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Abstract
Abandoned mine wastes pollute the soil in their vicinities and threaten the health of livestock and human beings. This is the 
situation around San Felipe de Jesús in northwestern Mexico. We surveyed 900 ha of agricultural land to assess and map 
the concentrations of toxic elements in the topsoil to discover where pollution is serious, what its source might be and to 
decide whether remediation is needed. The total concentrations of Pb, As, Zn, Cu and Mn plus Fe and Ca were analysed by 
X-ray fluorescence spectrometry. We found that all of the first five elements listed were concentrated near the tailings pile 
as a ‘hot spot’ and where the concentrations of Pb, As and Zn exceed national and international standards. Iron and Ca, in 
contrast, are evenly spread throughout the region. The elements Pb, Zn and Mn gradually decrease in concentration from the 
tailings pile toward the Sonora River, probably because they have spread in dust or by water during storms. Arsenic and Cu 
also decrease in concentration from the the tailings pile towards the centre of the region, but they increase again in the soil 
on the river flood plain, most likely as the result of spills in the catchment north of the river basin. These results will serve 
to assess the risks incurred in the use of the land for agriculture and to define policies for that use and possible remediation.

Keywords Mine tailings · Heavy metal pollution · Nested sampling · Kriging

Introduction

Mining has caused severe damage to the environment. In 
particular, metal mining has led to widespread pollution of 
soil with potentially toxic elements; its legacy goes back 
centuries (Dudka and Adriano 1997; UNEP 2001). There 
are thought to be several million abandoned mines around 
the world. A rough estimate puts the number at more than 
600 000 abandoned mines in South Africa, Australia, UK, 
USA and Canada alone (IIED 2002). In Mexico, 585 aban-
doned mines and their associated tailings are recorded in 
the latest geo-referenced inventory, but that number will 
almost certainly grow as many more sites are identified and 
are verified (SEMARNAT 2021). Many mines were aban-
doned when ore bodies were exhausted or when they became 
unprofitable. Waste materials were left in piles, exposed to 
rain and wind, and without vegetative cover they spread 
their toxic loads into their surroundings for years afterwards 
(IIED 2002). If nothing is done to prevent it, the waste will 
continue as a source of potentially toxic elements (PTE) 
spread by the erosion of tailings, in wind-blown dust, and 
in drainage water. Leaching of the elements can also acidify 
the soil, ground water and surface water (Dudka and Adriano 
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1997). The fates of the elements once in the soil depend to 
some degree on the nature of the soil itself. Most elements 
are more mobile in acid soil than in alkaline or calcareous 
soil (Alloway 2012) and more likely to be leached from the 
soil.

Metals in tailings are among the most damaging legacies 
of mining in that they can cascade through the environment 
into plants and animals and eventually into human food 
(Cross et al. 2017). As above, if no action is taken then the 
pollution continues to harm the environment and to threaten 
the health and safety of both humans and their livestock. The 
most immediate need in most cases is the assessment of the 
concentrations of the pollutants and their distributions in 
the affected land.

The distributions of metal pollutants in soil can vary from 
one spatial scale to another because of the natural variation 
in the soil itself and differences in land management (Yun 
et al. 2020). Farmers, their advisors and agencies respon-
sible for restrictions on land use or remediation need to 
understand where and on what scale pollutants are spatially 
distributed to decide how to manage the land safely and to 
develop suitable strategies and methods for soil remediation.

Mexico is rich in mineral ores. From the viceroyalty of the 
sixteenth century and into the twentieth century extraction 
was inefficient, and it left large amounts of metal-rich waste. 
There was little or no concern for the damage it might do to 
the environment or for regulation (Douglas and Hansen 2008). 
Detailed records are few, and the extents of lands affected are 
largely unknown, both in Mexico as a whole and in Sonora 
in particular. The tailings deposit around San Felipe de Jesús, 
the study of which we describe below, is one example of the 
legacy left by mining. The concentrations of lead (Pb), arse-
nic (As) and zinc (Zn) in the deposit and nearby soil exceed 
national and international standards (Del Rio-Salas et al. 
2019). These elements can be taken up by plants (Loredo-
Portales et al. 2020), and, given that this land is used for agri-
culture, they represent a serious threat to the safety of food for 
human consumption. We surveyed this area to map the dis-
tributions of the potentially toxic elements to identify where 
remediation is urgent or desirable and where the mobility of 
pollutant metals should be studied.

Materials and methods

Case study: San Felipe de Jesús

The study was done in San Felipe de Jesús and Aconchi, 
Sonora, in Northwestern, Mexico (Fig. 1). The two towns 
lie contiguous to one another along the Sonora River within 
the Sonora River basin. The regional climate is arid (BSO) 
with average monthly temperature ranging from 12.3 ◦ C in 
January to 30.4 ◦ C in July, but maximum temperature can 

reach 47 ◦ C (Brito-Castillo et al. 2010). The average annual 
precipitation is approximately 481 mm, with a range from 
300 to 600 mm. Most of the rain falls in July and August 
(summer) in short spells (SMN, 2020). The natural vegeta-
tion is thorn-scrub dominated by leguminous trees and cacti 
(Martínez-Yrízar et al. 2010).

Mining started in the region in about 1900. Sampling 
from the mine workings in 1932 gave grades up to 16.21 
oz/ton (470 g tonne−1 ) silver, 21.7 % lead, 29.5% zinc and 
27.65% copper. There are no records of production, but as 
much as 100 tonnes ore are estimated to have been extracted 
per day on average. Mining was suspended in 1944 because 
of low metal prices. Mining resumed briefly from 1957 to 
1959 and recommenced again from 1963 to 1968. In 1973, 
a flotation plant was constructed for processing ore, and that 
functioned until 1991 (Tietz 2018). The abandoned labora-
tories still exist, and in them can be seen the remains of the 
chemicals used to analyse the samples.

Waste from the mine was piled in Aconchi, 0.5 km to the 
south of San Felipe de Jesús (Fig. 1). The pile is 140–160 m 
across at its base, covering approximately 16 300 m2 , and 
with a height varying from 2 to 5 m (Espinoza-Madero 
2012). The residues in this pile seem to be the main source 
of pollution in the neighbouring agricultural land. The pile is 
still completely free of vegetation, is subject to wind erosion 
during the dry season, and in the summer heavy bursts of 
rain erode gullies. During the rainy season, a small stream 
(named El lavadero) connects the pile to the Sonora River. 
Additionally, efflorescent minerals consisting of white crusts 
have precipitated on top of the pile by evaporation. These 
materials can concentrate toxic elements, and are easily sol-
uble and dispersed by wind, contributing to dispersion of the 
elements into the surrounding environment (Bea et al. 2010; 
Del Rio-Salas et al. 2019; Loredo-Portales et al. 2020).

We selected for study an area of 900 ha, most of which 
is agricultural, along the Sonora River (with its northwest 
corner at 572305.56 E, 3303770.15 N to its southeast corner 
at 574670.22 E, 3299861.47 N) and close to the abandoned 
mine tailing deposit at 572717.27 E, 3302399.27 N (Fig. 1). 
The soil comprises Regosols, Fluvisols, and Phaeozems 
(1:250 000; INEGI (2005)), with 40% or more of sand. It 
has a pH ranging between 6.1 and 8.7 (in water), electrical 
conductivity 25 to 342 μ S m−1 (in water), 0.1 to 1.2% of C, 
and 0.03 to 0.16% of N.

Water is extracted from wells and the Sonora River for 
irrigation. Agriculture and cattle raising are the most eco-
nomically important activities in the area. Agriculture is 
practised on the flood plain of the Sonora river. The main 
crops for human consumption are groundnuts (Arachis 
hypogaea), garlic (Allium sativum) and maize (Zea mays), 
whereas alfalfa (Medicago sativa) and barley (Hordeum 
vulgare) are the most important forage crops for livestock 
(SIAP 2019).
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Survey

We mentioned above that the environmental damage and 
risks to the health of both humans and their livestock caused 
by toxic elements depends mainly on their concentrations 
and distributions. Our first task at San Felipe de Jesús was 
to assess these for five potentially toxic elements, namely, 
lead (Pb), arsenic (As), zinc (Zn), copper (Cu) and manga-
nese (Mn), and to map them. All five had been reported to 
be present in large concentrations in the mine tailings (Del 
Rio-Salas et al. 2019; Loredo-Portales et al. 2020), no other 
potentially toxic elements were found to be present in impor-
tant concentrations. We added calcium (Ca) to our list for 
analysis because it might help us to understand the mobility 
of the toxic metals (Alloway 2012). We also measured the 
concentration of iron (Fe) since it displays a conservative 
behaviour in the basin (Calmus et al. 2018). Despite the 
earlier studies, which focused on the concentrations of the 
elements in the mine tailings themselves, we knew nothing 
of the spatial scales of variation of the elements in the agri-
cultural soil and so did not know how densely to sample for 
mapping, for which we should use kriging, the current best 
practice. Too sparse sampling could make kriging impracti-
cable for lack of spatial correlation in the data; dense sam-
pling on the other hand might be unnecessarily expensive 
and exceed the budget. Finding a suitable compromise has 
been a common problem in environmental science for many 
years. As Marchant and Lark (2007) pointed out, by sam-
pling in two or more stages one can design efficient surveys 
for mapping; an initial stage provides rough estimates of the 
spatial scale(s) of variation, and later stages can fill in the 
gaps by grid sampling and concentrated where the contami-
nation seems most serious.

Principles of nested sampling

Pollutants from abandoned mine tailings are spread by wind 
and water to varying extents and are not all equally mobile. 
Their distributions on neighbouring land can be further 
modified by the way the land is managed. So before one can 
design a sampling scheme suitable for mapping the distribu-
tions one needs to know what the spatial scales of variation 
are, as Lark et al. (2017) pointed out.

Youden and Mehlich (1937) were the first to propose 
a spatially nested sampling design to discover the spatial 
scales of variation in soil. They sampled soil at locations 
arranged hierarchically into clusters separated by fixed dis-
tances but with random orientations. Each distance corre-
sponded to one level of the hierarchy, and at each sampling 
location they selected two substations, and so on. An analy-
sis of variance of their measurements allowed them to parti-
tion the variance of the measured properties into components 
associated with each level of the design. By accumulating 

the components in sequence from the smallest to the largest 
distance one can obtain a crude variogram. The technique 
lay dormant in soil survey until Webster and Butler (1976) 
resurrected it for a soil survey in the Southern Tablelands of 
Australia. In both surveys, the designs were balanced with 
four levels. Adding more levels to refine the spatial structure 
while maintaining balance would soon make the technique 
unaffordable because the size of the sample would double 
with each added level. Furthermore, the doubled degrees of 
freedom at the lower levels would be unnecessarily large for 
estimation of the components of variance for the smallest 
separating distances.

Since then the basic design has been elaborated, sacrific-
ing balance for economy. Oliver and Webster (1987), for 
example, designed a scheme with five levels but without 
doubling the sampling at the lowest level, and Atteia et al. 
(1994) extended the principle to six levels without doubling 
the sampling in the fifth and sixth levels. More recently 
Lark (2011) devised a strategy for optimizing such nested 
schemes (see also Webster and Lark 2013), and Lark et al. 
(2017) applied it in a survey of heavy metals in the soils near 
a large tailings dam in Zambia. We adapted the strategy for 
our survey of the polluted soil at San Felipe de Jesús.

Implementation of nested sampling

Our initial sampling was an unbalanced nested design with 
six stages with distances increasing in an approximately 
threefold progression from 3.6 m to 1050 m (3.6, 11, 33, 
100, 300 and 1050 m). The first stage comprised eight main 
centres placed randomly over the region with an average dis-
tance between nearest neighbours of approximately 1050 m 
(Fig. 1). From each main centre, three second sites were 
chosen 300 m apart on an equilateral triangle (Fig. 2). From 
each vertex of the triangle, five sites were allocated 100 m 
away to comprise the third stage. The next level contains 
five sites at 33 m separation, the fifth and sixth levels are 
composed of four sites at 11 m separation, and three sites 
at 3.6 m separation, respectively (Fig. 2). This gave a total 
of eight main centres, with 20 points to each, and therefore, 
160 soil sampling points in all. At each site at any one stage, 
from the second level onwards, points were placed on ran-
dom orientations to comply with the random effects model. 
The sampling points are shown by red discs in Fig. 1. Once 
the site was located, we used a GPS (Garmin eTrex10) to 
geo-reference the point. Table 1 sets out the corresponding 
analysis of variance for this design.

At each sampling point in the design we took five samples 
of topsoil (0–30 cm) at the vertices and centre of a square 
of 50 m × 50 cm and bulked them. Each sample was put in 
paper bag in the field, air-dried in the laboratory and sieved 
to pass 2 mm. The sieved sample was reduced to 30 mg by 
coning and quartering, and this sub-sample was milled in 
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an agate ball mill according to EPA protocol (6200). The 
samples were analysed by a portable X-ray fluorescence 
spectrometer (XRF, Niton XL3t Ultra) to measure total con-
centrations of Pb, As, Zn, Cu, Mn, Fe and Ca. Data from 
the manufacturer assured us of its accuracy, and we veri-
fied its accuracy against the reference material NIST-2710a 
provided by the manufacturer after every 20 samples. There 
was no significant deviation from known values. The main 
source of error in the measurement of elements in soil by 
the technique is the heterogeneity within the soil samples 
themselves, as Ravansari et al. (2020) have pointed out. To 
diminish this error, measurements were made in triplicate 
and mean values calculated. The standard errors are listed 
in Table 2.

The structure of the sampling can be represented in a 
table as for an analysis of variance (anova). Table 1 lists 
the degrees of freedom with the corresponding distances. 
Our main aim is to estimate the components of variance 
at these distances, and so we have used residual maximum 
likelihood (reml) (Patterson and Thompson 1971) for the 
purpose, because it is more efficient than anova. Lark (2011) 
sets out the mathematics of the reml solution, and we do not 
repeat it here. The estimated components of variance were 
summed to give rough variograms (Fig. 3). Note that the 
concentrations for all elements except Fe and Ca were trans-
formed to common logarithms to give distributions that were 
approximately symmetric. The transformations are listed in 
Table 2 for the whole data (see below).

The variograms deriving from the nested analysis, and 
shown in Fig. 3, are too rough for use in kriging. We wanted 
to improve the estimates between 11 and 33 m, and so we 
added 50 points 20 m away from 50 of the original 160 
sampling points on random orientations. These are shown as 
green stars in Fig. 1. Finally, as one can see in Fig. 1, there 
were still large gaps between the nests, and we should want 
to place further points in these gaps for kriging. Otherwise 
there would be large errors in the kriged predictions. We 
therefore added a further 51 points at the nodes of a 220-m 
regular grid wherever nodes lay more than 200 m from a 
point in the nests. These points are shown as yellow + sym-
bols in Fig. 1.

Samples of topsoil were taken from these additional loca-
tions and analysed by X-ray fluorescence spectroscopy in the 
same way as for the original 160. We thus had measurements 
for all elements at a total of 261 of locations from which to 
map the concentrations.

Geostatistical analysis: variograms and their 
modelling

The complete set of data comprised the measured concen-
trations on (1) soil sampled at sites of the original nested 
design, (2) a set of sites chosen close to 20 m from any of 
the previously sampled sites and (3) sites on a grid at 220-m 
intervals in those parts of the region with large gaps. In all 
there were 261 sampling sites providing 261 values, bar a 
few missing ones, for each metal. Table 2 summarizes the 
data, both on the original scales and after transformation 
where desirable. Although we did not analyse Fe geostatisti-
cally, we include it in the summary and in the principal com-
ponents analysis (see below), because it helps to understand 
the calcium pattern.

We computed the Pearson correlation coefficients among 
the elements and did a principal components analysis on 
the correlation matrix for reasons that we explain below. 
The results are summarized in Table 3, from which one 

Table 1  Degrees of freedom for the nested sampling and the corre-
sponding distances

Source Degrees of freedom Distance/m

Stage 1 7 1050
Stage 2 16 300
Stage 3 29 100
Stage 4 30 33
Stage 5 39 11
Stage 6 (residual) 38 3.6

Table 2  Summary statistics of 
concentrations of the elements 
and of their transformations. 
All the concentrations are in 
mg kg−1 , except for Ca and Fe 
which are % by mass

a N is the number of sampling locations for which valid data are available. All the statistics are based on 
means of three replicate measurements for which the standard errors are listed in the column headed SE

Element N
a Original scale Transformed scale

SE Mean Min. Max. Median Std dev. Skew Mean Median Std dev. Skew

Pb 257 4.3 95.9 18.6 896.4 48.2 120.7 3.91 1.57 1.48 0.52 0.24
As 248 1.5 20.1 11.3 87.5 19.30 9.84 4.18 1.27 1.28 0.16 0.26
Zn 258 9.3 233.0 67.7 3128.0 139.7 310.3 5.56 2.23 2.15 0.29 1.47
Cu 227 2.6 41.9 23.1 185.1 38.6 15.96 4.31 1.60 1.59 0.12 1.22
Mn 258 26.9 786.9 425.2 1955.0 721.9 255.1 1.61 2.88 2.86 0.12 0.76
Ca 258 0.04 1.81 0.70 4.30 1.84 0.62 0.33 – – – –
Fe 258 0.07 2.35 1.05 4.56 2.34 0.49 0.69 – – – –
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sees that almost 85% of the variance lies in the leading two 
components.

The sites are strongly clustered, one consequence of 
which is that the experimental variograms computed by the 
usual method of moments have strong peaks and troughs, 
which make modelling them uncertain. Marchant et  al. 
(2013) found that in such a situation maximum likelihood 
estimation is better and gives stable results. It also has the 
advantage of fitting models over the whole range of the 

Table 3  Eigenvalues of correlation matrix

Order Eigenvalue Percentage of vari-
ance

Cumulative 
percentage

1 4.107 58.67 58.67
2 1.801 25.74 84.41
3 0.480 6.86 91.27
4 0.335 4.79 96.06
5 0.193 2.75 98.81

Table 4  Parameters of spherical 
models and cross-validation 
statistics

Element s
2 c

0
c
1

r/m ME MSE MSDR medSDR

Pb 0.27030 0.00776 0.24930 1051.4 −0.01070 0.0376 1.043 0.2627
As 0.02724 0.00518 0.01596 1041.3 −0.00033 0.00778 1.121 0.3078
Zn 0.08303 0.00482 0.06204 1022.1 −0.00391 0.01100 1.153 0.2894
Cu 0.01548 0.00303 0.01480 818.3 0.00227 0.00503 0.993 0.4297
Mn 0.01547 0.00183 0.00957 993.2 −0.00081 0.0032 1.140 0.3250
Ca 0.38505 0.04254 0.48697 934.3 0.0244 0.1340 1.328 0.2441

Fig. 1  The region surveyed and the sampling points in Northwestern, Mexico
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region. We used specifically residual maximum likelihood, 
reml, for the purpose. Having fitted models in this way, we 
compared the two most plausible models, exponential and 
spherical, by cross-validation. We did so by omitting each 
point in turn and predicting the value there by ordinary krig-
ing from the rest of the data. The validated parameters were 
then ones finally be needed for interpolation and mapping.

Table 4 lists the parameter estimates and cross-validation 
statistics for the spherical models, which fitted best and for 
which the equation is

(1)
𝛾(h) = c

0
+ c

1

{
3h

2r
−

1

2

(
h

r

)3
}

for h ≤ r

= c
0
+ c

1
for h > r

= 0 for h = 0.

The parameters are the variances c
0
 , the nugget variance, and 

c
1
 , and the range r. We have treated the variation as isotropic, 

so that the lag h is a scalar in distance only.
The cross-validation statistics are the mean error of pre-

diction (ME), the mean squared error of prediction (MSE) 
and mean square deviation ratio (MSDR), i.e. the ratio of 
the squared deviation to the kriging variance. They are as 
follows in which z(�

i
) is the observed value at �

i
 , Ẑ(�

i
) is the 

predicted value there and �2

K
(�

i
) is the kriging variance. The 

averages are over the n data.

We have added the median of the squared deviation ratio 
(medSDR):

The mean errors are all close to zero, which is to be 
expected; kriging is an unbiased predictor. The mean 
squared errors are small. The important diagnostic is the 
MSDR. Ideally this should be 1; i.e. the squared deviation 
between the observed and predicted value should equal the 
kriging prediction error variance. The MSDRs for the first 
five elements listed in Table 4 are all close to 1; that for 
calcium is also sufficiently close to justify our accepting 
the model tabulated. The table includes the variances of 
the data, s2 , for comparison with the sill variances, c

0
+ c

1
 , 

of the models. The median of the squared deviation ratios 
should be close to 0.455 for a true model. All are less than 
this value; only that for copper is close.

Results

REML analysis and variograms

Summary statistics of concentrations for the elements are 
listed in Table 2. Among the elements, Ca had the largest 
mean concentration (1.81%), while the smallest was for As 
(20.14 mg kg−1 ). The mean concentrations of other metals in 

ME =
1

n

n∑
i=1

z(�
i
) − Ẑ(�

i
) .

MSE =
1

n

n∑
i=1

{
z(�

i
) − Ẑ(�

i
)
}2

.

MSDR =
1

n

n∑
i=1

{
z(�

i
) − Ẑ(�

i
)
}2

�2

K
(�

i
)

.

medSDR = median

⎡
⎢⎢⎢⎣

�
z(�

i
) − Ẑ(�

i
)
�2

�2

K
(�

i
)

⎤
⎥⎥⎥⎦
.

Fig. 2  The unbalanced nested design used: (a) the topological tree 
of the design; (b) the design as it might appear on the ground, the 
red point is the main station; blue lines represent nodes spaced 300 m 
apart, green lines indicate 100 m, purple lines link points 33 m apart, 
orange lines indicate 11  m, and black lines are nodes separated by 
3.6 m
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Fig. 3  Variograms from the nested sampling in phase 1
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order of magnitude were Mn 786 mg kg−1 , Zn 233 mg kg−1 , 
Pb 95.9 mg kg−1 and Cu 41.9 mg kg−1 . The complete set of 
data exhibited a wide variation, with total concentrations 
varying from 0.7 to 4.3% for Ca, 67.7 to 3128 mg kg−1 for 
Zn, 425 to 1955 mg kg−1 for Mn, 18.6 to 896 mg kg−1 for Pb, 
23.1 to 185 mg kg−1 for Cu, and 11.3 to 87.5 for As. Notice 
that all except Ca had skewed distributions, and that is why 
we transformed the concentrations to logarithms to stabilize 
the variances. At several points, Pb and As exceeded the 
national guide values (400 and 22 mg kg−1 , respectively, 
DOF 2007).

The reml analysis of the nested sampling revealed that 
most of the variance occurs at distances between 33 and 
100 m. Figure 3 shows that only small proportions of the 
variances for As, Cu, Mn and Ca occur at less than 33 m. 
Nevertheless, as Lark and Marchant (2018) pointed out, 
it is good practice to include sampling points close to one 
another to ensure that variograms are well estimated at short 
lag distances because those estimates have a large effect on 
the uncertainty of kriging predictions. Therefore, we refined 
the nested sampling by choosing new 50 sampling points at 
20 m far from any of the previous nested points, and then 
filled the gaps with 50 more points.

The maps of concentrations

The distributions of concentrations were spatially dependent, 
the variograms of the logarithms of the concentrations of 
Pb, Zn and Mn and of the concentration of Ca (Fig. 4) were 
in general, well structured with small nugget variances. The 
variograms of As and Cu had proportionately larger nugget 
variances; mainly, we think, because the error variances in 
the measurements are proportionately more. Iron showed no 
spatial dependence; it seemed to be uniformly distributed 
in the region.

Figures 5, 6, 7, 8, 9, 10 show the spatial distributions of 
the concentration of the elements in the soil of agricultural 
land. All the elements but Ca (Fig. 10) are strongly concen-
trated around the tailings deposit, particularly to the west, 
the principal hot spot. Lead, Mn and Zn have similar spatial 
patterns with four other areas relatively rich in the three ele-
ments (Figs. 5, 6 and 7). One such area is in the centre of the 
region with values 2.85 log

10
(mg kg−1 ) for Pb, 3.15 log

10
(mg 

kg−1 ) for Mn and 2.9 log
10

(mg kg−1 ) for Zn. Another region 
relatively rich in these metals is somewhat to the south east 
of it, though with somewhat smaller concentrations. A fairly 
narrow belt of land also relatively rich in Pb and Mn extends 
south from the tailings deposit with concentrations reaching 
2.1 log

10
(mg kg−1 ) for Pb and 2.9 log

10
(mg kg−1 ) for Mn.

As above, As and Cu are concentrated in the hot spot 
surroundings of the tailings, In addition, both are rela-
tively rich in the soil on either side of the Sonora River 

with concentrations of 1.25–1.30 log
10

(mg kg−1 ) for As and 
1.45–1.50 log

10
(mg kg−1 ) for Cu. We suggest an explanation 

below. Elsewhere in the region their concentrations are less.
Calcium is the most abundant metal that we measured. Its 

spatial distribution is evidently unrelated to the other met-
als, and it seems unaffected by the tailings (Fig. 10). It is 
the only element where concentrations are less close to the 
sources of the tailings than elsewhere, and where Pb, Zn and 
Mn are richest.

The map of kriging variances for Pb, Fig. 11, shows how 
the prediction errors depend on the positions of the sampling 
points. The denser is the sampling, the smaller is the kriging 
variances. The maps of the kriging variances for the other 
elements have similar patterns, though the variances them-
selves are different, of course.

Finally, as noted above, the three elements Pb, Zn and 
Mn, have similar spatial patterns; their patterns differ from 
those of As and Cu, and all differ substantially from the 
distribution of Ca. This distinction is neatly summarized 
in the correlation circle obtained from the principal com-
ponents analysis (Fig. 12). The metals Pb, Zn and Mn are 
strongly correlated with one another and appear as a cluster 
of points close to the extreme right of the circle. Arsenic and 
Cu appear away from them, upper right, and Ca, evidently 
fairly closely related to Fe appears far away in the upper left 
quadrant.

Discussion

Sampling to the nested design and the analysis of the data 
provided a sound guide for the subsequent grid survey for 
mapping. It showed at what spacings most of the variance 
occurs and which turned out to be at less than 100 m. Plots 
of the data on a map of the region also showed that the larg-
est concentrations were near the pile of tailings. Those plots 
and the kriged maps show how the pollutant elements are 
concentrated around the tailings deposit; that deposit is a hot 
spot and evidently a major source of pollution. The elements 
Pb, Mn and Zn show strong spatial similarities that suggest a 
common transport process. In addition, the concentrations of 
As and Cu have a spatial pattern associated with the Sonora 
River, indicating an additional source of pollution. In con-
trast, Ca is less concentrated around the tailings deposit; it 
seems unrelated to the mining.

The dispersion of the elements around the tailings pile is 
likely to have been caused by the combined effects of water 
and wind. This combination of processes is widespread in 
arid and semi-arid regions where erosion by wind and water 
alternate with the changing seasons and interact with each 
other; it is a process that differs in its effects from those 
of wind and water separately (Yang et al. 2019). Tuo et al. 
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Fig. 4  Variogram models fitted by reml from the whole set of data
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Fig. 5  Map of Pb. The red polygon is the mine tailing, the blue dashed line corresponds to the El lavadero stream, the continuous blue line is the 
Sonora River, and the yellow lines are the levels of Pb in (log mg/kg). The rose wind was taken from Del Rio-Salas et al. (2019)
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Fig. 6  Map of Mn. The red polygon is the mine tailing, the blue dashed line corresponds to the El lavadero stream, the continuous blue line is 
the Sonora River, and the yellow lines are the levels of Mn in (log mg/kg). The rose wind was taken from Del Rio-Salas et al. (2019)
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Fig. 7  Map of Zn. The red polygon is the mine tailing, the blue dashed line corresponds to the El lavadero stream, the continuous blue line is the 
Sonora River, and the yellow lines are the levels of Zn in (log mg/kg). The rose wind was taken from Del Rio-Salas et al. (2019)
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Fig. 8  Map of As. The red polygon is the mine tailing, the blue dashed line corresponds to the El lavadero stream, the continuous blue line is the 
Sonora River, and the yellow lines are the levels of As in (log mg/kg). The rose wind was taken from Del Rio-Salas et al. (2019)
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Fig. 9  Map of Cu. The red polygon is the mine tailing, the blue dashed line corresponds to the El lavadero stream, the continuous blue line is the 
Sonora River, and the yellow lines are the levels of Cu in (log mg/kg). The rose wind was taken from Del Rio-Salas et al. (2019)
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Fig. 10  Map of Ca. The red polygon is the mine tailing, the blue dashed line corresponds to the El lavadero stream, the continuous blue line is 
the Sonora River, and the yellow lines are the levels of Ca in (%)The rose wind was taken from Del Rio-Salas et al. (2019)



 Environmental Earth Sciences (2022) 81:176

1 3

176 Page 16 of 19

Fig. 11  Error map of Pb on the logarithmic scale. The red polygon is 
the mine tailing, the blue dashed line corresponds to the El lavadero 
stream, the continuous blue line is the Sonora River, and the red lines 

are the estimated variance of Pb in (log mg/kg). The red to pink discs 
are the eight nested sampling nodes, the additional points are shown 
as green stars and yellow crosses
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(2014) found that the combined effect of wind and water 
erosion of the soil surface (0–1 cm) removed fine parti-
cles ( < 0.01 mm) preferentially, leaving coarser particles 
( > 0.05 mm) in place. This suggests that the pollutant ele-
ments have been carried attached to the finer particles in the 
tailings and spread by this complex process.

Heavy rain, driven by moderate to strong wind, is espe-
cially erosive (Marzen et al. 2017), and it is likely to have 
re-distributed particles from the tailings in the patterns 
we observe in Figs. 5, 6, 7, 8, 9, 10. The rose diagrams in 
those figures show two predominant directions of the wind, 
namely towards north north east and south south east. Their 
velocities, ranging from 12 to 38 km hour−1 , combined with 
heavy rain in short spells during summer are quite sufficient 
to carry material from the tailings.

The gully erosion of the tailings is likely to have con-
tributed substantially to the enrichment of metals in the 
surroundings and toward to the Sonora River following the 
path of the El Lavadero stream. As the soil has a large pro-
portion of sand (40% or more) and contains little organic 
matter, it has rather few active sites on to which metals can 
bind, thereby allowing the metals to be transported by leach-
ing in infiltrating water or in run-off. Efflorescent salts in 
the San Felipe tailings are rich in Pb and Mn in particular 
(Del Rio-Salas et al. 2019). The fine fractions of these salts 
are susceptible to wind erosion because of the weak cohe-
sion between particles (Sanchez-Bisquet et al. 2017). Wind 
carries significant amounts of dust from tailings deposits 

following the dominant wind direction (Moreno-Brotons 
et al. 2010) and creating trends with increasing distance 
from tailings (Lark et al. 2017; Djebbi et al. 2017). Thus, 
Pb and Mn could be dispersed several hundred metres from 
the tailings in the form of efflorescent salts. Also, the water-
soluble salts of Mn, Zn and Pb in the efflorescent deposits 
could contaminate water from the tailings (Del Rio-Salas 
et al. 2019). These salts would then carried via channels into 
the Sonora River.

When the rain is especially heavy flooding spreads the 
pollutants, both in solution and as particles, over the flood 
plain to generate the spatial patterns that we observe in our 
study. The maps show where the pollutants are so concen-
trated that remediation should be considered. They also 
show where to prioritize further studies on the mobility of 
the pollutants in the light of other properties of the soil that 
are likely to enhance or retard mobility.

It is evident in Figs. 8 and 9 that much of the As and Cu 
derives from the tailings. These elements are concentrated 
around the El lavadero stream which connects the tailings 
pile with the Sonora River. Nieva et al. (2021) found that the 
mineralogical composition of the efflorescent salts depended 
on climate (specifically climate with alternating dry and wet 
seasons). They found that during the wet season, copiapite 
is the dominant mineral in the salts precipitated in the pores 
of the tailings, where the arsenates substituted the sulfates, 
converting the copiapite into an As reservoir. This arsenic 
can be released during the short spells of summer rain. Del 
Rio-Salas et al. (2019) found that the efflorescent salts of 
San Felipe de Jesús contain up to 26% of copiapite, so this 
could be an important process for the spread of As from the 
tailings.

Arsenic and copper are also spread more widely, with 
some of their larger concentrations close to the Sonora River 
(Figs. 8 and 9). It is likely that some of this As has come 
from spills from mines in the northern sector of the Sonora 
basin. Gomez-Alvarez et al. (1990, 1993); SEMARNAT 
(2014) and Silva-Rodriguez (2019) have documented such 
spills from mine wastes to the north of our region. Some of 
those discharges were rich in As and Cu, and after attaching 
themselves to soil and sediment they remained along the 
river channel (Rivera-Uria et al. 2018). The metal-enriched 
material could then be re-mobilized during heavy rain and 
dispersed downstream on the flood plain (Foulds et  al. 
2014). It is likely therefore that the current spatial pattern 
of As and Cu arises from mine discharges at various times 
in the past. Martín-Peinado et al. (2015) reported similar 
persistent residual pollution (including As and Cu) 15 years 
after a mine spill in Aznalcòllar, Spain. Although the reme-
diation measures were implemented immediately, spilled 
material from the tailings remained mixed with the soil as 
a major source of pollution (García-Carmona et al. 2019).

Fig. 12  Correlations between the elements and the first two principal 
components plotted in the unit circle
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We still need better understanding of metal pollution in 
this region. Not only have metals from the mine waste pol-
luted the soil, they are also mobile in the soil and likely to 
be taken up by plants. Loredo et al. (2020) and Morales-
Pérez et al. (2021) analysed samples of the soil from close 
to the front of the mine tailings. They found that Mn, Zn 
and As are highly mobile in the soil there and that Zn and 
Pb exceeded the threshold limits of phytoaccesibility. Such 
assessments need to be extended throughout the 900-ha 
region where concentrations are now seen to be large.

Conclusions

Our experience of splitting the survey of pollutant metals 
in the soil at San Felipe de Jesús in Northwestern Mexico 
into two stages shows the merit of preceding grid survey for 
mapping with a nested design and analysis to establish the 
scale(s) at which most variance occurs. It allowed us to plan 
an affordable sampling in the second stage that would pro-
vide predictions with acceptable error. Despite the several 
papers setting out the procedure and software now embody-
ing reml for the analysis of spatially nested data the tech-
nique seems under-used.

The survey revealed widespread large concentrations of 
Pb, As, Zn, Cu and Mn in the soil of the region. The maps 
made by kriging from the sample data show clearly that 
the largest concentrations are associated with the tailings 
deposit on the western margin of the region. Concentrations 
of Pb, Zn and Mn decrease with increasing distance from the 
deposit, and it seems likely that the metals were transported 
by wind and water from the tailings. Arsenic and Cu are also 
concentrated close to the Sonora River, almost certainly with 
material from mine spills north of the basin. Land managers 
and responsible agencies can now focus on those parts of the 
region most seriously affected to restrict agriculture and plan 
feasible remediation.

Acknowledgements Nibia Rodríguez, René Salazar, Alejandro 
Noriega, Gerardo de Lafuente, Jazmin Odalis, Arturo Morales, Víctor 
de la Torre and Héctor Ruiz are thanked for their invaluable help in 
the sampling, sample preparation and analysis. So too is Diego Molina-
Tinoco for the graphical abstract.

Author Contributions BG-M conceptualization, investigation, writ-
ing—original draft, programming. RW: methodology, programming, 
formal analysis, writing—original draft. RL-P sampling, writing—
review and editing. FM-F writing—review and editing, funding acqui-
sition. RD: visualization, graphics.

Funding The project was funded by DGAPA-PAPIIT program 
(IN212720, UNAM).

Availability of data and materials Not applicable.

Declarations 

Conflicts of interest The authors declare that they have no conflict of 
interest.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Code availability Not applicable.

References

Alloway BJ (2012) Heavy metals in soils: trace metals and metalloids 
in soils and their bioavailability, 3rd edn. Springer, Dordrecht

Atteia O, Webster R, Dubois JP (1994) Geostatistical analysis of soil 
contamination in the Swiss Jura. Environ Pol 86:315–327

Bea SA, Ayora C, Carrera J, Saaltink MW, Dold B (2010) Geochemical 
and environmental controls on the genesis of soluble efflorescent 
salts in coastal mine tailings deposits: a discussion based on reac-
tive transport modeling. J Cont Hydrol 111(1–4):65–82

Brito-Castillo L, Crimmins MA, Díaz SC (2010) Clima. In: Molina-
Freaner F, Van Devender TR (eds) Diversidad Biológica de Son-
ora. UNAM/CONABIO, Mexico, pp 73–96

Calmus T, Valencia-Moreno M, Del Rio-Salas R, Ochoa-Landin L, 
Mendivil-Quijada H (2018) A multi-elemental study to establish 
the natural background and geochemical anomalies in rocks from 
the Sonora river upper basin, NW Mexico. Rev Mex Ciencias 
Geol 35(2):158–167. https:// doi. org/ 10. 22201/ cgeo. 20072 902e. 
2018.2. 605

Cross AT, Stevens JC, Dixon KW (2017) One giant leap for mankind: 
can ecopoiesis avert mine tailings disasters. Plant Soil 421:1–5

Del Rio-Salas R, Ayala-Ramírez Y, Loredo-Portales R, Romero F, 
Molina-Freaner F, Minjarez-Osorio C, Pi-Puig T, Ochoa-Landin 
L, Moreno-Rodríguez V (2019) Mineralogy and geochemistry of 
rural road dust and nearby mine tailings: a case of ignored pollu-
tion hazard from an abandoned mining site in semi-arid zone. Nat 
Resour Res 28:1485–1503

Djebbi C, Chaabani F, Font O, Queralt I, Querol X (2017) Atmospheric 
dust deposition on soils around an abandoned fluorite mine (Ham-
mam Zriba, NE Tunisia). Environ Res 158:153–166

Douglas L, Hansen T (2008) La riqueza escondida en el desierto: la 
búsqueda de metales preciosos en el noroeste de Sonora durante 
los siglos XVIII y XIX. Región y Sociedad 20(42):165–190

Dudka S, Adriano DC (1997) Environmental impacts of metal ore min-
ing and processing: a review. J Environ Qual 26:590–602

Espinoza-Madero Z (2012) Impacto ambiental producido por los jales 
de San Felipe de Jesús. Dissertation, Universidad de Sonora, 
Hermosillo

Foulds SA, Brewer PA, Macklin MG, Haresign W, Betson RE, Rassner 
SME (2014) Flood-related contamination in catchments affected 
by historical metal mining: an unexpected and emerging hazard 
of climate change. Sci Tot Environ 476–477:165–180

García-Carmona M, García-Robles H, Turpín Torrano C, Fernández 
Ondoño E, Lorite Moreno J, Sierra Aragón M, Martín-Peinado FJ 
(2019) Residual pollution and vegetation distribution in amended 
soils 20 years after a pyrite mine tailings spill (Aznalcóllar, 
Spain). Sci Total Environ 650:933–940

https://doi.org/10.22201/cgeo.20072902e.2018.2.605
https://doi.org/10.22201/cgeo.20072902e.2018.2.605


Environmental Earth Sciences (2022) 81:176 

1 3

Page 19 of 19 176

Gomez-Alvarez AMT, Yocupicio-Anaya J, Ortega-Romero P (1990) 
Niveles y distribución de metals pesados en el Rio Sonora y su 
afluente el Rio Bacanuchi, Sonora, Mexico. Ecologica 1:10–20

Gomez-Alvarez AMT, Yocupicio-Anaya J, Ortega-Romero P (1993) 
Concentraciones de Cu, Fe, Mn, Pb y Zn en los sedimentos del 
Rio Sonora y de su afluente el Rio Bacanuchi, Sonora, Mexico. 
Boletin del Departamento de Geología de la Universidad de Son-
ora 10:49–62

IIED International Institute for Environment and development (2002) 
Mining for the future: Appendix C abandoned mines working 
paper. Mining Minerals Sustain Dev 28:1–20

INEGI (2005) Conjunto de datos vectoriales de la carta edafológica 
H12-6 escala 1:250 000. https://datos.gob.mx/busca/dataset/con-
junto-de-datos-vectoriales-de-la-carta-edafologica-1-250-000-se-
rie-l-sonora. Accesed 13 October 2020

Lark RM (2011) Spatially nested sampling schemes for spatial vari-
ance components: scope for their optimization. Comput Geosci 
37:1633–1641

Lark RM, Hamilton EM, Kaninga B, Maseka KK, Mutondo M, Sakala 
GM, Watts MJ (2017) Nested sampling and spatial analysis for 
reconnaisance investigations of soil: an example from agricultural 
land near mine tailings in Zambia. Eur J Soil Sci 68:605–620

Lark RM, Marchant BP (2018) How should a spatial-coverage sample 
design for a geostatistical soil survey be supplemented to support 
estimation of spatial covariance parameters. Geoderma 319:89–99

Loredo-Portales R, Bustamante-Arce J, González-Villa HN, Moreno-
Rodríguez V, Del Rio-Salas R, Molina-Freaner F, González-
Méndez B, Archundia-Peralta D (2020) Mobility and accessibil-
ity of Zn, Pb, and As in abandoned mine tailings of northwestern 
Mexico. Environ Sci Pol Res 27:26606–26620

Marchant BP, Lark RM (2007) Optimized sample schemes for geosta-
tistical surveys. Math Geol 39:113–134

Marchant BP, Viscarra Rossel RA, Webster R (2013) Fluctuations in 
method-of-moments variograms caused by clustered sampling and 
their elimination by declustering and residual maximum likeli-
hood estimation. Eur J Soil Sci 64:401–409

Martín-Peinado FJ, Romero-Freire A, García Fernández I, Sierra 
Aragón M, Ortiz-Bernard I, Simón Torres M (2015) Long-term 
contamination in a recovered area affected by a mining spill. Sci 
Total Environ 514:219–223

Martínez-Yrízar A, Felger RS, Búrquez A (2010) Los Ecosistemas 
de Sonora: un diverso capital natural. In: Molina Freaner F, Van 
Devender TR (eds) Diversidad biológica de Sonora. UNAM/
CONABIO, Mexico, pp 129–156

Marzen M, Iserloh T, de Lima JLMP, Fister W, Ries JB (2017) Impact 
of severe rain storms on soil erosion: Experimental evaluation of 
wind-driven rain and its implications for natural hazard manage-
ment. Sci Total Environ 590–591:502–513

Morales-Pérez A, Moreno-Rodríguez V, Del Rio-Salas R, Imam NG, 
González-Méndez B, Pi-Puig T, Molina-Freaner F, Loredo-
Portales R (2021) Geochemical changes of Mn in contaminated 
agricultural soils nearby historical mine tailings: Insights from 
XAS. Chem Geo XRD SEP 2:2. https:// doi. org/ 10. 1016/j. chemg 
eo. 2021. 120217

Moreno-Brotons J, Romero-Diaz A, Alonso-Sarria F, Belmonte-Serra 
F (2010) Wind erosion on mining waste in southeast Spain. Land 
Deg Dev 21:196–209

Nieva NE, Garcia MG, Borgnino L, Borda LG (2021) The role of 
efflorescent salts associated with sulfide-rich mine wastes in the 
short-term cycling of arsenic: insights from XRD, XAS, and XRF 
studies. J Haz Mat. https:// doi. org/ 10. 1016/j. jhazm at. 2020. 124158

DOF (2007). NOM-147-SEMARNAT/SSA1-2004, que establece crite-
rios para determinar las concentraciones de remediación de suelos 
contaminados por As, Ba, Be, Cd, Cr, Hg, Ni, Ag, Pb, Se, Tl y 

V. Secretaría de Medio Ambiente y Recursos Naturales Mexico 
35–94

Oliver MA, Webster R (1987) The elucidation of soil pattern in the 
Wyre Forest of the West Midlands. II. Spatial distribution. J Soil 
Sci 38:293–307

Patterson HD, Thompson R (1971) Recovery of inter-block information 
when block sizes are unequal. Biometrika 58:545–554

Ravansari R, Wilson SC, Tighe M (2020) Portable X-ray fluorescence 
for environmental assessment of soils: not just a point and shoot 
method. Environ Int 134:105250

Rivera-Uria MY, Ziegler-Rivera RA, Diaz-Ortega J, Prado-Pano B, 
Romero FM (2018) Effect of an acid mine spill on soils in Son-
ora river basin: micromorphological indicators. Span J Soil Sci 
8:258–274

Sánchez-Bisquert D, Castejón JMP, García-Fernández G (2017) The 
impact of atmospheric dust deposition and trace elements levels 
on the villages surrounding the former mining areas in a semi-arid 
environment (SE Spain). Atmos Environ 152:256–269

SEMARNAT (2014) Derrame de sulfato de cobre en el Río Bacanuchi, 
afluente del Río Sonora. Consulted on November 2020. https:// 
www. gob. mx/ cms/ uploa ds/ attac hment/ file/ 338899/ 21DPp resen 
tacion_ confe rencia_ derra me. pdf

SEMARNAT (2021) Inventario homologado preliminar de presas de 
jales. Consulted on October 2021. https:// geoma ticap ortal. semar 
nat. gob. mx/ arcgi sp/ apps/ webap pview er/ index. html? id= 95841 
aa3b6 534cd fbe3f 53b3b 5d6ed fa

SIAP (2019) Estadística de Producción Agrícola. Consulted on Novem-
ber 2020. http:// infos iap. siap. gob. mx/ gobmx/ datos Abier tos_a. php

Silva-Rodriguez JM (2019) 100 años de contaminación de la minería 
en ríos de Sonora 1908-2014. In: Vega Deloya, H. (Coord.), Los 
derechos ambientales como paradigma social y de gobierno en 
Sonora: el caso del Rio Sonora y otros estudios. Universidad de 
Sonora, Departamento de Historia y Antropología, Hermosillo, 
Sonora

Tietz P (2018) Technical report and estimated resources for the San 
Felipe Project, Sonora. Americas Silver Corporation, Mexico

Tuo DF, Xu MX, Ma XX, Zheng SQ (2014) Impact of wind-water 
alternate erosion on the characteristics of sediment particles. Chin 
J Appl Ecol 25:381–386

UNEP (2001) Abandoned Mines: Problems. Issues and Policy Chal-
lenges for Decision Makers. Summary report, Chilean Copper 
Commission, Santiago, Chile

Webster R, Butler BE (1976) Soil classification and survey studies at 
Ginninderra. Austr J Soil Res 14:1–24

Webster R, Lark RM (2013) Field sampling for environmental science 
and management. Routledge, London

Yang H, Zou X, Wang J, Shi P (2019) An experimental study on the 
influences of water erosion on wind erosion in arid and semi-arid 
regions. J Arid Land 11(2):208–216

Youden WJ, Mehlich A (1937) Selection of efficient methods for soil 
sampling. Contributions of the Boyce Thompson institute for plant 
research 9:59–70

Yun SW, Choi DK, Yu C (2020) Spatial distributions of metal(loid)s 
and their transport in agricultural soils around abandoned metal 
mine sites in South Korea. J Soils Sediments. https:// doi. org/ 10. 
1007/ s11368- 020- 02663-7

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.chemgeo.2021.120217
https://doi.org/10.1016/j.chemgeo.2021.120217
https://doi.org/10.1016/j.jhazmat.2020.124158
https://www.gob.mx/cms/uploads/attachment/file/338899/21DPpresentacion_conferencia_derrame.pdf
https://www.gob.mx/cms/uploads/attachment/file/338899/21DPpresentacion_conferencia_derrame.pdf
https://www.gob.mx/cms/uploads/attachment/file/338899/21DPpresentacion_conferencia_derrame.pdf
https://geomaticaportal.semarnat.gob.mx/arcgisp/apps/webappviewer/index.html?id=95841aa3b6534cdfbe3f53b3b5d6edfa
https://geomaticaportal.semarnat.gob.mx/arcgisp/apps/webappviewer/index.html?id=95841aa3b6534cdfbe3f53b3b5d6edfa
https://geomaticaportal.semarnat.gob.mx/arcgisp/apps/webappviewer/index.html?id=95841aa3b6534cdfbe3f53b3b5d6edfa
http://infosiap.siap.gob.mx/gobmx/datosAbiertos_a.php
https://doi.org/10.1007/s11368-020-02663-7
https://doi.org/10.1007/s11368-020-02663-7

	Distribution of heavy metals polluting the soil near an abandoned mine in Northwestern Mexico
	Abstract
	Introduction
	Materials and methods
	Case study: San Felipe de Jesús
	Survey
	Principles of nested sampling
	Implementation of nested sampling
	Geostatistical analysis: variograms and their modelling

	Results
	REML analysis and variograms
	The maps of concentrations

	Discussion
	Conclusions
	Acknowledgements 
	References




