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Abstract
Geogenic arsenic is a metabolic hazard to global citizens, due to its presence in most of the rocks. Natural processes such 
as percolation of rainwater through soil layer and water–rock interaction in weathering process principally lead to the dis-
solution of arsenic-bearing minerals in the aquifer system. In the present study, arsenic (As)-contaminated groundwater 
was analyzed covering all blocks (26 blocks) of Murshidabad District, West Bengal, India. Principally, the study focused 
on the assessment of groundwater quality with respect to arsenic along with other metal ions such as iron, manganese, cad-
mium and selenium. Tube well water samples (N = 348) were collected during pre- and post-monsoon seasons. The spatial 
distribution of arsenic levels ranges from 0.086 to 0.513 mg/L in pre-monsoon and 0.059–0.431 mg/L in post-monsoon, 
which indicates that all groundwater samples of the Murshidabad District exceeds the WHO’s permissible limit of arsenic 
(0.01 mg/L). Water quality index (WQI) data suggested that 5.74% and 10.3% samples are suitable for drinking purpose in 
the pre-monsoon and post-monsoon season, respectively. Availability of cations are as follows:  Ca2+ >  Mg2+ >  Na+ >  K+ , 
and anions as:  SO4

2− >  HCO3− >  Cl− >  F− >  NO3− in both pre-monsoon and post-monsoon seasons. Human health risk due 
to consumption of groundwater was assessed through USEPA designed methods as follows—hazard quotient (HQ), hazard 
index (HI), average daily dose of both direct ingestion of groundwater and dermal absorption of groundwater  (ADDIngestion, 
 ADDDermal absorption), and exposure frequency (EF). Thus, carcinogenic risk (CR) and non-carcinogenic risk (NCR) were 
determined. Results revealed that 29% and 37% of inhabitants suffered from carcinogenic and non-carcinogenic risk, respec-
tively. On the basis of occurrence, spatial distribution and health risk assessment results of the targeted area can be marked 
as a moderate- to high-risk zone. The said zones need special attention for protection of public health.

Keywords Groundwater arsenic · Murshidabad District · Rock–water interaction · Inverse distance weighting · Water 
quality index · Health risk assessment

Introduction

Arsenic (As) is widespread in the world. It is the 20th most 
abundant element of the Earth's crust (Villalba et al. 2020). 
Arsenic pollution is a global threat; it is estimated that at 
least 230 million people in 107 countries access the arsenic-
contaminated water above the World Health Organization 
(WHO) permission level of 0.01 mg/L (Chowdhury et al. 

2000; Chowdhury et al. 2017; Shaji et al. 2021). The area 
of Asian countries, particularly the Ganga, Meghna, and 
Brahmaputra (GMB) river plains, are most affected by the 
threat of arsenic, which is the basin between India and Bang-
ladesh (Chakraborti et al. 2017). At present, more than 100 
million peoples in the GMB plain alone are at risk of poten-
tial groundwater arsenic contamination. Arsenic pollution 
(As > 0.01 mg/L) is found predominantly in groundwater, in 
aquifers of gray sand that were deposited onto a late Pleisto-
cene landscape (McArthur et al. 2016). Pleistocene aquifers 
of central West Bengal at depth range > 70 m beneath paleo-
interfluves contain 10–100 μg/L of arsenic (Bhowmick et al. 
2012; Kulkarni et al. 2018; Majumdar et al. 2016). The sedi-
mentary aquifers of the Bengal Delta Plain (BDP) belong to 
Bangladesh and neighboring West Bengal, where arsenic 

 * Naba Kumar Mondal 
 nkmenvbu@gmail.com

1 Environmental Chemistry Laboratory, Department 
of Environmental Science, The University of Burdwan, 
Burdwan, West Bengal 713104, India

http://orcid.org/0000-0002-1554-1390
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-022-10273-4&domain=pdf


 Environmental Earth Sciences (2022) 81:157

1 3

157 Page 2 of 18

mobilizes through natural ways (redox processes, precipita-
tion, absorption, and dissolution). Thus, the groundwater of 
the said areas become a major health issue related to envi-
ronmental health concerns (Bhattacharya et al. 2004; Lim 
et al. 2014; Mazumder and Dasgupta 2011; Roy et al. 2014).

Arsenic interference may cause a number of abnormali-
ties including restrictive pulmonary bronchiectasis, liver 
with non-cirrhotic portal fibrosis, polyneuropathy (Argos 
et al. 2010), anemia, peripheral vascular disease (PVD), 
hypertension, non-pitting edema of feet and hands, conjunc-
tival congestion, etc. (Bera et al. 2010; Chowdhury et al. 
2000; Mazumder and Dasgupta 2011). In addition, arsenic 
causes cancer in skin, but long-term exposure causes can-
cers of the bladder and lungs (National Research Council, 
US 1977; Shankar et al. 2014). The International Agency 
for Research on Cancer (IARC) has given guideline on arse-
nic and arsenic compounds as carcinogenic to humans and 
further states that arsenic in drinking water is carcinogenic 
to humans. Nevertheless, arsenic has uncovered the endemic 
arsenism that has had a detrimental effect not only on the 
health of millions of people, but also on their offspring in 
West Bengal (Bhowmick et al. 2018). Indeed, genotoxicity 
of inorganic arsenic results by reacting with sulphur con-
taining compounds, generating both reactive oxygen species 
and nitrogen-containing species. Thus, epigenetically modi-
fied arsenic shows gene regulation along with methylation 
of DNA (Nava-Rivera et al. 2021). Accordingly, arsenic 
research is very essential based on geogenic sources, poten-
tial arsenic exposure, and health risk analysis in West Ben-
gal. On the other hand, the increasing demand for groundwa-
ter leads to over-abstraction, a decline in groundwater levels 
and well yields, deteriorating water quality, and land subsid-
ence (Nooria et al. 2021). As a matter of fact, the presence of 
‘As’ in groundwater is not only related to the host minerals, 
but is also associated with sedimentation, which depends on 
the dissolved redox state and pH (Chakraborty et al. 2015). 
However, periodically deposits of arsenic are related to allu-
vial sedimentation and rich mineral ores belonging to the 
Holocene era (Bera et al. 2010; Chowdhury et al. 2000).

Previous research highlighted the association of arsenic 
with iron (Fe) and manganese (Mn) in Purbasthali, Burd-
wan (Ghosh et al. 2017). According to Ghosh et al. (2017), 
arsenic showed varying results with manganese, but iron 
showed a positive relationship. Recent studies (Ghosh et al. 
2020 and Zhang et al. 2020) highlighted that both iron and 
manganese are highly responsible for increasing the hazard 
quotient (HQ) in arsenic-affected Padma River floodplains 
of Bangladesh due to their similar geochemical behavior, 
which reveals the natural presence of As and Mn in soil 
and aquifers. However, many factors such as depth, salin-
ity, reducing environment, and contact time are responsible 
for dissolution of both iron and manganese in groundwater 

(Carretero and Kruse 2015; Luzati et al. 2016). But most of 
the factors are untouched in previous literature.

The present study area, i.e. Murshidabad District, is situ-
ated more or less in the middle of West Bengal in which 
the Ganga River is majorly subdivided into two branches, 
i.e. Vagirathi (in India) and Padma (in Bangladesh) near 
Dhulian. So, Murshidabad District lies in the major flood-
plains of the River Ganga, where the majority of the areas 
are arsenic affected (3–3000 µg/L) (Halder 2019). The said 
district covers an area of 5324  km2 and is densely populated 
with a total population of 5.9 million (as per census report 
2011). Another point of concern about the Murshidabad 
District is the Holocene- and Pleistocene-aged dominating 
sediments, which are mainly constituted with Fe and Mn 
along with organic matter in aquifers of gray sand (Chat-
terjee et al. 2013; Neidhardt et al. 2014; Zhang et al. 2020). 
Therefore, it is expected that arsenic may easily mobilize in 
the reducing environment with the association of both iron 
and manganese (Kim et al. 2003; Rowland et al. 2005; Selim 
Reza et al. 2010; Wolf et al. 2009).

Earlier researchers such as Chowdhury and Paul. (2019), 
Dey et al. (2016), Haldar (2019), Majumdar (2018), Mon-
dal et al. (1996), Rahman et al. (2005), and Samaddar et al. 
(2014) reported their study outcomes as quantification of 
groundwater as well as surface water arsenic level, health 
survey outcomes and population risk in selected areas of 
Murshidabad District. According to their research findings, 
there is still a lack of indepth study of the current scenario 
of arsenic vulnerability in Murshidabad District. Currently, 
the local people might be more exposed day by day, due 
to the geogenic arsenic toxicity. The present research work 
aimed to assess the arsenic and associated heavy metals 
(iron, manganese, cadmium, and selenium) -contaminated 
groundwater, which is consumed on a daily basis by the 
people of Murshidabad District, West Bengal. The study also 
assesses the distribution pattern of heavy metals through 
inverse distance weighting (IDW) mapping, water quality 
index, groundwater assessment, and human health hazard 
analysis and finally investigated the vulnerable zone of Mur-
shidabad District leading to groundwater arsenic threat.

Materials and methods

Study area and sampling procedure

The study area of the present research is situated on the 
eastern peripheral plains to the middle of West Bengal, 
lying between 24º 50′ 20″ N to 23º 43′ 30″ N latitude and 
88º 46′ 00″ E to 87º 49′ 17″ E longitude. The geological 
information of Murshidabad District was collected from 
Chatterjee et al. (2020) (Fig. 1B), which also describes 
two distinguished geological units such as fluvial sediment 
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and Rajmahal trap found in this region. Fluvial sediment 
belongs to Late Pleistocene- to Late Holocene-aged sand, 
silt and hard clay rock domains. The lithological unit of the 
said region shows semi-consolidated deltaic alluvium, fer-
ruginous concretion, lithomarge clay gravels, pebbles, and 
cobbles. The aquifers of the said fluvial regions belong to 
high permeability, thick discontinuous aquifers. On the other 
hand, the Rajmahal trap lithological formation belongs to 
the Jurassic to Late Holocene-aged Rajmahal basalt, sand, 
silt, fine soft clays and hard clays impregnated with caliche 
nodules, whereas fairly thick regionally extensive confined/
unconfined aquifers were located down to 3000 m. The said 
aquifers show unconsolidated fine sand and sandy silt with 
high to low permeability.

For the present study, groundwater samples were col-
lected from both of pre-monsoon (March–May) and post-
monsoon (September–November) season (Fig. 1 A). A total 
of 348 samples were collected (174 tube wells in each sea-
son) (Sahoo et al. 2018). The sampling process was carried 
out with one sample per 36  km2 grid, covering (26 blocks of 
5 subdivision) an area of 6264  km2 located in Murshidabad 

District, West Bengal (Chowdhury et al. 2000; Chakraborti 
et al. 2009). The depth of the tube well varied in the depth 
range of 24.38–106.68 m. The latitude and longitude of each 
sampling location were noted by using Oregon-750 handheld 
GPS, manufactured by- GARMIN. At the sampling spot, 
some background information was also noted, viz., type of 
rock around the sampling point, type of water that is con-
sumable in higher quantity by the local people, is it drink-
able or not, depth of water level (m) for groundwater, color 
and odor of the sample. The sampling bottles were dipped 
in soap water along with 3%  HNO3 overnight, and on the 
next day washed with distilled water (USEPA 2010). At the 
sampling spot, the bottles were again rinsed out with the 
respective water samples, and after that the water samples 
were collected. Separate samples were collected and pre-
served with a few drops of concentrated  HNO3 for heavy 
metal analysis.

Fig. 1  A Study area map of Murshidabad District (sampling location), B Geological Map of Murshidabad District (Chatterjee et al. 2020)
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Physicochemical parameter analysis

Physicochemical parameters such as temperature, pH, dis-
solved oxygen (DO), total dissolved solids (TDS), salinity, 
conductivity, oxidation reduction potential (ORP) and ani-
ons such as chloride, fluoride, and nitrate were measured by 
Multiparameter (Thermo Fisher Scientific—ORION STAR 
A329). Different electrodes were used for different param-
eters. Initially, the instrument was calibrated by standard 
protocol. Measurements of the total hardness, total alkalin-
ity, phenolphthalein alkalinity, carbonate and bicarbonate 
were measured by the titrimetric method, by following 
standard methodologies (Chakraborti et al. 2009; Prathap 
and Chakraborty 2019). On the other hand, sulphate and 
phosphate were measured by the spectrophotometric method 
(Systronics-104) (APHA 2005).

Heavy metals and cation analysis

Arsenic, iron, manganese, cadmium and selenium were 
measured by atomic absorption spectrophotometer manu-
factured by, Lab India (AA 8000). The water samples were 
digested through the triacid digestion method, followed by 
filtration through Whatman 42 filter paper. The respective 
standards of stock solution and the filtrate samples were 
prepared for analysis. Cations like calcium, magnesium, 
sodium, potassium, lithium and ammonium were meas-
ured by Ion-chromatography (IC) (Thermo Fisher Scien-
tific-17050089). Each water sample filtrated through Agilent 
manufactured filter cap, and injected into the IC machine.

Inverse distance weighting (IDW) mapping

Water samples’ experimental data were compared with the 
interpolation technique,  namely inverse distance weight-
ing (IDW) to generate the spatial distribution mapping of 
ORP, As, Fe, Mn, Cd, and Se in groundwater for both the 
pre- and post-monsoon season. The mapping was conducted 
through ‘Arc GIS’ software (Version-10.3). The IDW is a 
deterministic interpolation method in the field of ground-
water hydrology, made from located sampling areas. It 
gives more weights to data points closest to the prediction 
location, and the weights shrink as a function of distance. 
Subsequently, measured values those are adjoining to the 
prediction location have greater influence on the predicted 
value than of distant points (Adhikary and Dash 2014). The 
choice of this weighting power can significantly affect the 
estimation quality. The optimal weighting power depends 
on the spatial structure of the data and is influenced by the 
coefficient of variation (CV), skewness and kurtosis of the 
data (Gotway et al. 1996; Mueller et al. 2001). Therefore, the 
sampling data are interpolated by the following mathemati-
cal equation to generate IDW mapping.

where  Z(x0) represents the interpolated data, ‘n’,xi , hij, and 
β are denoted as sample size values, the ith data value, the 
separation distance between the interpolated value and the 
sample data, and the weighting power, respectively.

Groundwater modeling

Following the objectives of the present study, two types of 
groundwater modelling (Piper trilinear diagram and Gibbs’ 
diagram) are applied to observe the hydrogeochemistry of 
the groundwater of Murshidabad District. The dominancy 
of cations and anions in groundwater for the both pre- and 
post-monsoon season were accomplished through a Piper 
trilinear diagram (Piper 1944). The diagrams were carried 
out through XLSTAT software (2020.1). Whereas, Gibbs’ 
diagram was applied to observe the geochemical water–rock 
interaction that occurred due to precipitation and evapora-
tion. These diagrams were also plotted through XLSTAT 
software, to understand the overall quality and the matu-
rity of the groundwater. Water quality index (WQI) was 
calculated based on 18 physicochemical parameters. The 
parameters such as cations (As,  Fe2+,  Mn2+,  Na+,  Ca2+, 
 K+,  Mg2+,  Cd2+,  Li2+,  Se2+,  NH4+), anions  (Cl−,  F−,  NO3

−, 
 SO4

2−,  HCO3
−,  PO4

3−), pH, DO, ORP, EC, total alkalin-
ity, salinity, TDS and total hardness were estimated for this 
study. The water quality index was calculated by using the 
following Eq. (2):

where Q was computed using the determined concentration 
of the groundwater parameter,

[Q = (Ci∕Si) × 100 ], Ci = specific parameter's concentra-
tion in mg/L, Si = the permissible value prescribed by Bureau 
of Indian Standards (BIS) in mg/L, and Wi are computed 
values for the groundwater parameter.

Human health risk analysis

Good quality of drinking water is important for human 
health and quality of life. The natural and anthropogenic 
activities are responsible for arsenic contamination in 
groundwater and their incidence is recognized as a major 
public health issue. The evaluation of human health risk 
assessment of such heavy metal is becoming mandatory 
to understand the potential harmful impacts beyond the 
assessment of heavy metal concentrations (Adimalla and 
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Qian 2019; Ekoa Bessa et al. 2020). Quantitative assess-
ment of both carcinogenic and non-carcinogenic risk 
assessments was performed by following the standard 
methodology (USEPA 1989). Similarly, non-carcinogenic 
risk of the hazard quotient (HQ) considering ingestion and 
dermal contact to arsenic contaminant groundwater was 
also assessed. The hazard index (HI) was computed by the 
sum of dermal absorption and ingestion of groundwater. 
Reference dose (RfD) and cancer slope factor (CSF) are 
helpful in the estimation of the carcinogenic risk (CR) 
(Duggal and Rani 2018; USEPA 1989). Herein, HQ was 
calculated by applying the following equation (Eq. 3):

where ADD and RfD are average daily dose ADD (mg/
kg  day−1) between ingestion of groundwater and dermal 
absorption of groundwater  (ADDdermal and  ADDingestion) 
and reference dose (RfD), respectively. RfD is the inges-
tion of groundwater (30 mg/kg  day−1) or dermal contact to 
groundwater (28.5 mg/kg.  day−1) exposure (Hossain and 
Patra 2020; USEPA 2004).

From Eq. 4, Kp, CDGT, ET, EF, ED, SA, BW and AT 
are the dermal permeability coefficient (0.001 cm/h), As 
concentration in water (mg/L), time of exposure (0.5 h/
day), exposure frequency (365 day/year), exposure dura-
tion (30 years), exposed skin surface (18,000  cm2), average 
body weight (70 kg), and mean time (30 years), respectively 
(USEPA 2010).

In Eq. 5, the relative parameters are Kp (permeability 
coefficient at 0.001 cm/h), ET (exposure at 0.5 h/day), CSF 
(cancer slope factor), CDGT (arsenic concentration in water 
unit mg/L), IR (ingestion rate at 2 L  day−1), EF (exposure 
frequency in 365 days  year−1), ED (exposure duration in 
30 years), SA (exposed skin surface on 18,000  cm2), BW 
(body weight at 70 kg), and AT (average time 30 years). 
The HI was calculated as the sum of HQ dermal contact 
to groundwater and HQ ingestion of groundwater (USEPA 
2004, 2010, 2012), Carcinogenic risk (CR) assessments 
(USEPA 2010, 2012) are expressed according to the fol-
lowing equation:

Herein, the carcinogenic risk was obtained through the 
average daily dose (ADD) with cancer slope factor (CSF). 
The CSF was obtained from the chemical potency and 

(3)HQ =
ADD

RfD
,

(4)ADDdermal =
Kp × CDGT × ET × ED × SA × 10−3

BW × AT × EF
.

(5)ADDingestion =
Kp × CSF × CDGT × ET × AT × SA

BW × ED × EF
.

(6)CR = ADD × CSF.

specialized various contaminants (Mondal 2020). The car-
cinogenic risk enhancement tendency increases linearly with 
the chemical dose. CSF is subjected to actual research that 
reflects health problems from certain levels of carcinogenic 
contaminants. The CR has accessible ranges between  10−6 
and  10–4 of US EPA, measuring through sampling on a par-
ticular basis.

Statistical analysis

The experimental data were statistically evaluated by using 
MINITAB 16 software to determine various statistical inter-
relation along with their significance. All physicochemi-
cal parameters and cation and anion concentrations were 
reported as the mean, standard deviation, minimum and 
maximum. Pearson correlation was performed with arsenic 
and subsequent heavy metals: iron, manganese, selenium 
and cadmium (Fig. 5S). The probability values of p < 0.01 
and p < 0.05 were considered to be significant for compari-
son of different data sets of two seasonal data. Through mul-
tiple linear regression analysis, the effects of independent 
variables such as cations, anions and depth of groundwater 
sample were observed with the dependent variable, i.e. arse-
nic. The variability of human health risk due to groundwa-
ter arsenic was carried out through probabilistic model by 
Monte Carlo simulation (Hossain and Patra 2020; Sohrabi 
et al. 2020). The said simulation diagram was performed by 
using Oracle Crystal ball software (11.1.2.4) to estimate the 
validity of carcinogenic risk depending on the 5% and 95% 
percentile quartile probabilistic approach.

Results and discussion

Physicochemical characteristics of the groundwater

The physicochemical characteristics of the groundwater of 
Murshidabad District are depicted in Table 1. Water quality 
data clearly demonstrated that the pH of the groundwater 
lies between neutral to faintly alkaline range in both pre-
monsoon (6.41–8.74) and post-monsoon (6.5–8.5) seasons. 
The pH of the groundwater varies due to the composition 
of minerals in the surrounding rocks near the water table 
and constituents of lithological unit in the groundwater 
recharge zones (Nakagawa et al. 2021), whereas the alka-
line nature of groundwater samples is supposed to be due 
to the availability of cationic species (Chowdhury and 
Paul 2019; Kumar et al. 2010; Rahman et al. 2005). Total 
0.017% and 0.005% of the studied samples exceeded the 
WHO permissible limit of pH (8.5) in both the pre- and post-
monsoon seasons, respectively. In the studied areas of 26 
blocks of Murshidabd District, the higher level of pH (> 8.5) 
was recorded in the blocks of Burwan (Kaitha), Nabagram 
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(Ikrol, Ayra, Bilbari), Sagardighi (Bhurkunda, Gokulta), 
Beldanga-II (Ramnagarghat, Jainagar, Nazipur, Kulbaria), 
Kandi (Hijal), Berhampore (Simulia, Mahala, Chumaigacha, 
Komnagar), Nawda (Sarbangapur, Gohat), Khargram (Khar-
gram, Kapasdanga), and Bharatpur-II (Angarpur, Gidgram, 
Rautari, Alepur, Salar, Kagram). Earlier studies (Bhowmick 
et al. 2012; Chatterjee et al. 2013; Chakraborti et al. 2009) 
reported the existence of both As (III) and As (V) in ground-
water within the pH range between 6 and 9 and are mainly 
accommodated in anoxic and oxic water, respectively. Very 
recently, Shaji et al. (2021) demonstrated a strong positive 
relationship between water alkalinity and As level in ground-
water. However, both arsenic species can also co-exist in 
oxic and anoxic aquifer as  H2AsO2—and  HAsO2

2− in pH 
5–7 range (Andersen et al. 1991; Kim et al. 2003). On the 
other hand, the mobility and persistence of various geogenic 
contaminants depend on the redox nature of groundwater 
(Knierim et al. 2021). Hence, oxidation reduction potential 
(ORP) is also a valuable determining factor for proper under-
standing of arsenic availability in groundwater. Results also 
revealed that in the pre-monsoon season, water samples are 

oxic in nature compared to the post-monsoon session, and 
the level of arsenic load is 33% higher in the pre-monsoon 
than the post-monsoon. However, previous reports did not 
highlight such strong coherency between ORP and ground-
water arsenic level (Kulkarni et al. 2018; Majumdar et al. 
2016; Mandal et al. 1996; Planer-Friedrich et al. 2012).

Again, hardness in groundwater occurs due to divalent 
cations. Nevertheless, the availability of cations in ground-
water is not only a deterministic factor to identify the charac-
teristics of softness or hardness, but also a key element lead-
ing to TDS and EC (Mahato et al. 2018). The present study 
results revealed that the mean hardness level, electrical con-
ductivity and TDS values showed almost threefold increase 
in post-monsoon compared to pre-monsoon. This may be 
due to the effect of precipitation in monsoon which may lead 
to the increase of electrical conductivity and TDS (Chatter-
jee et al. 2013; Ghosh and Rolee 2011; Rahman et al. 2005; 
Samaddar et al. 2014). Moreover, the abundance of ionic 
species in the post-monsoon season is due to the enrichment 
on chemical weathering and lengthier residence time (Chat-
terjee et al. 2013; Ghosh and Rolee 2011). The availability 

Table 1  Statistical summary of groundwater parameters (major and trace elements; n = 348, i.e. 174 in both pre- and post-monsoon)

Parameters (units) Pre-monsoon WHO limit Post-monsoon

Minimum Maximum Mean ± SD Minimum Maximum Mean ± SD

pH 6.41 8.74 7.537 ± 0.354 6.5–8.5 6.400 8.500 7.762 ± 0.296
TDS (mg/L) 115.77 827.10 353.011 ± 128.39 1000 22.80 792.6 264.453 ± 134.90
Conductivity (µS/cm) 291.7 1667.0 719.611 ± 257.8 2.0 300.7 1616.3 540.207 ± 270.50
Temperature (°C) 26.60 32.200 25.370 ± 0.995 – 22.20 28.20 33.629 ± 2.600
ORP (mV) 227.20 578.30 292.557 ± 104.06 – 356.00 658.20 418.196 ± 56.070
Salinity (mg/L) 177 794 438 ± 0.115 – 194 569 287 ± 0.432
DO (mg/L) 4.02 6.090 5.844 ± 0.421 14 0.188 7.654 5.049 ± 0.865
Total Hardness (mg/L) 9.20 92.05 31.779 ± 6.72 500 8.400 100.80 16.149 ± 14.850
Total Alkalinity (mg/L) 20.01 88.23 46.712 ± 13.72 – 16.03 88.11 50.505 ± 15.38
F− (mg/L) 0.033 2.101 0.427 ± 1.585 1.5 0.109 5.750 0.039 ± 0.466
HCO3

− (mg/L) 20.00 88.00 46.712 ± 13.72 500 16.11 88.29 50.505 ± 15.38
Cl− (mg/L) 0.070 440.22 36.719 ± 65.07 250 0.070 983.01 22.558 ± 85.12
SO4

2− (mg/L) 1.110 175.56 54.312 ± 37.57 500 0.371 226.30 48.607 ± 44.90
PO4

3− (mg/L) 0.589 6.532 4.838 ± 1.081 –- 0.236 10.589 2.332 ± 2.526
NO3

− (mg/L) 0.008 1.300 6.658 ± 0.331 –- 1.130 33.400 0.398 ± 6.761
Na+ (mg/L) 0.198 19.138 2.798 ± 2.946 200 0.280 20.912 5.134 ± 2.235
K+ (mg/L) 2.334 44.159 1.309 ± 3.659 200 0.0412 6.300 1.543 ± 1.128
Mg2+ (mg/L) 0.005 11.667 1.523 ± 2.309 150 0.008 9.300 1.604 ± 1.512
Ca2+ (mg/L) 0.114 26.289 1.819 ± 4.214 100 0.001 14.200 3.369 ± 2.591
NH4

+ (mg/L) 0.002 0.990 0.144 ± 0.144 –- 0.00012 1.080 0.058 ± 0.223
Li+ (mg/L) 0.002 0.820 0.048 ± 0.083 –- 0.00022 0.600 0.034 ± 0.103
Total  Arsenic+ (mg/L) 0.086 0.514 0.190 ± 0.065 0.01 0.0550 0.432 0.207 ± 0.073
Cd2+ (mg/L) 0.001 0.205 0.006 ± 0.021 0.005 0.0001 0.117 0.009 ± 0.017
Total iron (mg/L) 2.007 98.144 12.094 ± 7.374 0.3 1.8760 80.019 12.595 ± 9.981
Mn2+ (mg/L) 0.029 0.437 0.112 ± 0.069 – 0.0150 0.360 0.153 ± 0.056
Se2+ (mg/L) 0.0001 0.014 0.005 ± 0.0034 0.01 0.0001 0.137 0.004 ± 0.016
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of bicarbonate  (HCO3 –) ions in two seasons is more or 
less the same due to dissolution of  CO2 and carbonates 
(Chakraborti et al. 2009; Kumar et al. 2010). Again, pyrite 
oxidation leads to the dominancy of carbonate/bicarbonate 
and this oxidation of pyrite also dissolves Fe-oxyhydroxide 
and releases the ions of bicarbonate which trigger the con-
tamination pattern of As during the recharging time (Alam 
et al. 2016; Bindal and Singh 2019, Choudhury and Paul 
2019; Ghosh et al. 2020; Kumar et al. 2010; Planer-Friedrich 
et al. 2012). The main mechanism of arsenic in groundwater 
may be the dissolution of arsenic sulphide minerals (arseno-
pyrite) (O’Day et al. 2004). On the other hand, enrichment 
of sulphur is due to the oxidation of pyrite and reduction of 
 SO4

− through the diagenesis mechanism during sediment 
deposition (Herath et al. 2016; Wu et al. 2020). The present 
results show almost double concentration of sulphate in the 
post-monsoon season compared to the pre-monsoon season. 
Similarly, mean nitrate concentration in the post-monsoon 
samples is remarkably higher than the pre-monsoon season. 
The nitrate enrichment in groundwater may be due to the 
reduction of sedimentary organic matter by denitrifying 
microorganisms and the base-flow mechanism in the river 
basin near aquifer (Anning et al. 2012; Beisner et al. 2012; 
Dey et al. 2016; Knierim et al. 2021; Planer-Friedrich et al. 
2012). The mean  F− and  Cl− level is about three times higher 
in post-monsoon compared to pre-monsoon season. How-
ever, most of the samples lie  within the permissible limit of 
WHO. In post-monsoon, fluoride and chloride availability 
may be the result of precipitation (Chatterjee et al. 2013).

Previous studies (Chowdhury and Pal 2019; Kulkarni 
et al. 2018; Planer-Friedrich et al. 2012) clearly demon-
strated that the distribution of arsenic in groundwater greatly 
varies with depth. In the present study, water samples were 
collected from different depths (25–106 m) and it was esti-
mated that about 36%, 59% and 5% samples were collected 
from < 30 m, < 60 m and < 106 m depth, respectively. The 
level of arsenic varies between 0.108–0.304  mg/L and 
0.055– 0.302 mg/L during pre-monsoon and post-monsoon 
in lower depth shallow aquifer (< 30 m); 0.086–0.514 mg/L 
and 0.069–0.432 mg/L during pre-monsoon and post-mon-
soon in moderate depth aquifer (< 60 m); 0.099–0.239 mg/L 
and 0.098–0.206 mg/L during pre-monsoon and post-mon-
soon in higher depth deep aquifer (< 106 m), respectively. 
These results clearly indicate that shallow aquifers are 
more vulnerable than deeper aquifer (Kulkarni et al. 2018; 
Majumdar et al. 2016; Mandal et al. 1996). The existence 
of a clay layer within the aquifer may be responsible for the 
existence of As in groundwater (Liu and Wu 2019). Moreo-
ver, the existence of black shale or pyrite in the soil strata is 
the main source of As. According to Maliva (2019), exces-
sive withdrawal of groundwater leads to oxidizing environ-
ment in groundwater, which supports the release of arsenic 
from arsenic-rich iron oxyhydroxide. The present results 

also suggested that the mean value of iron is almost double 
in the post-monsoon season, whereas the mean manganese 
level depicts almost fourfold decrease in the post-monsoon 
season compared to the pre-monsoon season. This may 
be attributed to the effects of dispersion by the colloidal 
aggregates, which are subsequently responsible for dilution 
of recharge water (Cheng et al. 2005; Ghosh et al. 2020; 
Planer-fridrich et al. 2012; Zhang et al. 2020). Similarly, 
in Bharatpur-II (Salar) area, the levels of As, Fe and Mn 
were recorded as 0.514 mg/L, 47.589 mg/L and 0.34 mg/L, 
respectively. These data suggest that arsenic showed good 
consistency with both iron and manganese. As far as the 
geological setting of Murshidabad Districts is concerned, 
the dominating sediments are of the Holocene and Pleis-
tocene Age and mainly constitute Fe and Mn along with 
organic matter (Chatterjee et al. 2013; Neidhardt et al. 2014; 
Zhang et al. 2020). It is also observed that the nature of 
Bengal basin aquifer water turns to reddish yellow after a 
short duration of aerial contact which indicates a reducing 
environment. Therefore, it is expected that arsenic may eas-
ily mobilize under such reducing environment (Kim et al. 
2002, 2003; Rowland et al. 2005; Selim Reza et al. 2010; 
Wolf et al. 2009).

The presence of cationic load also varied in the post-
monsoon season in comparison to the pre-monsoon period. 
The results demonstrated that the mean concentration of  Na+ 
and  K+ decreased by sevenfold, whereas two times decrease 
of  Mg2+ ions were observed during post-monsoon, along 
with 66% and 14% decrease of  Ca2+ and  NH4

+ ions, respec-
tively. The decreasing pattern may be due to mixed up conse-
quences, i.e. low-oxygen condition when anaerobic bacteria 
are present and low permeability in the aquifer material of 
the soil. (Mohammed-Aslam and Rizvi 2020;  Singh. et al. 
2015). On the other hand, two times increase of  Cd2+ and 
14% increase of  Se2+ were recorded, whereas 25% increase 
of  Li2+ concentration was found in the post-monsoon period. 
The increasing phenomena may bes due to surface water 
runoff, causing groundwater contamination with a variety 
of pollutants generated from agricultural land (Kumaresan 
and Riyazuddin 2006). Previous researchers (Borah et al. 
2018; Ghosh and rolee 2011; Gogoi et al. 2016) also demon-
strated a similar variation of anionic species and argued that 
precipitation and sedimentary complexion were the main 
sources behind the lower concentration of cations or anions.

Ionic constituents of the groundwater and their 
probable controlling mechanism

Hydrogeochemical facies of ions distribution and genesis 
are demonstrated in Fig. 2. The hydrogeochemical regime 
highlighted the abundance of several ionic species includ-
ing cations  (Ca2+,  Mg2+,  Na+ and  K+) and anions  (HCO3

−, 
 SO4

2−and  Cl−). The ionic abundance of the seasonal 
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variation is principally dominated by hydrochemistry of 
rock–water interaction (Kulkarni et al. 2018; Alam et al. 
2016). During rock–water interaction, a mixture of chemi-
cal phenomena occur, i.e. weathering and dissolution, ion 
exchange processes, oxidation and reduction (Herath et al. 
2016). As a result, it can observed that ionic constituents 
may increase or decrease, depending upon mobility and 
pH of the medium (Dehnavi et al. 2011). Moreover, Piper 
diagram clearly demonstrates the mixture of water chem-
istry which is important towards understanding the pos-
sible sources of dissolved constituents in water. In pre-
monsoon, the species availability is Ca–HCO3, Na–Cl, 
Ca–Mg–Cl, Ca–Na–HCO3 and Ca–Cl. The upshot of the 
cation and anion interaction is mainly dominated during 
the pre-monsoon season as Ca–Mg–HCO3 type in the 
Piper diagram, which is supposed to be derived from the 
weathering and dissolution of major rocks such as quartz-
ite, hornblende biotite gneiss, charnockite and pyroxenes 
(Alam et al. 2016; Kumar et al. 2010). Seasonal variation of 
cations is mainly dominated due to geogenic activity (Wu 
et al. 2020). Various forms of arsenic in groundwater is due 
to young Asian deltaic aquifers, along with interaction of 
unsaturated sandy sediments during rainy season through 
percolation (Chatterjee et al. 2013; Chakraborty et al. 2009; 
Kulkarni et al. 2018; McArthur et al. 2016). Similarly, in the 
post-monsoon season, the major interaction type is Na–Cl. 
This is due to loading of rainwater from localized collec-
tion and by ion’s mitigation from rocks. However, Alam 
et al. (2016) explained that the exchange process of  Ca2+ 

and  Na+ ions is dominated by the geochemical process for 
Na–Cl type. The present research highlighted that the domi-
nating cations are  Ca2+ >  Mg2+ >  Na+ >  K+ and anions are 
 SO4

2−  >  HCO3− >  Cl− >  F− >  NO3−. The Gibbs diagram 
(Fig. 3) explains the aquifer lithology and water chemistry, 
plotted by TDS against  Cl−/(Cl− +  HCO3

−) and  (Na+ +  K+)/ 
 (Na+ +  K+ +  Ca2+). Figure 3 also helps to understand three 
distinct dominance areas such as precipitation, evaporation 
and rock–water interaction (Gibbs 1970). From Fig. 3 (A and 
B: anions and C and D: cations), it has been observed that 
the majority of the samples fall in the field of rock–water 
interaction dominance during both pre- and post-monsoon 
seasons. Therefore, these results signify the interaction 
between rock and percolated water under the subsurface 
(Kumar et al. 2015; Prathap and Chakraborty 2019). The 
results indicate that both pre- and post-monsoon seasons can 
cause rock erosion and dissolution of mineral phenomena 
during percolation from the subsurface, mineral dissolution 
of carbonate and silicate along with granitic gneiss minerals.

Analysis of spatial distribution of arsenic 
with relative parameters using inverse distance 
weighting (IDW) maps

Inverse distance weighting (IDW) is the deterministic 
method corresponding to multivariate interpolation by 
marginal scatter set (Yang et al. 2020). The IDW diagrams 
of oxidation reduction potential (ORP) of the study area of 
Murshidabad District are depicted in Fig. 1S. From Fig. 1S, 

Fig. 2  Piper diagram for representing chemical analysis of groundwater in A pre-monsoon, B post-monsoon
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it has been observed that the mean ORP (mV) is two times 
higher in post-monsoon (418.196 ± 56.07) compared to pre-
monsoon (292.557 ± 104.06). The higher ORP in the post-
monsoon season is probably due to the higher precipitation 
rate and the mineral saturation index (Elumalai et al. 2017). 
ORP is high owing to cationic substances (As, Fe, Mn) 
involved in oxidation, which supports the mineral dissolu-
tion of cation (Shrivastava et al. 2014). In the pre-monsoon 
season, minerals become precipitated due to low solubility. 
However, in post-monsoon, higher levels of minerals signify 
higher solubility, which results in higher ORP value. Rain-
fall significantly affects the As concentration in the differ-
ent parts of the world (Shaji et al. 2021). The present study 
revealed that arsenic level is higher in pre-monsoon than 
post-monsoon. This is probably due to low ORP in pre-mon-
soon indicating reducing environment, which is responsible 

for dissolution of arsenic-bearing minerals (Singh and Singh 
2018). Again, it can be seen from Fig. 4 that the distribu-
tion of arsenic is random in nature. This is possible due to 
the drainage pattern of Ganges River or alluvial deposition, 
which may lead to a major switch to contamination when 
recharging during the post-monsoon season. Therefore, these 
random spots of high As occurrence need urgent attention to 
be monitored. Fundamentally, these zones are vital to iden-
tify those areas which are responsible for contamination of 
arsenic in groundwater.

The level of arsenic in groundwater in the study area 
was recorded as 0.086–0.514 mg/L in pre-monsoon and 
0.059–0.432 mg/L in post-monsoon. Therefore, these data 
clearly mention that 100% of water samples exceed the 
WHO’s recommended levels in both pre- and post-mon-
soon. The iron contamination zone in the post-monsoon 

Fig. 3  Gibbs diagram showing the rock–water interaction of the groundwater in pre-monsoon and post-monsoon (A and B: an ions and C and D: 
cations)



 Environmental Earth Sciences (2022) 81:157

1 3

157 Page 10 of 18

season is slightly higher and similar to arsenic and manga-
nese zone (Fig. 5). The arsenic recognized zone of Bharat-
pur-II, Burwan, Khargram, Beldanga-II, Raninagar-II, 
Berhampore, Domkol and other areas also showed higher 
level of iron and manganese in groundwater. However, 
both selenium and cadmium levels showed higher con-
centration in post-monsoon than pre-monsoon (Fig. 2S and 
3S). According to water quality index (WQI) value, water 
can be categorized as excellent (0–25), good (26–50), poor 
(51–75), very poor (75–100), and WQI value above 100 
is unsuitable for drinking water (Khan and Kumar 2013). 
The present WQI results revealed that in pre-monsoon sea-
son, 5.74%, 46%, 33%, 14% water samples were excellent, 
good, poor and very poor, respectively, and 1.26% samples 
were not suitable for dinking. Similarly in post-monsoon 
season, 10.3%, 50.7%, 28%, and 10% water samples were 
excellent, good, poor and very poor, respectively, and 1% 
samples not suitable for dinking, respectively. Figure 4S 
demonstrates the spatial distribution of arsenic in Murshi-
dabad District by IDW interpolation in the pre-monsoon 
and post-monsoon seasons. The yellow patches of these 
figure clearly indicate the worse quality of water and it 
is unsuitable for drinking. Therefore, particularly these 
yellow marked areas need special care for management.

Pearson correlation study

Pearson correlation among the various physicochemical 
parameters of ground water were done for both pre-monsoon 
and post-monsoon seasons and is presented in Tables 2 and 
3. From Table 2, it is observed that groundwater arsenic 
level significantly correlated with bicarbonate (r = 0.951, 
p < 0.001), iron (r = 0.739, p < 0.001) and EC (r = 0.884, 
p < 0.001) and significant negative correlation was recorded 
with chloride (r = − 0.637, p < 0.001), nitrate (r = − 0.729, 
p < 0.002) and fluoride (r = − 0.346, p < 0.004) in pre-mon-
soon season. Similarly, during post-monsoon season, arse-
nic showed significant positive relationship with bicarbonate 
(r = 0.443, p < 0.031), sulphate (r = 0.886, p < 0.005), iron 
(r = 0.883, p < 0.001) and EC (r = 0.822, p < 0.066). In addi-
tion, arsenic showed a strong negative relation with nitrate 
(r = − 0.821, p < 0.001) and chloride (r = − 0.855, p < 0.066) 
(Table 3). Strong correlation of arsenic with bicarbonate 
may indicate the presence of  CaCO3 mineral. The bicarbo-
nate ions can neutralize the  H+ or  OH− ions, by substituting 
arsenic bearing minerals arsenite (As  3+), which lead the 
mobility of arsenic in groundwater (DeVore et al. 2019). The 
higher level of nitrate and sulphate in post-monsoon prob-
ably happens due to the presence of denitrifying organisms 
and rock–water interaction by pyrite  (FeS2) subsequently 

Fig. 4  Spatial distribution of arsenic concentration in groundwater (mg/L) (A: pre-monsoon, B: post-monsoon) in Murshidabad district
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(Natasha et al. 2020). Hence, bicarbonate-containing min-
erals are possibly responsible for the availability of arsenic 
in the groundwater (Rasool et al. 2016). Similarly, correla-
tion results also revealed that irrespective of season, arsenic 

showed statistically significant relation with total iron (Roy 
et al. 2013). Similar results were reported by Ghosh et al. 
(2020) in their recent study in the arsenic-contaminated 
areas of Bangladesh.

Fig. 5  Spatial distribution of iron concentration in groundwater (mg/L) (A: pre-monsoon, B: post-monsoon) and manganese concentration in 
groundwater (mg/L) (C: pre-monsoon, D: post-monsoon) in Murshidabad district
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Multiple linear regression (MLR) analysis of As

Multiple regression analysis attempts to fit the independ-
ent variables for predicting a single dependent variable of 
groundwater arsenic level and the results are depicted in 
Eq. (7). From Eq. (7), it has been observed that both iron and 
manganese showed linear relationship with arsenic level in 
groundwater (Mogaji et al. 2015). However, the coefficients 
of both Fe and Mn are not so high (R2 < 0.85). The regres-
sion analysis also revealed that the depth and availability 
of arsenic in groundwater are inversely related (R2 = 0.65).

Furthermore, Eq. (7) also indicates the arsenic contami-
nation in groundwater controlled by the availability of cati-
ons and anions, derived from the geochemical interaction. 
Cations appear with negative value, whereas the majority 
of conversions depict the association of Fe, Mn, and As as 
anions (Shamsudduha et al. 2015). Conversely, anions show 
the positive value; hence, MLR analysis revealed that the 
presence of anions could also imply the arsenic contamina-
tion with respect to groundwater depth and aquifer lithology.

Deterministic and probabilistic health risk 
assessment

The assessment of health risk associated with both consump-
tion and dermal contact of groundwater was represented by 
IDW interpolating mapping (Elumalai et al. 2017; Yang 
et al. 2020). The entire health risk due to consumption of 
groundwater was evaluated with respect to hazard quotient 
(both ingestion and dermal absorption), average daily dose 
(ADD), hazard index (HI) and carcinogenic risk (CR). The 
result revealed that HQ due to ingestion of As-contaminated 
groundwater ranges from 0.030 to 0.602 with the mean 
value 0.059 ± 0.057 (SD). Similarly, the HQ due to dermal 
absorption ranges from 1.305 to 7.025 with the mean value 
1.599 ± 0.590 (SD). The ADD, HI and CR also vary from 
0.029 to 4.330, 2.290–45.300 and 0.001–0.009 with mean 
and SD 0.250 ± 0.243, 4.506 ± 4.436 and 0.002 ± 0.0007, 
respectively (Table 1S). Again, the distribution of hazard 
quotient with respect to ingestion and dermal absorption 
is demonstrated in Fig.  6SA and B, respectively. From 
Fig. 6SA and B, it is clear that the areas of Bhagabangola-1, 
Beldanga-1, Lalgola and Berhampore are vulnerable with 
respect to both ingestion and dermal absorption. How-
ever, severe HQ was recorded at Farakka, Bhagabangola-2, 
Bharatpur-2, Beldanga-2 and Murshidabad Jiaganj areas of 
Murshidabad District (Chowdhury and Paul. 2019; Majum-
dar 2018). On the other hand, Fig. 7SA also indicates that 
the ADD is higher in the areas of Farakka, Bhagabangola-2, 

(7)
As =6.28 − 0.772 × cations + 0.312 × anions

+ 0.29 × Fe + 0.33 ×Mn − 0.051 × water level.

Lalgola, Beldanga-2 and Murshidabad Jiaganj, followed by 
Nawda, Khargram, Sagardighi areas of Murshidabad Dis-
trict. Almost similar outcome was reflected from HI sta-
tus (Fig. 7SB). Carcinogenic risk is the ultimate outcome 
for prolonged consumption of such arsenic-contaminated 
groundwater. In this study, CR was also evaluated and is 
depicted in Fig. 8SA. Figure 8SA demonstrates that severe 
carcinogenic risk is most prevalent in the Farakka, Naba-
gram, Sagardighi, Beldanga-II, Berhampore, Nawda, Khar-
gram and Bharatpur-II areas, followed by Murshidabad Jia-
ganj, Kandi, and Burwan areas of Murshidabad District. The 
severity of carcinogenic risk among the inhabitants of the 
studied areas is possibly due to use of high arsenic-loaded 
groundwater for drinking, cooking and bathing. Moreover, 
the groundwater shallow aquifers have shortest thickness of 
vadose zone where arsenic availability is higher compared 
to the deep aquifer having larger thickness of vadose zone 
(Adimalla and Qian 2019; Anim-Gyampo et al. 2019; Hos-
sain and Patra 2020).

The health risk (adult) due to consumption of arsenic-
contaminated water was also evaluated trough Monte Carlo 
simulation modelling which mainly predicts the probabil-
ity of different outcomes under the availability of various 
responsible random variables (Table 1S). The beauty of 
the model is that it explains the impact of risk and uncer-
tainty towards prediction and forecasting of the concerned 
disease(Li et al.2021). Initially, different health risk indi-
cators such as ADD, HQ and HI were considered as input 
variables. The model simulation outcomes in the form of 
deterministic and probabilistic health risk are demonstrated 
in Table 4. Carcinogenic risk estimation has been consid-
ered from the 5th percentile (low risk) and 95th percentile 
(high risk) based on HI value. At 95% probability, true 
value lies in the confidence interval (Mondal et al. 2014; 
USEPA 2012). The higher range of the density function out-
put for carcinogenic risk is being considered as acceptable. 
Present study results of Monte-Carlo simulation indicates  
~  86.775% probability level of significance, which repre-
sents a bit closer to the exceeding threshold values (Fig.8Sb). 
Moreover, the areas located owing to the exceedance of sig-
nificant carcinogenic risk are the blocks of Burwan, Naba-
gram, Sagardighi, Beldanga-II, Kandi, Berhampore, Nawda, 
Khargram and Bharatpur-II.

Conclusion

The poor quality of arsenic-contaminated groundwater 
has adverse influence on human health and poses serious 
threat to the arsenic-prone areas throughout the world. Fol-
lowing the present study, it is observed that all the studied 
groundwater samples of the Murshidabad District exceeds 
the WHO’s permissible limit of arsenic (0.01 mg/L). The 
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analysis of cations and anions revealed alkaline earth metal 
dominancy is higher than alkali metal. On behalf of aqui-
fer lithology, the observed hydrogeochemical mechanism 
clearly confines that cation and anion interaction is of the 
Ca–Mg type, which also support the weathering and dissolu-
tion of major rocks from quartzite, hornblende, biotite gneiss 
and charnockite. According to Gibbs diagram, the predom-
inant ions in groundwater samples fall in the rock–water 
interaction dominance and evaporation dominance field in 
the studied area. Moreover, a positive correlation (p < 0.05) 
between arsenic, manganese and iron was recorded. The 
health risk associated with carcinogenic possibility increases 
according to arsenic abundances, average daily dose, haz-
ard index, hazard quotient (ingestion and dermal contact of 
groundwater) and carcinogenic risk. Therefore, on the basis 
of the quantitative measurement of groundwater physico-
chemical property, hydrogeochemical interaction, assessing 
the human health risk followed by USEPA and Monte Carlo 
simulation method, it may be concluded that the groundwa-
ter samples of the studied areas should be checked regularly. 
The regular monitoring should indicate not only the severity 
of arsenic manifestation, but also to enumerate the crucial 
presence of iron and manganese to evaluate the arsenic level 
in groundwater in Murshidabad District.
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