
Vol.:(0123456789)1 3

Environmental Earth Sciences (2022) 81:107 
https://doi.org/10.1007/s12665-022-10229-8

ORIGINAL ARTICLE

Stress–strain behavior of modified expansive clay soil: experimental 
measurements and prediction models

Anoosheh Iravanian1 · Youssef Kassem1,2  · Hüseyin Gökçekuş1

Received: 23 March 2021 / Accepted: 22 January 2022 / Published online: 7 February 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Building on expansive soil is risky due to its high compressibility, low shear strength, and differential settlement. This study 
evaluates the potential of the use of sodium hydroxide (NaOH) as an additive to improve the stability of clay. For this research, 
the compaction properties namely Dry Density, Optimum Moisture Content, Atterberg Limits, and Unconfined Compressive 
Strength were performed on soil samples prepared with different percentages of NaOH (0%, 5%, 10%, 15%, and 20%). In 
this work, the clay sample was obtained from a highway project site near the Haspolat village in the eastern suburb of North 
Nicosia, Cyprus. No works of such have been done in the area. The results indicated that NaOH can be added to improve 
the engineering properties of the soil. Moreover, this paper presents a comparative study between an empirical equation 
(Quadratic model (QM)), Multilayer Feed-Forward Neural Network (MFFNN), Cascade Feed-forward Neural Network 
(CFNN), Radial Basis Neural Network (RBNN), and Elman neural network (ENN)) and multiple linear regression (MLR) 
for modeling the stress–strain behavior of CS15 (contains 85% of soil and 15% of NaOH). The coefficient of determination, 
root mean squared error, mean absolute error, Nash–Sutcliffe efficiency, and Willmott's index of the agreement were used 
to select the best predictive model. The results indicate that all the developed models are expedient in predicting the stress–
strain behavior of treated soil. Furthermore, the findings demonstrated that the QM model performed well and presented 
high accuracy in modeling the stress–strain behavior.

Keywords Quadratic model · Artificial intelligence models · Multiple linear regressions · Soil stabilization · Stress–strain 
behavior · Sodium hydroxide

Introduction

Soil with high contents of clay minerals like Montmorillon-
ite and Verimculite is usually difficult to deal with, due to 
undesirable properties like absorbing high amounts of water, 

having low shear strength, and performing high compress-
ibility. These types of clay are called expansive soils due 
to the swelling and shrinkage properties they display when 
water is present or absent, respectively (Gokul et al. 2020; 
Mohanty 2018). Thus, it is necessary to stabilize these soils 
to enhance the engineering properties of the soil such as 
mechanical strength, permeability, compressibility, durabil-
ity, and plasticity. In the literature, chemical stabilization of 
soil has been practiced to improve the engineering charac-
teristics and enhance the load-bearing capacity of weak soil 
(Coudert et al. 2019; Jayawardane et al. 2020).

In general, stabilization is referred to chemical improve-
ments in the properties of the soil by adding soil additives. 
Several geotechnical research has been carried out on the 
effect of adding soil additives on the engineering properties 
of the soil. For example, Rai et al. (2020) investigated the 
effect of waste marble powder and magnesium phosphate 
cement on the properties of the soil. They found that mar-
ble powder and magnesium phosphate cement improved the 
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stability of the soil. Gokul et al. (2020) experimentally exam-
ined the effect of Ground Granulated Blast Furnace Slag 
(GGBFS) on the stability of the clayey soil. Their results 
showed that the UCS of the stabilized soil was increased 
by increasing the percentage of GGBFS. Tanegonbadi and 
Noorzad (2017) improved the stability of the clay soil using 
Lignosulfonate. They found that the Lignosulfonate-treated 
soil increased the Unconfined Compressive Strength (UCS) 
and stiffness of the soil without leading to a considerable 
brittle behavior based on the stress–strain curves of UCS 
tests. Ghadir and Ranjbar (2018) determined the compres-
sive strength and compared the mechanical performance of 
clay soil-geopolymer and clay soil-ordinary Portland cement. 
They found that geopolymer treatment and Portland cement 
were more efficient in dry conditions and wet environments, 
respectively. Furthermore, adding a chemical additive such 
as sodium hydroxide (NaOH) into clay soil will improve 
clayey soil characteristics such as undrained shear strength, 
Unconfined Compressive Strength, USC, and liquid limit 
(Neeladharan et al. 2007; Hu et al. 2009; Modmoltin and 
Voottipruex 2009; Rashad and Zeedan 2011; Davoudi and 
Kabir 2011; Cristelo et al. 2012; Phummiphan et al. 2016; 
Parhi et al. 2017; Miao et al. 2017; Fasihnikoutalab et al. 
2019; Ghavami et al. 2020; Murmu et al. 2020). Generally, 
NaOH is one of the important inorganic chemical raw mate-
rials that are commonly utilized in industrial manufacturing, 
wood and paper products, the food industry, and many other 
fields (Hassan et al. 2019; Madhav et al. 2018). Recently, 
NaOH is applied to reduce the stabilization cost of the mate-
rial used for road and building construction by mixing the 
soil with the required amount of NaOH (Phummiphan et al. 
2017). The reviewed studies have shown that the UCS value 
was significantly influenced by sodium hydroxide concentra-
tion in the mixture.

Given the fact that stabilized soil behavior can be a chal-
lenge in a geotechnical context, the investigation of the 
stress–strain behavior of soils is important for evaluating 
safety in geotechnical engineering such as hazard preven-
tion during tunneling and groundwater-soil interaction in 
excavations (Zhang et al. 2017; Lyu et al. 2019, 2020). The 
behavior of stress–strain graphs of these samples show high 
nonlinearity (Zheng et al. 2020). Several empirical models 
including artificial neural networks, supervised Learning 
Methods and mathematical have been used to predict engi-
neering properties of soil, concrete, and so on (Nassr et al. 
2018; Zheng et al. 2020; Molaabasi et al. 2019; Debnath 
and Dey 2016; Yao et al. 2018; Ahmad et al. 2020; Dutta 
et al. 2020, Ahmad et al. 2021). For example, Zheng et al. 
(2020) predicted the stress–strain behavior using the Long 
Short-Term Memory deep learning method, feed-forward 
neural network, and feedback neural network. The results 
indicated that the LSTM deep learning method was superior 

in predicting the stress–strain behavior with reported val-
ues of 8.25, 6.1, and 0.955 for the parameters of the mean 
absolute error (MAE), the mean absolute percentage error 
(MAPE), and R-squared. Debnath and Dey (2016) utilized 
a feed-forward back-propagation neural network with vari-
ous learning algorithms to estimate the peak shear stress 
along with the cohesive soil–geosynthetic interface. It was 
observed that the Bayesian regularization back-propagation 
learning algorithm has the lowest statistical error compared 
to other learning algorithms. Dutta et al. (2020) evaluated 
the performance of three techniques including techniques 
ANN, Multiple regression analysis, and M5P model tree 
for the prediction of clay friction angle. The results indi-
cated that the developed ANN model was superior to the 
one obtained using MRA and to M5P model tree technique, 
which is based on statistical parameters. Moreover, Table S1 
as supplementary material captures some of the notable 
work that has been conducted in this field (Johari et al. 2011; 
Javadi et al. 2012; Kohestani and Hassanlourad 2016; Asr 
et al. 2018; MolaAbasi et al. 2019; Pham et al. 2022; Zhang 
et al. 2021; Kim et al. 2022). As the parameters of the cur-
rent research show, some have had a broad scope, modeling 
the stress behavior of a general group of soils, and some 
focused on less widely used soil treatment methods aim-
ing to understand the effect of specific stabilizers on soil 
behavior.

To the best of our knowledge, there are no studies in 
the literature about the effect of NaOH on the engineering 
properties of clay soil in the Northern part of Cyprus. In 
general, due to swelling minerals such as smectite or illite, 
clay soils may cause severe damage to the foundations and 
cracks on the surface of a structure, particularly when the 
soil is exposed to wetting and drying conditions (Shalabi 
et al. 2017). According to Abdeh (2018), swelling clay 
formations are mostly found in the western and northern 
parts of Nicosia, Cyprus. The reduction in strength and high 
expansion takes place in these areas due to the increase in 
water content in clay soil after wet winters. Thus, utilizing 
additives and chemical stabilizers can improve the engineer-
ing properties of the soil.

The purpose of this paper is to investigate the effect of 
NaOH on the engineering properties of clay soil. Clay soil-
NaOH blends were mixed in various percentages (0.5, 10, 
15, and 20%). The compaction properties (Atterberg’s limits, 
Maximum Dry Density, Optimum Moisture Content, and 
Unconfined Compressive Strength) of untreated and treated 
soil were measured. In this study, each test was repeated 
three times and then the average was determined to reduce 
the experimental error. Moreover, according to the authors’ 
review, no studies had evaluated the accuracy of the Quad-
ratic model (QM) to predict the stress–strain behavior of the 
NaOH-soil mixture. The present work, therefore, consists of 
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establishing a stress–strain behavior estimation model that 
aims to estimate stress–strain behavior of treated soil from 
more easily measured variables obtained at the same instant 
as the desired forecast. Based on the analysis of the experi-
mental results, the accuracy of the Quadratic model (QM) 
for modeling the stress–strain behavior of NaOH treated clay 
soil. Moreover, the proposed model (QM) was compared 
with the most common machine learning models such as 
MFFNN, CFNN, RBFNN, and ENN, and MLR to show the 
predictive accuracy of the proposed model.

Materials and methods

In this section, the preparation of the clay soil-NaOH mix-
tures and measurement of their properties according to 
standards are discussed. Figure 1 illustrates the analysis 
procedure of the present study.

Soil characterization

The soil used in the present study was collected from Haspo-
lat village in the eastern suburb of North Nicosia, Cyprus. 
The color is gray and it is originated from mudstone. The 
soil samples were first dried at 50 °C in an oven, and then 
manually crushed and sieved through a sieve with open-
ings of 2.35 mm to remove the unwanted organic particles 
and gravel fraction. The particle size distribution of soil was 
then investigated using the Hydrometer test following the 
ASTM D422 standard.The tests for determining the physical 
properties of the selected soil in terms of Atterberg limits 
(liquid limit, LL, plastic limit, PL), specific gravity, grain 
size distribution, and soil classification were done accord-
ing to the ASTM D 4318, the ASTM D 422 and the Unified 
Soil Classification System, respectively, as shown in Table 1. 
Moreover, the standard Proctor compaction test following 
ASTM D 698 was conducted to estimate the maximum dry 
density ( �max ) and the optimum moisture content (OMC) of 
the soil. In this work, each test was repeated three times and 
the average was determined to reduce the experimental error. 
It was found that the values of �max and OMC are 1.72 g/cm3 
and 20%, respectively.

Sodium hydroxide (NaOH) pellets

Sodium hydroxide pellets are inorganic compounds. This 
material is also known as caustic soda with a chemical for-
mula of NaOH. This inorganic compound consists of sodium 
cations  Na+ and hydroxide anions  OH−. Sodium hydroxide 
is a highly caustic base and is used in industries such as 
the manufacture of pulp and paper, textiles, drinking water, 
soaps and detergents, and as a drain cleaner.

Preparation of mixtures

In this study, a series of mixtures were prepared by mix-
ing the clay soil with various percentages of NaOH. The 
percentage of NaOH added to the soil were varying from 0 
to 20% by weight.

In the present study, five different mixtures of clayey soil 
(CS) with a different percentage of NaOH (CS0, CS5, CS10, 
CS15, and CS20) were prepared. These mixtures were pre-
pared as follows:

• CS0 contains 100% of soil and 0% of NaOH
• CS5 contains 95% of soil and 5% of NaOH
• CS10 contains 90% of soil and 10% of NaOH
• CS15 contains 85% of soil and 15% of NaOH
• CS20 contains 50% of soil and 50% of NaOH

In this experimental work, the maximum dry density, and 
the optimum moisture content were measured for all sam-
ples. Then, the samples were compacted at their maximum 
dry density and optimum moisture content to be tested for 
their unconfined compressive strength. The unconfined com-
pression test apparatus was used with a load ring capacity 
of 6.6 kN to analyze the stress–strain behavior of the sam-
ples. The monitoring of percentage strain during the test was 
done using a digital transducer connected to a computer for 
measuring the deformation of the sample by the accuracy 
of 0.01 mm. The heights of samples were measured before 
each test using a digital caliper. The load was transferred to 
the sample with a ratio of 1 mm/min.

Empirical models

Artificial neural networks (ANN)

Machine learning models are used as alternative tools to 
describe a complex system (Livingstone 2009; Keat et al. 
2015; Kassem et al. 2019, 2018; Gökçekuş et al. 2020). They 
are utilized in a wide variety of applications in engineering 
and science. In this study, four empirical models [Multilayer 
feed-Forward Neural Network (FFNN), Cascade Forward 
Neural Network (CFNN), Radial Basis Function Neural 
Network (RBFNN), and Elman neural network (ENN)] are 
developed to predict the stress–strain behavior of the soil. In 
this work, the value of clay soil content, NaOH content, axial 
strain, area, and force are used as explanatory input vari-
ables. The data are divided into training and testing groups 
and the results by the models are compared with each. In 
this study, the training was done using data for 0, 5, 10, and 
20% NaOH treated soil, and the developed model was used 
to predict the stress–strain plot for 15% NaOH treated soil, 
and then compared with the stress–strain plot obtained by 
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Fig. 1  Flowchart of analysis procedure in the present study
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performing laboratory test on actually prepared 15% NaOH 
treated soil.

Multilayer feed‑forward neural network (MFFNN) The 
MFFNN consists of three layers (input layer, hidden layer, 
and output layer). The number of neurons and the number of 
hidden layers should be carefully selected because they affect 
the accuracy of training. TRAINLM is utilized as a train-
ing function. Also, Mean squared error (MSE) is estimated 
to find the best performance of the training algorithm. The 
declining gradient of the back-propagation algorithm is uti-
lized to reduce the value of MSE between the actual and esti-
mated output. The description of the developed model was 
given in Kassem and Gokcekus (2021). Figure 2 illustrates 
the explanation process of the proposed MFFNN method.

Cascade feed‑forward neural network (CFNN) CFNN repre-
sents a static neural network where the signals move in the 
forward direction only (Alkhasawneh and Tay 2018). It is 
similar to a feed-forward neural network but it contains a con-
nection from the input and every previous layer to the layers 
of the following layer (Hedayat et al. 2009; Zheng et al. 2020). 
The advantage of this model is that it can show the nonlin-
ear relationship without eliminating the linear relationship 
between input and output. The optimum number of neurons is 
based on the minimum value of RMSE. The description of the 
developed model was given in Kassem and Gokcekus (2021). 
Figure 3 describes the steps of the proposed model (CFNN).

Radial basis neural networks (RBFNN) RBFNN is a feed-for-
ward network, which consists of one input layer, one hidden 
layer, and one output layer. It is used radial basis functions as 
activation functions (Barati-Harooni and Najafi-Marghmaleki 
2016). Speed and efficiency are the most important advantages 
of RBFNN models compared to other multi-layer perceptron 
models due to their simple structure. The description of the 
developed model was given in Kassem and Gokcekus (2021). 
Figure 4 illustrates the steps of the proposed model (RBFNN).

Elman neural network (ENN) The ENN is a simple type 
of recurrent neural network. It includes four main layers 
namely, the input layer, context layer, hidden layer, and the 
output layer (Yu et  al. 2019). The main ENN structure is 
similar to the multi-layer neural network. As mentioned pre-
viously, there is a context layer in ENN; the inputs of this 
layer come from outputs of the hidden layer, which were uti-
lized to store the hidden layer’s output values of the previous 
time (Yu et al. 2017; Ren et al. 2018).

Quadratic model (QM)

The QM is a mathematical model that can be simultaneously 
model the input variables and output variables affected by 
input variables. The aim of using this model is to estimate 
the degree of effect of the input variables (percentage of 
clay soil (CSc), percentage of NaOH (NaOHc), axial strain 
(AS), area (A), and force (F)) on the output parameter (devia-
tor stress (q)) of the treated soil. Equation (1) presents the 
relationship form between the input parameters and output 
parameters.

Based on the actual data, regression analysis was carried 
out by the following quadratic polynomial model:

where Y  is the predicted response, �0 a constant, �i the lin-
ear coefficient, �ii the squared coefficient, and �ij the cross-
product coefficient, n is the number of factors, xi and xj are 
the independent variables.

Multiple linear regressions (MLR)

MLR is a classical method, which attempts to model the 
correlation between independent variables (x) and dependent 
(y). It explores how the dependent and independent variables 
are correlated. The MLR model is

where Y  is the predicted response, �0 a constant, �i the inter-
cept and xi where i = 1,2,..,n, denotes the explanatory or 
independent variables.

Model performance criteria

Coefficient of determination, root mean squared error and 
mean absolute error were used to measure the estimation 
success of the models. The following equations were used 
for evaluation.

(1)q = f (PCS,PNaOH, LS,A,F).

(2)Y = �0 +

n∑

i=1

�ixi +

n∑

i=1

�iix
2

i
+

n−1∑

i

n∑

i=i+1

�ijxixj,

(3)Y = �0 + �1x1 +⋯ + �ixii = 1, 2… n,

Table 1  Engineering properties 
of clay soil

Property Unit Value

Specific gravity – 2.55
Atterberg limits
 LL % 68
 PL % 32
 PI % 36

Grain fractions
 Clay % 64
 Silt % 33
 Sand % 3

Soil classification – CH
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Fig. 2  The proposed algorithm of predicting stress–strain behavior of the soil using MFFNN
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Coefficient of determination (R2)

Mean squared error (MSE)

(4)R2 = 1 −

∑n

i=1

�
aa,i − ap,i

�2

∑n

i=1

�
ap,i − aa,ave

�2 .

(5)MSE =
1

n

n∑

i=1

(
aa,i − ap,i

)2
.

Root mean squared error (RMSE)

Mean absolute error (MAE)

(6)RMSE =

√√√
√1

n

n∑

i=1

(
aa,i − ap,i

)2
.

(7)MAE =
1

n

n∑

i=1

|||
aa,i − ap,i

|||
.

Fig. 3  The proposed algorithm of predicting stress–strain behavior of the soil using CFNN
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Nash–Sutcliffe efficiency (NSE)

Willmott’s index of agreement (d)

(8)NSE = 1 −

∑n

i−1

�
aa,i − ap,i

�2

∑n

i−1

�
aa,i − aa,ave

�2 .

(9)d = 1 −

∑n

i−1

�
aa,i − ap,i

�2

∑n

i−1

�
���
ap,i − aa,ave

���
+ �
�aa,i − aa,ave

�
�

�2
,

where n is the number of data, ap,i is the predicted values, aa,i 
is the actual values, aa,ave is the average actual values and i 
is the number of input variables.

Results and discussion

Soil stabilization and characterization tests

Atterberg limits

Figure 5 shows the results of Atterberg Limits in terms of 
liquid limit (LL), plastic limit (PL), and plasticity index 

Fig. 4  The proposed algorithm of predicting stress–strain behavior of the soil using RBFNN
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(PI) tests of the five samples. Additionally, the results of the 
Atterberg limits are plotted on the Holtz and Kovacs diagram 
and workability chart as shown in Fig. 6. The Liquid Limit 
(LL), Plastic Limit (PL), and Plasticity Index (PI) following 
ASTM D4318 are within the range of 68–30%, 32–17% and 
36–5%, respectively. It was found that all Atterberg param-
eters, LL, PL, and PI, decreased almost linearly with the 
increase in NaOH content.

Except for the CS20, which was in the moderate plas-
tic region, all clay soil-NaOH samples were found in the 
highly plastic region, as the reference clay sample as shown 
in Fig. 3a. CS0, CS5, CS10, and CS15 samples were found 
in the Illite clay region. It shows that these samples have 
higher LL and PI values than CS20. CS10 has acceptable 
extrusion properties similar to the CS5 sample, whereas the 
CS15 sample has optimal properties. CS20 demonstrates 
lower cohesion and is an outlier as shown in Fig. 3b. In 
general, according to Murray (2007), the plasticity value 
of the soil is an essential parameter utilized in estimating 
the application of the clay body. In clay soil-NaOH, PL 
value is within the range of 32–17%. According to Mon-
terio and Vieira (2004), the high value of PL is associated 
with greater mechanical strength. Furthermore, Siddiqui and 
Osman (2012) concluded that the differences in PL of the 
soil samples are usually understandable from the particle 
size distribution data.

LL = -1.94PNaOH + 66.6
R² = 0.9854

PI = -1.52PNaOH + 36.8
R² = 0.9904

PL = -0.74PNaOH + 31.6
R² = 0.9863
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Fig. 5  Atterberg limits of Clay soil-NaOH mixture

Fig. 6  Position of soil-NaOH samples; a on the Holtz and Kovacs 
diagram (Holtz and Kovacs 1981) and b Casagrande diagram
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Fig. 7  Compaction curves of the clay soil at different NaOH content

Table 2  Results of �
max

 and 
OMC for clay soil-NaOH 
samples

Sample OMC [%] �
max

[g/cc]

CS0 20 1.72
CS5 18 1.82
CS10 16 1.85
CS15 15 1.94
CS20 16 1.80
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Unconfined compressive strength and optimum 
compaction

It is well known that the estimation of shear strength of the 
soil is essential in civil engineering for various applications 
like highway and airfield design, the stability of slopes and 
cuts, and the design of coastal structures. In this study, 
Unconfined Compressive strength (UCS) tests were carried 
out on samples with 0%, 5%, 10%, 15%, and 20% NaOH 
contents, compacted at their at �max and OMC, which were 
obtained from the standard Proctor compaction curves. Fig-
ure 7 shows the compaction curves of the clay soil-NaOH 
at different NaOH contents. It was observed that the sam-
ple with 15% NaOH has the maximum value of �max and 
minimum value of OMC comparing to other samples (see 
Table 2).

The unconfined compression test apparatus was used with 
a load ring capacity of 6.6 kN. The monitoring of percentage 

strain during the test was done using a digital transducer 
connected to a computer for measuring the deformation of 
the sample by the accuracy of 0.01 mm. The height of sam-
ples was measured before each test using a digital caliper. 
The load was transferred to the sample with a ratio of 1 mm/
min.

Figure 8 illustrates the effect of various percentages of 
NaOH on the results of the UCS of the samples. Compar-
ing with the sample without NaOH, the UCS of the sample 
with 15% NaOH increased from 97.5 to 201.7 kPa, i.e. 15% 
NaOH increased the UCS to peak value as shown in Fig. 8. 
Additionally, it was found that by increasing the NaOH 
content to 20% the value of UCS was reduced from 201.7 
to 142.0 kPa. It was observed that the unconfined strength 
value increases 107% with the addition of 15% stabilizer, 
and the further addition of NaOH has an adverse effect on 
UCS and hence the shear strength of the soil. The witnessed 
strength gain can be described by the reaction of sodium 
hydroxide with the clay mineral. The alkaline attack changes 
the clay mineral lattice and results in producing sodium sili-
cate and sodium aluminates. Further addition of NaOH is 
thought to disturb the clay mineral structure and therefore 
decrease the UCS. According to Das and Sobhan (2014) 
consistency/UCS correlation chart, the compacted untreated 
clay samples consistency can be classified as “firm” based 
on the obtained value of UCS, while the UCS of samples 
treated with 5%, 10%, and 20% NaOH classify them as 
“stiff” and with 15% NaOH as “very stiff”.

Given that the undrained shear strength is independent 
of the confining pressure in saturated undrained clays, the 
shear strength at failure,�f , of the samples would be equal to 
the cohesion of them and could be calculated by dividing the 
failure stress by two (Das and Sobhan 2014).

UCS = -0.0953(PNaOH)3 + 2.3539(PNaOH)2 - 6.7213(PNaOH) + 96.956

R² = 0.9969

USS = -0.0473(PNaOH)3 + 1.168(PNaoH)2 - 3.3553(PNaOH) + 47.18

R² = 0.9959

0
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Fig. 8  Unconfined compressive strength (UCS) and undrained shear 
strength (USS) of the clay soil with NaOH content

Table 3  Statistical parameters 
of used variables

Data set Variable Explanation SD CV Min Max Range Unit

Training CSc Clay soil content 7.2 7.9 80.0 100.0 20.0 %
NaOHc NaOH content 7.2 86.5 0.0 20.0 20.0 %
AS Axial strain 3.3 74.8 0.0 13.3 13.3 %
A Area 33.4 2.5 1250.3 1405.8 155.5 mm2

F Force 83.8 58.7 0.0 279.0 279.0 N
q Deviator stress 61.9 58.0 0.0 207.5 207.5 kPa

Testing CSc Clay soil content 0.0 0.0 85.0 85.0 0.0 %
NaOHc NaOH content 0.0 0.0 15.0 15.0 0.0 %
AS Axial strain 1.0 58.0 0.0 3.6 3.6 %
A Area 8.9 0.7 1332.6 1368.3 35.7 mm2

F Force 57.7 29.5 − 19.0 240.0 259.0 N
q Deviator stress 42.8 29.5 − 14.1 178.9 193.0 kPa
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It was found that the sample with 15% NaOH has the 
maximum average �f  with a value of 99 kPa as shown in 
Fig. 8.

Artificial models

As mentioned previously, four neural network models were 
employed to predict the deviator stress (q) for clay soil-
NaOH samples. Thus, the value of clay soil content, NaoH 
content, axial strain, area, and force are used as explanatory 
input variables. The data were divided into training and test-
ing groups and the results by the models were compared 
with each. In this study, the training was done using data 
for 0, 5, 10, and 20% NaOH-treated soil, and the developed 
model was used to predict the stress–strain plot for 15% 
NaOH-treated soil, and then compared with the stress–strain 
plot obtained by performing laboratory test on actually pre-
pared 15% NaOH treated soil. The summary statistics of the 
independent variables, which are considered as input and 
dependent variables (output), are given in Table 3.

A series of models were examined to estimate the opti-
mum number of hidden layers (HL), the number of neurons 
(NN), and transfer function (TF) for the MFFNN, CFNN, 
and ENN models. It should be noted that the number of 
HLs and NNs in the MFFNN, CFNN and ENN models was 
determined by utilizing trial and error approaches. Based on 
the value of MSE, it was found that two hidden layers and 
ten neurons are selected as the best for the MFFNN model 
(5:1:1) with an MSE value of 6.20 ×  10–6. While it found 
that two hidden layers and five neurons were chosen as an 
optimum number for the CFNN model (5:2:1) with an MSE 
value of 274 ×  10–6. Also, it was observed that the ENN 
model (5:3:1) with ten neurons has the minimum MSE with 
a value of 2.26 ×  10–6.

Moreover, the 10-th order root of the input data was used 
instead of actual input data to provide better performance 
for the RBFNN model. This helps to smooth the variation 
of the input data points within a narrower range and this 
leads to better accuracy of the implemented model. Then, 
the data points were randomly divided into training and test-
ing subsets. The random division was carried out several 
times to prevent the aggregation of data points in the desired 
domain of the problem and to provide a smooth distribu-
tion of data points within the training and testing sets. In 
general, the spread and the maximum number of neurons 
(MNN) are important parameters in the structure of RBFNN 
as the performance and accuracy of the implemented model 
are significantly affected by the values of these parameters. 
Similarly, the optimum values of these parameters were esti-
mated by a trial and error approach. It was observed that the 
optimum values that provide the most accurate performance 
for the RBFNN model are 0.001 and 200 for the spread and 
MNN, respectively.

Figure 9 illustrates the R-squared for training data of devi-
ator stress for clay soil-NaOH mixtures. R-squared was used 
to evaluate the performance of artificial models. R-squared 
means the degree of the linear relationship between the 
observed and modeled values. The line is almost straight 
with a 45° angle and this proves the accuracy of the provided 
model. For the training phase, the R2 value was found to be 
approximately 1 as shown in Fig. 6. The results obtained 
from the ANN models show that the use of ANN is enough 
to predict deviator stress for clay soil-NaOH mixtures.
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Fig. 9  Comparison between predicted data with actual data of devia-
tor stress using various ANN models
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Mathematical models

The developed mathematical models (MM) including QM 
and MLR were implemented to predict the deviator stress 
for the clay soil-NaOH mixtures. The data of clay soil con-
tent, NaOH content, LS, A, and F were used to generate a 

mathematical equation based on QM and MLR for q as given 
in Eqs. (8) and (9), respectively.

Moreover, the results of the analysis of variance are pre-
sented in Table 4. The results of the actual data and the cor-
responding values predicted by Eqs. (7) and (9) are displayed 
in Fig. 10. To test the fit of the model, R-squared was deter-
mined. For higher modeling accuracy, the R-squared value 
should be closer to 1. In this case, the values of R-squared 
for training data are 0.99999 for QM and 0.9995 for MLR.

Moreover, Fig. 11 presents two-dimensional (2D) contour 
plots and three-dimensional (3D) surfaces for predicting the 
deviator stress of the treated soil. It shows the influence of 

(8)

q = −0.003054 − 0.000039 ∙ CSc

− 0.000277 ∙ LS − 0.000147 ∙ A

+ 1.07364 ∙ F − 0.000770 ∙ CSc2

− 0.005534 ∙ LS2 + 0.003696 ∙ A2

− 0.003347F2 + 0.000809 ∙ CSc ∙ LS

+ 0.004298 ∙ CSc ∙ A − 0.001933 ∙ CSc ∙ F

− 0.001844 ∙ LS ∙ A + 0.006123 ∙ LS ∙ F

− 0.116304 ∙ A ∙ F,

(9)
q = 0.023284 − 0.005336 ∙ CSc

+ 0.006188 ∙ LS − 0.051475 ∙ A

+ 1.01040 ∙ F.

Table 4  Analysis of variance 
of QM for deviator stress 
responses

*Significant at 5% level
**Significant at 1% level

Sources of variations Degree of 
freedom

Sum of squares Mean square F value P value

Model 14 150.104 10.7217 9.31E + 08 0.00**
 Linear 4 42.101 10.5253 9.14E + 08 0.00**
  CSc 1 0 0 0.2 0.658
  AS 1 0 0 120.59 0.00**
  A 1 0.012 0.0119 1,030,096 0.00**
  F 1 0.913 0.9134 79,324,888 0.00**

Square 4 0 0 628.71 0.00**
   CSc2 1 0 0 43.26 0.00**
   AS2 1 0 0 267.68 0.00**
  A2 1 0 0 151.92 0.00**
  F2 1 0 0 515.35 0.00**

2-Way interaction 6 0.008 0.0013 114,305.7 0.00**
  CSc × AS 1 0 0 0.86 0.353
  CSc × A 1 0 0 37.21 0.00**
  CSc × F 1 0 0 639.56 0.00**
  AS × A 1 0 0 10.5 0.001**
  AS × F 1 0 0 345.67 0.00**
  A × F 1 0.002 0.0022 193,994.3 0.00**
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Fig. 10  Comparison between predicted data with actual data of devia-
tor stress using QM and MLR
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input variables (CSc, AS, F, A) on the deviator stress (q) of 
the treated soil. The number written on each contour area 
indicates the deviator stress in the specified conditions.

Performance evaluation of artificial models 
and mathematical models for testing data

The data were divided into training and testing groups and 
the results by the models were compared with each. In this 
study, the training was done using data for 0, 5, 10, and 
20% NaOH treated soil, and the developed model was used 
to predict the stress–strain plot for 15% NaOH treated soil, 
and then compared with the stress–strain plot obtained by 
performing laboratory test on actually prepared 15% NaOH 
treated soil. Furthermore, the R-squared, RMSE, MAE, and 
ADD were determined to select the best model for predicting 
the behavior of stress–strain of clay soil-NaOH mixtures. 
R-squared is a measure of how well the regression line repre-
sents the data, while RMSE and MAE are direct methods for 
describing deviations. For high accuracy, R-squared must be 

close to 1.0, and the RMSE and MAE between the observed 
and predicted values must be as small as possible. Table 5 
shows the results of the R-squared, RMSE, and MAE values 
for all models. It was observed that all models gave good 
predictions according to the R-squared values for the testing 
data. Also, it was found that the QM and MFFNN have the 
highest value of R2 and the lowest value of RMSE and MAE 
for the testing data. Moreover, Fig. 12 shows the comparison 
of the estimated and observed values of the deviator stress 
for all models. Additionally, the values of deviator stress 
for CS15 are reported in Table S2 as supplementary mate-
rial. The deviation between the estimated and experimental 
results of deviator stress is shown in Fig. 13. It can be seen 
that most of the deviations were positive and only a few were 
negative for QM and MFFNN models.

Fig. 11  Contour plots of deviator stress data

Table 5  Performance evaluation 
of the models

Statistical indicator MFFNN CFNN RBFNN ENN QM MLR

R-squared 0.9996 0.9939 0.9615 0.9977 0.9999 0.9994
RMSE 0.0041 0.0283 0.0575 0.0114 0.0035 0.0547
MAE 0.0013 0.0240 0.0322 0.0087 0.0029 0.0525
NSE 1.0000 0.7610 0.9110 0.9970 1.0000 0.9190
d 1.0000 0.9440 0.9800 0.9990 1.0000 0.9820



 Environmental Earth Sciences (2022) 81:107

1 3

107 Page 14 of 17

0
20
40
60
80
100
120
140
160
180
200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

q 
[k

Pa
]

Axial strain

Actual MFFNN

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

q 
[k

Pa
]

Axial strain

Actual CFNN

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

q 
[k

Pa
]

Axial strain

Actual ENN

0
20
40
60
80
100
120
140
160
180
200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

q 
[k

Pa
]

Axial strain

Actual RBFNN

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

q 
[k

Pa
]

Axial strain

Actual MLR

0
20
40
60
80
100
120
140
160
180
200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

q 
[k

Pa
]

Axial strain

Actual QM

Fig. 12  Comparison of the predicted and observed values of the devi-
ator stress of CS15 for all models
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Conclusion

In this study, the effect of NaOH concentrations on the sta-
bilization of high plasticity clay was investigated. Therefore, 
to address the main objective, the authors proposed a Quad-
ratic model to predict the behavior of stress–strain of treated 
and untreated soil as a function of the percentage of clay 
soil, percentage of NaOH, axial strain (AS), area (A), and 
force (F). Besides, the behavior of stress–strain of soils was 
evaluated through four artificial models, namely Multilayer 
Feed-Forward Neural Network, Cascade Feed-forward Neu-
ral Network, Radial Basis Neural Network and Elman neural 
network based on the experimental data. Furthermore, the 
proposed models were then compared in terms of predictive 
accuracy to select the best model. The most important results 
can be summarized in the following cases:

• The treatment of studied soil with NaOH increases maxi-
mum dry unit weight and decreases the optimum mois-
ture content.

• From the UCS test, it was observed that with increas-
ing the percentage of NaOH from 0 to 15%, the peak 
axial stress increased from 97.54 to 201.71 kPa (i.e., the 
related maximum increment was up to 107%). Never-
theless, this value was reduced when the percentage of 
NaOH exceeded the optimum content of 15% NaOH. 
Similar trends were followed in the case of undrained 
shear strength values from stress–strain curves of UCS 
tests.

• Based on the stress–strain curves of UCS tests, it was 
observed that this treatment increases the stiffness and 
UCS of the soil without leading to considerable brittle 
behavior up to 15% addition of NaOH.

• The results indicate that the all developed models are 
valid in predicting the stress–strain behavior of treated 
soil. Furthermore, the findings demonstrated that the QM 
model performed well and presented high accuracy in 
modeling the stress–strain behavior.

Based on our findings, the QM model developed for this 
study to predict the stress–strain behavior of NaOH sta-
bilized clay soil could be utilized further to test soil with 
other stabilizers or characteristics. Moreover, future research 
should focus on evaluating the effects of curing time on the 
engineering properties of the soil.
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