding agent promoting 
aggregate formation, which indirectly affects SOC seques-
tration. Li et al. (2017) suggested that soil exchange Ca2+ 
is the major factor that affects SOC storage after cropland 
abandonment. Moreover, the ratio of exchange Ca2+ to SOC 
can be used as an index to assess the capacity of SOM accu-
mulation (Li et al. 2017). Thus, soil Ca replenishment plays 
an important role in enhancing SOC sequestration during the 
secondary succession of agricultural abandonment.

Conceptual model

According to the effects of soil aggregates, soil erosion, and 
soil Ca on SOC dynamics, we propose a conceptual model 
for enhancing SOC sequestration during the secondary suc-
cession of agricultural abandonment in the karst region 
(Fig. 7). The cessation of agricultural activities after crop-
land abandonment is conducive to the formation and stabi-
lization of soil aggregates. Soil aggregates provide physical 
protection for SOC to enhance its content and stabilization. 
Soil erodibility K factor significantly decreases during this 
process, indicating reduced soil erosion. Decreasing soil ero-
sion restricts the loss of DOC and POC, which is conducive 
to SOC accumulation. Soil Ca contents and Ca/Al ratios 
significantly increased during this process, indicating soil 
Ca replenishment. Soil Ca accumulation promotes the for-
mation of OM–Ca2+–mineral complexes to enhance SOC 
content and stabilization. Additionally, there are interactive 
relationships between soil aggregation, soil erosion, and 
soil Ca content. For example, water-stable aggregates can 
improve soil structure to reduce soil erosion. Reduced soil 
erosion restricts the leaching loss of soil Ca2+. Soil Ca2+ 
accumulation is beneficial for soil aggregation due to its 

role as a binding agent during aggregate formation. Thus, 
the enhanced SOC sequestration during the secondary suc-
cession of agricultural abandonment in the karst region is 
mainly attributed to the protection of SOC by soil aggregates 
and OM–Ca2+–mineral complexes and reduced soil erosion. 
This conceptual model suggests that there are positive effects 
of secondary succession on the abandoned croplands under 
the GGP program in enhancing SOC sequestration and soil 
quality improvement. These have important implications for 
global climate change and regional ecological restoration.

Conclusions

Under the GGP program, the mechanisms of enhanced SOC 
sequestration during the secondary succession of agricul-
tural abandonment were identified in the karst region of 
southwest China. The proportions of macro-aggregates and 
water-stable aggregates, SOC contents, soil Ca contents, and 
Ca/Al ratios significantly increased after cropland abandon-
ment, and the soil erodibility K factor decreased. The SOC 
contents were significantly positively correlated with macro-
aggregate proportions and soil Ca contents. A conceptual 
model for enhancing SOC sequestration during the second-
ary succession of agricultural abandonment was proposed 
in the karst region. The enhanced SOC sequestration during 
this process is mainly attributed to the protection of SOC 
by soil aggregates and OM–Ca2+–mineral complexes and 
reduced soil erosion. This conceptual model reflects the 
positive effects of the secondary succession of agricultural 
abandonment under the GGP program on SOC sequestration 
and ecological restoration.
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