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Abstract
Success of our ongoing energy transition largely depends on subsurface exploitation. The subsurface can act as a “battery” to 
store energy dense fluids such as hydrogen, or a “host” to sequester unwanted substances such as carbon dioxide or radioactive 
waste. On the other hand, these operations cause the subsurface pressure and/or temperature to change and induce various 
(or cyclical) loadings to the surrounding formations. Their operational safety crucially hinges upon the subsurface integrity. 
The most imminent risk is nucleation of cracks that can lead to loss of mechanical integrity. Unlike hydraulic fracturing 
in geoenergy applications where one deliberately initiates cracks at certain targets, we normally design a system to avoid 
fracturing. At the designing stage, we thus have no prior knowledge of crack initiation locations or propagation paths. And, 
the computational designing tools should be able to assess the fracturing risk without such prior knowledge. In this study, 
we compared three computational approaches that do not require prescribed crack geometries—the discrete element method, 
the lattice element method, and the variational phase-field approach—against percolation experiments on rock salt. The 
experimental results show different fracture propagation paths depending on the boundary loads. The fracture geometries 
were reasonably matched by all approaches despite some differences in path irregularities. While the variational phase-field 
approach predicts relatively regular fracture paths, the paths predicted by the discrete and the lattice element methods are 
more irregular. These irregularities may seem more comparable to intergrain failure in real rocks, but they are also neces-
sary triggers for fracture initiation in the discrete and the lattice element methods. In contrast, the fracture initiation in the 
variational phase-field approach is a realization of the energy minimization in the system, and the grain level descriptions 
are absent in the current formulation. These findings highlight their predictive capabilities and gaps to be bridged between 
the grain and continuum scales for field-scale applications.

Keywords  Subsurface integrity · GeomInt · Fluid percolation · Phase-field model · Lattice element method · Discrete 
element method

Introduction

It is crucial to assess interacting processes in subsurface 
applications (Bauer et al. 2017; Martens et al. 2019; Volchko 
et al. 2020). One needs to select a site based on a long-term 
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subsurface integrity in geological storage of resources such 
as hydrogen, carbohydrates, or water. The time scale in focus 
spans beyond hundreds of thousands of years for the storage 
or sequestration of harmful substances such as chemotoxic 
or nuclear waste, carbon dioxide, etc.

We rely on geological barriers to isolate the stored or 
disposed material from the larger hydrogeological cycle dur-
ing and after the anthropogenic intervention through a low 
permeability, retention, and retardation mechanisms (McCa-
rtney et al. 2016; Martens et al. 2019). The barrier rocks also 
need to have sufficient strength and ductility to accommo-
date loads induced by the construction and operation of the 
storage space. Ideally, the rocks can reverse damage through 
mechanisms such as sealing or healing.

Several phenomena may challenge the integrity of barrier 
rocks (Kolditz et al. 2021). The excavation of tunnels, shafts, or 
caverns may alter the in-situ stress state and exceed the elastic 
deformation limits, which leads to enhanced permeability and/
or porosity. Temperature changes can also cause inelastic defor-
mation or mineralogical changes that impair the barrier rocks.

This study deals with the pressure-driven percolation of 
fluids through barrier rocks. Fluids stored under pressure can 
act as mechanical loads on the barrier rocks, open secondary 
pathways, and thus compromise the barrier integrity. We 
particularly look into rock salt, considered an ideal barrier 
material, because of its ductility, healing potential, high ther-
mal conductivity, and tightness. We use rock salt for storing 
pressurized fluids in solution-mined caverns, chemotoxic 
and nuclear waste, archival material, etc.

Undamaged rock salt is almost impermeable as long as the 
fluid pressure remains below the so-called percolation thresh-
old. This threshold is given by the sum of the minimum prin-
cipal stress and the tensile strength of the grain boundaries of 
the polycrystalline material. Above this threshold, the fluid 
pressure can open up grain boundaries and generate secondary 
permeability through a connected grain boundary network. It 
is via this network that stored fluids can escape.

Here, we compare different numerical methods in their 
ability to reproduce experimental observations of pressure-
driven fluid percolation in rock salt. The methods considered 
are the lattice element method, the discrete element method, 
and the variational phase-field method.

The paper is structured as follows. Section “Fluid per-
colation (hydraulic fracturing) experiments on rock salt” 
describes a classical set of fluid percolation experiments 
in rock salt. In Sect. “Modeling approaches”, we introduce 
the three different modeling approaches. We apply each 
approach to the simulation of the experiments described in 
Sect. “Fluid percolation (hydraulic fracturing) experiments 
on rock salt”. Section “The discrete element method” pre-
sents the results of these simulations which are discussed 
in Sect. “Discussion”. The paper closes with concluding 
remarks in Sect. “Conclusions”.

Fluid percolation (hydraulic fracturing) 
experiments on rock salt

To compare with numerical models, we used published 
experiments on pressure-driven fluid percolation (hydraulic 
fracturing) in rock salt (Kamlot 2009). The experiments were 
conducted in rock salt to study stress-dependent hydraulic 
fracture propagation. The rock salt studied stems from a mine 
near Bernburg, Germany, in the Leine formation. Its density 
is in the order of 2.15–2.2 g cm−3 , and its bulk and shear 
moduli are 16.7 GPa and 10 GPa, respectively. The short-
term uniaxial compression strength is on the order of 25 to 
30 MPa while the long-term uniaxial compression strength 
is at about half of the short-term values. Table 1 lists the 
mechanical properties of rock salt used for our simulations.

Cubic samples with 100  mm edge length were pre-
pared with a small borehole in the upper middle boundary 
(Fig. 1a). The samples were loaded with a true-triaxial appa-
ratus and pressurized fluid was injected through a borehole 
drilled in the middle of the sample to induce hydraulic frac-
ture (Fig. 1b). The depth and the diameter of the hole are 
40 mm and 16 mm, respectively. The drilled hole was cased 
off to a depth of 30 mm leaving a 10 mm open section in the 
bottom for fluid entry to the sample.

Two different stress states were applied to the samples. 
The first case is subjected to the minimum loading from 
the top surface, mimicking a reverse faulting stress regime1 
(Fig. 2a), while the second case is in a normal faulting 
regime (Fig. 2b).

The flow rate was increased gradually for stability. The 
pressure peaked at 10.1 MPa in the first case and 5.8 MPa 
in the second case. They are both higher than the minimum 
stress (8 MPa and 4 MPa in the two cases, respectively) but 
lower than the intermediate stress.

The resulting crack patterns are visible on the sample 
surfaces (Fig. 2). The first case shows a horizontal crack and 
the second shows a vertical crack both of which developed 
on the plane orthogonal to the respective minimum loading 
direction.

Table 1   Mechanical properties of rock salt (Kamlot 2009)

Parameter Value

Bulk modulus, K 16.7 GPa
Shear modulus, G 10 GPa
Critical energy release rate, Gc 28 Pam
Density, � 2.16 g/cm3

Uniaxial tensile strength, �T 1.15 MPa

1  Andersonian stress state terminology is used here (Anderson 1905).
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Modeling approaches

Discrete element method

The discrete or distinct element method (DEM) extends 
the capabilities of continuum-mechanical approaches by 
introducing a new level of discretization, which allows it 
to describe independent deformable bodies that can inter-
act via their contact points and surfaces. The behaviour of 
these contacts can be modeled using joint constitutive mod-
els. This approach is especially suitable for materials with 

a pronounced grain structure, such as granular materials 
like loose rocks or polycrystalline materials like salt rock. 
The constitutive laws employed in this study for both crystal 
(grain) and contact behaviour, developed by Minkley et al. 
(2001), Minkley (2004), Minkley and Muhlbauer (2007), and 
Minkley et al. (2012), are implemented as DLLs (Dynamic 
Link Libraries) for the program 3DEC of Itasca CG, Inc [12].

The salt grains are described using the elasto-visco-plastic 
Minkley model. Its rheological description contains four parts: 
the elastic response, primary and secondary creep, and plastic 
deformation. The primary creep is implemented using a Kel-
vin element, and the secondary creep is a modified Maxwell 

Fig. 1   Pressure-driven fluid percolation experiment in rock salt in Kamlot (2009)

Fig. 2   The confining stress configurations (Kamlot 2009)
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element with a generalized, nonlinear stress–strain rate rela-
tion. These two processes do not play a role during the short 
timescale considered here. The plastic response follows a mod-
ified Mohr-Coulomb model with a nonlinear yield function:

where �D is the uniaxial compression strength, �max the max-
imum effective strength, �� the curvature parameter, and �3 
the minimum principal stress. This yield function was spe-
cifically developed to model the plastic deformation of salt. 
The parameters in Table 2 were determined experimentally 
in this study to adequately reflect the dependence of the 
maximum stress a rock can carry on the confining stress.

The interfaces between the distinct elements serve two 
purposes. On one hand, they allow the explicit description 
of crack formation, i.e., the mechanical opening of joints 
between salt crystals. The shear strength � of the grain con-
tacts depends on a nonlinear way on the normal stress

The friction coefficient is given by Minkley and Muhlbauer 
(2007)

where i0 is an upslide angle which takes surface roughness 
into account and is modified by an exponential function to 
model abrasive effects, ΦR is the residual friction angle, �max 
describes the adhesive friction, and k1 and k2 are curvature 
parameters. As an additional property, a tensile strength can 
be assigned.

We used the elastic properties in Table 1 for grains, and 
the plastic and fracture properties are given in Table 2. For 
the liquid, we used a bulk modulus of 2000 MPa and a vis-
cosity of 1 mPa s.

The second purpose is the description of the hydro-mechan-
ical coupling. The interfaces carry a network of fluid knots 
(see Fig. 3), each of which contains a set of fluid-related data, 
such as a knot volume, aperture, and fluid pressure. The fluid 

(1)�1 = �3 + �D +
�max − �D

�� + �3
�3,

(2)� = �(�N)�N + c.

(3)� = tan
(
ΦR + i0e

−k2�N
)(
1 + �maxe

−k1�N
)
,

flow is then described by Darcy’s Law with permeabilities 
derived from the hydraulic aperture. This is a feature that is 
directly provided by 3DEC, and it enables a nonlinear pres-
sure dependence of the aperture. If the fluid pressure surpasses 
the normal stress plus the tensile strength of the interface, the 
knot is marked as mechanically open, and a crack is formed or 
propagated. For further details, we refer to references Minkley 
and Muhlbauer (2007) Minkley et al. (2012), and the 3DEC 
documentation (Itasca Consulting Group Inc. 2016].

Lattice element method

In the hydro-mechanical lattice model, the domain is dis-
cretized into a series of Voronoi cells connected through 
mechanical lattice elements (mechanical structure) and 
conduit lattice elements (flow channels). The vectorizable 
random lattice (VRL) method is applied here to position the 
nuclei and generate the mesh. The irregularity factor known 
as the randomness factor ( �R ), which varies between 0 and 
1, is used in this method to control the regularity of the 
mesh (Moukarzel and Herrmann 1992). When the random-
ness factor is 0, the generated mesh is regular, and when it is 
equal to 1, it reaches the maximum irregularity. After gener-
ating a mesh, Voronoi tessellation is deployed and polygonal 
cells are generated. Then, the mechanical lattice elements 
are generated based on the Delaunay triangulation connect-
ing the neighbouring Voronoi cells.

The developed hydro-mechanical lattice model is based 
on the assumption of the dual lattice network (Grassl 2009; 
Grassl et al. 2013). The mechanical lattice elements transfer 
the mechanical loads between two adjacent Voronoi nodes 
(nuclei). In the same manner, the fluid flow is transferred 
through conduit elements, where the fluid mass is stored 
within defined physical or artificial cavities (Lisjak et al. 
2017). Each conduit node represents an artificial cavity con-
nected through conduit elements, through which the fluid 
mass is transferred (Fig. 4).

Table 2   Parameters of the 
Minkley model

Parameter Value

�D 12.1 MPa
�max 33.6 MPa
�� 3.4 MPa
c 2.0 MPa
ΦR 12◦

i0 10◦

�max 4.96
k1 0.053
k2 1.0

Fig. 3   Exemplary distribution of flow knots on the interfaces between 
salt grains
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Implementation of a mechanical lattice model

In this study, the mechanical lattice elements are represented 
by a series of Euler–Bernoulli beam (3DOF) (Fig. 5) ele-
ments. Following (Ostoja-Starzewski 2002; Karihaloo et al. 
2003), the regularization of the lattice model is performed 
and a relationship between the continuum and element prop-
erties is derived. In this approach, the stored strain energy of 
the continuum, U

ℝ
 , is considered equal to the stored strain 

energy in all Voronoi cells, Ucell

(4)Ucell =Uℝ
,

where �
ℝ
 are the applied stresses, �

ℝ
 are the resultant strains, 

and V
ℝ

 is the volume of the domain. For a 2D Euler–Ber-
noulli beam element, the stored strain energy is given by

where V is the volume of the Voronoi cell, �i,j,k,m is the strain, 
Cijkm is the stiffness tensor, �i,j the curvature strain, and Dij 
is the curvature stiffness. The stiffness tensor is defined as

where Nb is the number of lattice elements representing the 
each Voronoi Cell, ni,j,k,m represent unit vectors of a lattice 
element, R′ is the first stiffness coefficient, and R′′ is the 
second stiffness coefficient. In each loading step, the mini-
mization of the potential energy of the domain is carried 
out and the displacements of the cell nodes are determined

where, for a single element b, Ub
t
 is the stored total strain 

energy, Ub
a
 is the axial strain energy, Ub

s
 is the shear strain 

energy, Ub
m
 is the moment strain energy, Lb is the length of 

the lattice element, fx is the axial force, fy is the shear force, 
Mb is the moment, Ab cross-section area of the element, Gb 

(5)U
ℝ
=
1

2 ∫V
ℝ

�
ℝ
∶�

ℝ
dV ,

(6)Ucell =
V

2
�ijCijkm�km +

V

2
�iDij�j,

(7)Cijkm =

b=Nb∑

b=1

(
ni nk

(
nj nm R�) + nj nm R��

))
b
,

(8)

Ub
t
(x) = Ub

a
(x) + Ub

s
(x) + Ub

m
(x)

=
1

2 ∫
Lb

0

(
fx(x)

2

EbAb

+
fy(x)

2

GbAb

+
Mb(x)

2

EbIb

)
, dx,

Fig. 4   Schematic representation of the implemented hydro-mechani-
cal model (Kolditz et al. 2021)

Fig. 5   The Euler–Bernoulli beam element representing the bond between two cells (Kolditz et al. 2021)
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is the shear modulus, Eb is the Young’s modulus, and Ib is 
the moment of inertia.

The fracture initiation and propagation in the domain is 
based on linear elastic fracture mechanics (Rizvi et al. 2019). 
In this study, only Mode I (tensile) and II (shear) failures of 
the elements are considered. The failure envelop is defined 
based on the Mohr–Coulomb tension cut-off model (Bolan-
der and Saito 1998). To simulate the material response of 
quasi-brittle geomaterials, a bi-linear softening scheme is 
implemented (Ince et al. 2003). The adjusted Eb values after 
reaching the failure state are calculated based on

where �p is the peak strain, �f  is the failure strain, �b is cur-
rent element strain, and fp is the peak load before the stiff-
ness degradation.

Implementation of the coupled hydro‑mechanical lattice 
model

The dual lattice model is adopted here for the simulation of 
the coupled hydro-mechanical processes in rock material. 
The conduit nodes are defined as artificial cavities (Fig. 4), 
which are interconnected through conduit elements. The 
flow between the defined artificial cavities follows the mass 
conservation in a discrete time step as follows (Lisjak et al. 
2017):

where mt+1
f

 is the fluid mass in the next time step, mt
f
 is the 

fluid mass in the current time step, Δmf  is the total change 
of fluid mass in an artificial cavity, Sr is the saturation degree 
of a cavity, Vcav is the volume of the cavity, �f  is the fluid 
density, Pf  is the hydraulic pressure, Kf  is the fluid bulk 
modulus, f(Sr) is the saturation function which is equal to 0 
and 1 in a dry and saturated conditions, respectively, Zi,j is 
the relative coordinate of the i, j conduit nodes, g is the 
gravitational acceleration, Rh is the hydraulic resistance, Δt 
is the time step, and Δmf ,ij is the mass of the fluid transported 
between cavity i and j. Rh is calculated from the cubic law

(9)Eb =
fp

�f − �p

(
�f

�b
− 1

)
,

(10)mt+1
f

=mt
f
+ Δmf ,

(11)mt=0
f

=Sr t=0Vcav�f

(
1 +

Pt=0
f

Kf

)
,

(12)Δmf ,ij =f (Sr)
Pf ,j − Pf ,i − �f g

(
Zj − Zi

)

Rh

Δt,

where ah is the hydraulic aperture, �f  is the fluid viscosity, 
and L′

b
 is the length of the conduit element (flow length). The 

pore pressure inside a cavity develops when the saturation 
degree is equal to 1. Otherwise, the pore pressure is equal to 
zero. The pore pressure in each time step is calculated based 
on the amount of fluid mass flowing into the cavity. In this 
study, the capillary flow and the capillary rise are neglected

The developed pore pressures are then transferred into the 
mechanical lattice nodes. Through a weak coupling scheme, 
the pore pressure diffusion and the change of the hydraulic 
conductivity with the crack opening and closure are simu-
lated. Both pressure- and flow rate-controlled boundary con-
ditions can be considered in the coupled scheme.

Variational phase‑field model

A variational approach to fracture has been proposed by 
Francfort and Marigo (1998) as a recast of Griffith’s crite-
rion for fracture propagation and its numerical approxima-
tion through a phase-field method by Bourdin et al. (2000). 
Since its inception, the approach, now often called “phase-
field model”, has revolutionized the field of computational 
fracture mechanics. We refer to Bourdin and Francfort 
(2019); Francfort (2021) for recent reviews. In the follow-
ing, we briefly describe the “phase-field model” applied in 
this study.

Mathematical model

We follow the regularization of Francfort and Marigo’s 
energy functional (Francfort and Marigo 1998) by Bourdin 
et al. (2000), where the total energy is defined as

where d is the phase-field order parameter that represents 
a fully damaged state of the material ( d = 1 ) and the intact 
state ( d = 0 ) with a continuous function, and � is the regu-
larization parameter with a unit of length. The model with 
n = 1 is typically referred to as AT1 (Pham et al. 2011) and 
n = 2 as AT2  (Bourdin et al. 2014). AT1 retains an elastic 
phase before failure, while the damage evolves immediately 
with the AT2 model. We used AT1 in this study. cn is a nor-
malization parameter given by

(13)

Rh =
12�f

a3
h

L�
b
= 12�f ∫

zj

zi

1

ah(z
3)

dz =
6�f (ah,j + ah,i)

(ah,iah,j)
2

L�
b
,

(14)Pt
f
= Pt−1

f
+ Kf

Δmf

�f V
t
cav

if Srt = 1.

(15)

E
�
(�, d) ∶= ∫Ω

W(�, d) dΩ + ∫Ω

Gc

4cn

(
dn

�
+ �|∇d|2

)
dΩ,
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W(�, d) is the potential energy density including the effects 
of damage. Ignoring traction and body forces for the sake of 
simplicity, the original form (Bourdin et al. 2000) is given as

In this formulation, both compressive and tensile strain 
energy equally contribute to the damage evolution, which 
may not be always the case. Several studies have proposed 
to split W into a tensile part W+ and a compressive part W− to 
distinguish the contributions (Amor et al. 2009; Miehe et al. 
2010; Freddi and Royer-Carfagni 2010; Steinke and Kaliske 
2019). With the energy split, we can re-write Eq. (15) as

Amongst the split models proposed, we applied an approach 
based on the spectral decomposition of the strain ten-
sor (Miehe et al. 2010) which reads2

where ⟨⋅⟩ denotes the Macaulay brackets defined as 
⟨a⟩± = (�a� ± a)∕2.

To account for the hydraulic force, we need to add the 
work done by the fluid pressure within the crack to the total 
energy (Bourdin et al. 2012; Chukwudozie et al. 2019)

In arriving at Eq. (19), we used the following approximation:

Numerical implementation

The mass conservation is simply given by Bourdin et al. 
(2012); Yoshioka et al. (2019):

cn ∶= ∫
1

0

√
(1 − s)n ds.

(16)W(�, d) = (1 − d)2
1

2
� ∶ �(�) ∶ �(�).

(17)

E
�
(�, d) = ∫Ω

(
(1 − d)2W+ +W−

)
dΩ + ∫Ω

Gc

4cn

(
dn

�
+ �|∇d|2

)
dΩ.

(18)
W± =

�

2

�
⟨�1 + �2 + �3⟩±

�2
+ �

��
⟨�1⟩±

�2
+
�
⟨�2⟩±

�2
+
�
⟨�3⟩±

�2�
,

(19)

F
𝓁
(�, d) ∶=∫Ω

(
(1 − d)2W+ +W−

)
dΩ

+ ∫Ω

Gc

4cw

(
dn

𝓁
+ 𝓁|∇d|2

)
dΩ + ∫Ω

p� ⋅ ∇d dΩ.

∫Γ

p[[� ⋅ �]] dΓ ≈ ∫Ω

p� ⋅ ∇d dΩ.

Given the low permeability of intact rock salt, we neglect 
fluid leak-off to the rock formation and assume that the pres-
sure within the fracture is spatially constant (ı.e., no pres-
sure loss) because of the small sample size. Furthermore, we 
consider no material property dependency of pressure, and 
thus, the energy functional Eq. (19) is linear with p. Letting 
�1 be the displacement with p = 1 , we have

Thus, we can get p from

where

We solve for displacement � and damage d by minimizing 
Eq. (19) as

where dt ⊂ dt+Δt represents an irreversible constraint in the 
damage evolution. First, we take the directional derivative 
with respect to a variation in displacement �̃ and in damage 
d̃ as

Then, we solve for � by setting d̃ = 0 and for d by setting 
𝐮̃ = 0 in the directional derivative Eq. (25) to minimize 
Eq. (19). We descretize the directional derivative with a 
Galerkin finite-element method with a first-order shape func-
tion. Algorithm 1 shows the computational procedure imple-
mented in OpenGeoSys (Bilke et al. 2019). Since we have 
the irreversibility constraint in solving for d, we employed 
a variational inequality solver from PETSc library (Balay 
et al. 2021, 2021).

(20)Vinj = Vcrack = ∫Ω

� ⋅ ∇d dΩ.

(21)Vcrack = p∫Ω

�1 ⋅ ∇d dΩ.

(22)p =
Vcrack

Vp

,

(23)Vp = ∫Ω

�1 ⋅ ∇d dΩ.

(24)

(�, d) = arg minF
�
(�, d)

{
� ∈ H1

d ∈ H1, dt ⊂ dt+Δt
,

(25)

F𝓁(�, d)(�̃, d̃) − ∫Ω div((1 − d)2� ∶ �(�)) ⋅ �̃ dV

+ ∫Ω
{
v� ∶ 𝜀(�) ∶ 𝜀(�) +

3Gc

8

(
1

𝓁
− 2𝓁∇2d

)}
d̃ dV

− ∫Ω p� ⋅ ∇d̃ dV .

2  Here, we admit that the spectral decomposition is not variationally 
consistent (Li et al. 2016).
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Comparison of the approaches

Table  3 compares characteristics of the employed 
approaches. Because the variational phase-field model 
(VPF) assumes no leak-off with and incompressible and 
inviscid fluid, no hydraulic parameters are considered. 
As described above, the discrete element method (DEM) 
employs Minkley model. Since the number of parameters 
is big, we refer to Minkley et al. (2012); Minkley (2004) 
for details.

Results

In this section, we discuss the simulation results from the 
three models presented.

The discrete element method

To simulate the granular structure, a randomised assembly of 
polyhedral blocks based on the Voronoi-discretization was 
built (Fig. 6a). The random distribution and grain sizes of 
the order of 1 cm were used, which are typical values for 
natural rock salt. Gases or liquids can move on the inter-
faces between the blocks (Fig. 6b), if permitted by the local 
stress and pressure conditions. At the center of the sample, a 
fluid pressure was applied in terms of a boundary condition. 
Figure 6c shows a vertical cut through the model, with the 
initial fluid distribution shown in blue. The central borehole 
is also visible.

For the stress configuration, where the minimal principal 
stress is oriented in the vertical direction, a horizontal crack 
is expected. The fluid pressure at the center was increased 
until the first intergranular surfaces began to open, and then 
held constant. Figure 6d shows the final distribution of the 

Table 3   Comparison of the 
approaches

Approach Time integration Degrees of freedom Mechanical parameters Hydraulic parameters

LEM Explicit 688,500 E, � , �T , �f ah , Kf  , �f  , �f
DEM Explicit 1,396,468 Minkley-Model
VPF Quasi-static 21,729,300 E, � , Gc , � –

fluid, which is as expected in the horizontal direction. [Same 
vertical cut as in part (c).] The same picture holds for the 
outer surface of the cube (Fig. 6e), where the fluids leak 
out forming a horizontal band matching the experimental 
observations.

For the second stress configuration where the minimum 
principle stress is horizontal, the fluid is expected to expand 
in a vertical plane. Using the same model, this is indeed the 
case (Fig. 7).

On a Desktop-PC, with an Intel i7 CPU and four cores, a 
single calculation took about 10 h.

The coupled hydro‑mechanical lattice model

The dual lattice model was implemented to simulate the 
fluid-driven percolation in the rock salt samples. The applied 
hydraulic pressures are transformed into the mechanical 
model using the weak coupling scheme, and subsequently, 
the elements’ failure and change of hydraulic aperture are 
determined and transformed back to the hydraulic model. 
The considered mass conservation law results in the predic-
tion of flow rate and change of reservoirs pressure as well 
as the flow and fracturing paths, which are then compared 
to the experimental data.

The total number of conduit and mechanical lattice ele-
ments are approximately 853,800 and 225,720, respectively 
(Fig. 8). The simulations were performed on a Desktop-PC 
with a Xeon processor (2.10 GHz) with a total number of 
16 cores and the computational time for a single simula-
tion is around 12 h. For the lattice element simulations, the 
required mechanical parameters were taken from Table 1. 
For the hydraulic parameters, the fluid properties of oil were 
assigned, where the fluid density is 870 kg/m3 , the fluid vis-
cosity is 6.5 × 10−6 m/s2 , the fluid bulk modulus is 1,4 GPa, 
and the initial hydraulic aperture is 1 × 10−9 m. The two 
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experiments were simulated using the dual LEM (Fig. 9). 
In these simulations, the Young’s modulus was assumed to 
be 25 GPa. The crack propagates on the horizontal plane 
(visible on the surface fracture path) for the first stress con-
figuration (Fig. 9a) and on the vertical plane for the second 
configuration (Fig. 9b) similarly to the experimental result 
(Fig. 2).

The variational phase‑field model

Relying on the symmetry of the domain, we simulated a 1/4 
of the domain (Fig. 10). We discretized the computation 
domain with first-order tetrahedral elements (27,917,126 

elements with 5,432,325 nodes3) and applied the two differ-
ent boundary loadings as specified in Fig. 2a and b. Table 1 
lists Young’s modulus E, Poisson’s ratio � , and the fracture 
toughness Gc used in the simulations. We used 0.75 mm for 
the regularization length � , which is around 1.5 times of the 
tetrahedral mesh size used in the computations.

Without prescription of fracture nucleation or propaga-
tion, the crack set and the displacement fields are obtained 
through minimization of the total energy at each quasi-static 
step. Because of the compression–tension split implemented 
in this model, the phase field (damage) tends to evolve where 

Fig. 6   a Model of the rock salt sample using discrete blocks, b interfaces between grains, and c vertical cut with initial fluid distribution. For 
vertical minimal principal stress: d vertical cut final fluid distribution, and e outer view of final fluid distribution

3  Simulations were run on 768 cores ( 48 × 16 ) on JUWELS at the 
Jülich Super Computing Center. The run times (wall clock) were 
approximately 20 h for each case.
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the material experiences tension, even though the entire sys-
tem is under compression.

For the first stress configuration, a crack propagates 
mostly horizontally towards the boundary of the sample as 
the vertical stress is the minimum principal stress (Fig. 11a). 

The crack initiates with some angle at the bottom of the 
injection borehole and gradually turns to align with the hori-
zontal plane which is orthogonal to the maximum loading 
direction. As expected, for the second configuration, the 
crack propagates on the vertical plane, but its propagation 
is hinged by the presence of the casing tube in the borehole 
(Fig. 11b).

Table 4 lists simulated breakdown pressures from each 
approach.

Discussion

The variational phase model is a continuum-based approach. 
The governing equations are discretized with a continuous 
Galerkin finite-element method with linear interpolation in 
this study. The model represents a crack, which is a dis-
continuous sharp interface in reality, with a mathematically 
diffused phase-field variable. Because the mesh does not 
need to conform to the discontinuities (ı.e., cracks), the 
crack propagation is not restricted by the prescribed mesh. 
The mesh size and orientation impact the computed frac-
ture topology to some extent, but the approach is capable of 
recovering the theoretical critical energies accurately as long 
as the length scale parameter � is properly set (Tanné et al. 
2018; Yoshioka et al. 2021). If one requires explicit proper-
ties such as crack openings or exact crack locations for the 
fracture conductivity or frictional shearing (Fei and Choo 
2020; Bryant and Sun 2021), several post-processing tech-
niques have been proposed (Ziaei-Rad et al. 2016; Yoshioka 
et al. 2020; Yang et al. 2021). Although we simplified the 
mass conservation in this study, considering the so-called 

Fig. 7   For horizontal minimal principal stress: a Vertical cut final fluid pressure distribution, and b outer view of final fluid pressure distribution

Fig. 8   The generated setup using dual lattice model, cross-section 
view
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toughness dominated regime (Detournay 2016) without leak-
off, more general representations are available for example 
in Wheeler et al. (2014); Miehe and Mauthe (2016); Wilson 
and Landis (2016); Santillán et al. (2017); Heider and Mark-
ert (2017); Chukwudozie et al. (2019).

On the other hand, both the discrete element and lattice 
element methods use distinct and discontinuous entities 
(discrete elements and lattice elements) to account for the 
mechanical response. As a result, cracks can manifest as 
breakages between the entities (distinct elements or lattice 
elements). It is straightforward to obtain the explicit crack 
properties, because cracks are represented explicitly as sharp 
discontinuities. However, this representation limits the crack 
propagation to the interfaces of the elements. The fluid flow 
is also only allowed at the element interfaces and no leak-off 
to the rock formation is considered in the current imple-
mentation, but it is not limited by the approach (Lefort et al. 
2020). As for the element size effect, Potyondy and Cundall 
(2004) point out that it impacts the critical stress for fracture 
propagation and its roughness needs to be comparable to the 
actual fracture surface. This issue was addressed by apply-
ing the smooth joint model and the model was verified with 
hydraulic fracture analytical models Damjanac and Cundall 
(2016).

As far as the crack nucleation is concerned, none of the 
models presented require a prescribed initial crack to facili-
tate the nucleation. The variational phase-field model seeks 
for crack nucleation through the total energy minimization. 
However, if the problem does not have a clear stress concen-
tration, the minimization algorithm may be trapped in a local 
minimum and the crack nucleation may not be unique in this 
situation. This issue around uniqueness was addressed in a 

recent study by applying the second-order optimality condi-
tions in the constrained minimization Baldelli and Maurini 
(2021).

For the DEM and the LEM, a crack nucleates “naturally” 
by breaking the bond that experiences the highest load in 
the system. However, similarly to the variational phase-field 
model case, if there is no clear stress concentration in the 
problem, this highest load may well be the result of ele-
ment irregularity. In this situation, the nucleation can also 

Fig. 9   The simulation of the fluid-driven percolation and developed fracture surfaces (red)

Fig. 10   Computational domain for the variational phase-field model
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be “non-unique”. This nucleation uniqueness in the DEM 
or LEM with varying element size will be a topic of future 
research.

In the two loading scenarios considered in this study, even 
though we did not prescribe an initial crack, a stress con-
centration was present at the open section of the borehole. 
Combining it with the anisotropic boundary loadings, all the 
models employed in this study were able to identify a propa-
gation plane orthogonal to the minimum stress orientation. 
These planes qualitatively match the experimental observa-
tions. While the variational phase-field model results show 
relatively smooth crack surfaces because of the homogene-
ous mechanical properties, the DEM and the LEM results 
show more irregular propagation out of the main crack, 
which were likely induced by the heterogeneous element 
sizes and placements in the model.

Since geomaterials do possess such irregularities between 
grain boundaries, simulated failure patterns from DEM and 

LEM seem more realistic, while the variational phase field 
still lacks such intergrain boundary interactions in the imple-
mentation. And because of these irregularities, one may con-
clude that the DEM or LEM is more suitable for the simula-
tion of cracking in rock. However, we should note that these 
irregularities (heterogeneities) in materials are difficult to 
characterize in reality especially in grain scale. If heteroge-
neities are characterized and assigned, a continuum approach 
such as the variational phase-field model would generate an 
irregular fracture topology. Alternatively, generation of sta-
tistically equivalent grain distributions can be used to study 
crack nucleation and size dependency in rock Yoshioka et al. 
(2021). A more systematic study on this subject may be for 
future research.

Conclusions

We have presented three different numerical approaches for 
crack propagation by fluid pressure. None of the approaches 
requires prescribed fracture nucleation points or propagation 
paths. Using fluid percolation experiment performed on rock 
salt with different triaxial boundary loadings, we have com-
pared three models against experimental results. The three 
models simulated crack propagation on the plane orthogonal 
to the minimum stress in accordance with the experimen-
tal observations. This predictive capability is important in 

Fig. 11   The simulation of pressure-driven fluid percolation for a first case with the vertical stress and b second case with the horizontal stress 
being the lowest principal stress. Crack images are mirrored on the symmetry plane for visualization

Table 4   Simulated breakdown pressures using various numerical 
approaches (MPa)

Numerical approach Case 1 Case 2

Experiments 10.1 5.8
LEM 9.3 5.3
DEM 10.7 6.8
VPF 10.1 6.6
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subsurface integrity analysis where we cannot assume crack 
nucleation or propagation a priori.

In large-scale models, while it is not impossible, com-
putational cost can increase quickly with the discrete 
approaches. To bridge such gaps between scales, multi-scale 
modeling framework is a possible future study.
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