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Abstract
Quality assessment (QA) for landslide susceptibility maps (LSMs) is essential to increase their usability. A QA approach 
based on the landslide activity after a triggering event can be useful for the performance evaluation of the methods used for 
LSM production. Landslides triggered by earthquakes can be employed for this purpose as they occur frequently throughout 
the active seismic regions of the world. After an earthquake occurred in Elazig, Turkey on 24 Jan 2020 (Mw 6.8), several 
landslides were activated in the mountainous parts. Here, the performances of two state-of-the-art machine learning methods, 
i.e., the random forest (RF) and the multi-layer perceptron (MLP), were investigated using the activated landslides. The land-
slide inventory was derived in a previous study by using pre- and post-event aerial photogrammetric datasets and classified 
according to their activity types and temporal observations. The classes observed in the pre-event photogrammetric datasets 
were inactive (L1) and active mass movements (L2). The ones observed in the post-event photogrammetric datasets were 
new active zones inside the existing landslide (L3) and new activity (L4). Here, only the L1 and L2 type landslides observed 
in a part of the study area were used for the model training and the LSMs were produced for the whole area to investigate the 
model transferability. The L3 and L4 type landslides were used for validation. In addition, the area under curve (AUC) values 
obtained from the methods and the volumetric change maps obtained from the pre- and post-event digital elevation models 
were also used for the performance assessment. The results demonstrated that RF exhibited higher classification accuracy 
(AUC = 0.93) than MLP (AUC = 0.87); and accurate LSMs could be produced by using a sub-part of the basin for training.

Keywords  Landslide susceptibility mapping · Performance assessment · Machine learning · Photogrammetry · Multi-layer 
perceptron · Random forest

Introduction

At times, landslides may cause more damages and losses of 
lives than the direct effects of the triggering hazard such as 
earthquakes (Schuster 1996). However, often the damages 
caused by landslides triggered by earthquakes (Zhou et al. 
2016; Fan et al. 2018; Tsou et al. 2018; Zhao et al. 2019; 
Goorabi et al. 2020; Barth et al. 2020) are directly reported 
as earthquake damages; and consequently the records are 
distorted and the necessary attention is not paid. To explain 
this issue in numbers, 5–11% of all deaths during earth-
quakes were caused by landslides triggered by earthquakes 
(Marano et al. 2010; Daniell et al. 2017), and the landslide 
events occurred with earthquakes in the period between 
1968 and 2008 caused approximately 71,000 fatalities (Jes-
see et al. 2020). The number of deaths could be predicted by 
using a detailed inventory triggered by earthquakes covering 
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a 207-year period from 1811 to 2016 (Jessee et al. 2020). 
This estimation will undoubtedly provide great benefits in 
terms of spatial planning and efforts to reduce losses due to 
landslides triggered by earthquakes. However, the most fun-
damental necessity here is to determine the landslide areas 
that are likely to be triggered by earthquakes.

If a region is susceptible to landsliding, which is likely to 
be triggered by earthquakes, regional landslide susceptibil-
ity assessments become even more important in terms of 
reducing earthquake-related damages by appropriate spatial 
planning. Kumar et al. (2021) also emphasized that mapping 
the areas prone to coseismic landslides in seismically active 
regions is essential. The Newmark (Newmark 1965) and/or 
the infinite slope models have been widely used in the lit-
erature for regional landslide susceptibility assessments trig-
gered by earthquakes (Havenith et al. 2006; Das et al. 2013; 
Rodríguez -Peces et al. 2014; Chen et al. 2020a; Shinoda and 
Miyata 2017; Shinoda et al. 2019; Li and Su 2021; Nayek 
and Gade 2021). However, such models require accurate 
and representative geomechanical parameters of the slope 
forming materials, which can be used in the regional land-
slide assessments (Gokceoglu and Aksoy 1996). However, 
such a process is very difficult and cannot produce accurate 
results for complex geological environments. Therefore, con-
ventional landslide susceptibility maps (LSMs) still pursue 
their importance. In the recent literature, it is possible to find 
studies on regional susceptibility assessments of landslides 
triggered by earthquakes (e.g. Xie et al. 2018; Chen et al. 
2020a, b, c, 2021). However, if there is no landslide inven-
tory prepared immediately after the earthquake, it is still 
difficult to distinguish the landslides in a region that are trig-
gered by earthquakes. Therefore, the LSM production efforts 
must consider the coseismic landslide inventory of a region 
for analyzing the effects of seismic events and for improved 
landslide hazard assessment. Such inventories are also useful 
for the evaluation of the prediction performances of LSMs 
produced with novel machine learning (ML) methods.

Chen et al. (2012) described the large landslides trig-
gered by the Wenchuan earthquake and concluded that 
large catastrophic landslides can be related to a particular 
geological setting, where fault type and geometry change 
abruptly. To prepare an up-to-date LSM of the region, the 
conditioning factors, in particular the geological and geo-
morphological characteristics which control landslides, 
should be considered. Chang et al. (2021) investigated the 
coseismic landslides triggered by the 2018 Iburi Earthquake 
and the described key factors on the landslides triggered by 
the Iburi Earthquake are peak ground acceleration (PGA), 
lithologhy, distance to fault, distance to the river, altitude, 
slope, aspect and curvature. Similarly, Mahalingama and 
Kim (2021) studied the effects of conditioning and trigger-
ing factors (such as slope, slope roughness, aspect, land use 
land cover (LULC), mean annual precipitation, distance 

to roads, rivers, PGA, and epicenters of the main shock 
earthquake and aftershocks) of landslides triggered by the 
Nepal Earthquake. As can be seen from several other stud-
ies (e.g., Chen et al. 2017b, 2021; de Oliveira et al. 2019; 
Wang et al. 2020, 2021; Adnan et al. 2020; Bui et al. 2020; 
Guo et al. 2021; Liu et al. 2021; Li et al. 2021; Matsakou 
et al. 2021), various conditioning factors were considered 
when producing susceptibility maps of landslides triggered 
by earthquakes, such as altitude, slope, aspect, plan and pro-
file curvature, lithology, distance to faults, distance to rivers, 
topographic wetness index (TWI), stream power index (SPI), 
normalized difference vegetation index (NDVI), drainage 
density, precipitation, LULC, distance to roads depending 
on the geographical setting.

In the literature, various ML methods and statistical 
techniques have been proposed to produce LSMs (e.g. Prad-
han et al. 2010; Nefeslioglu et al. 2012; Wang et al. 2016; 
Dagdelenler et al. 2016; Sevgen et al. 2019; Karakas et al. 
2020; Kocaman et al. 2020; Medina et al. 2021; Can et al. 
2021; Bera et al. 2021; Qi et al. 2021). In recent years, a 
significant rise in LSMs produced by using data-driven ML 
methods has been observed. Algorithms such as artificial 
neural networks (ANNs), support vector machine (SVM), 
decision tree (DT), random forest (RF), gradient boosting 
machine (GBM), fuzzy logic (FL) and logistic regression 
(LR) are among the ML algorithms used to produce LSMs 
(e.g. see Pourghasemi et al. 2013; Wang et al. 2016, 2020; 
Sevgen et al. 2019; Karakas et al. 2020; Yanar et al. 2020; 
Qi et al. 2021; Wu et al. 2020). Wang et al. (2020) com-
pared susceptibility results for landslide prediction using 
five methods such as LR (0.77), SVM (0.80), RF (0.82), 
GBM (0.81) and MLP (0.80) in Shexian County. Among 
the five algorithms, RF yielded the highest accuracy. Bui 
et al. (2020) compared the accuracy of a deep learning neu-
ral network model (DLNN) with state-art-of-the ML algo-
rithms in landslide susceptibility assessment and found that 
DLNN model obtained higher performance (0.90) followed 
by the multi-layer perceptron (MLP) (0.87). Adnan et al. 
(2020) proposed an approach for uncertainty reduction in 
landslide mapping that evaluated the compatibility of land-
slide prediction maps produced using four ML algorithms 
(k-nearest neighbors algorithm (k-NN), MLP, RF and SVM). 
The prediction results indicated that the RF model had the 
highest performance followed by the MLP, SVM, and k-NN 
models. On the other hand, supervised ML algorithms used 
for the LSM production mentioned above frequently utilize 
the receiver operating characteristics (ROC) including the 
area under the curve (AUC) value for the performance evalu-
ation. However, the ROC and the AUC are obtained from 
the existing landslide inventory (i.e., model training and test 
data split from the same dataset) and this kind of QA may 
be insufficient as the LSMs aims at predicting the future 
landslide activities (Sevgen et al. 2019).
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On 24 January 2020, at 20:55, the Elazig earthquake of 
6.8 magnitude with a duration of 20.4 s occurred and trig-
gered several landslides. The area affected by the earthquake 
is located around the Eastern Anatolian Fault Zone (EAFZ) 
and has mountainous topography, which is prone to land-
sliding. Two landslide inventories of the region, one before 
the earthquake and the other one representing the landslides 
triggered by the earthquake were compiled by Karakas et al. 
(2021a). Considering the availability of pre- and post-event 
landslide inventories, high-resolution digital elevation mod-
els (DEMs) and volumetric change maps, the present study 
aimed at evaluating the performances of two different state-
of-the-art ML methods, such as the RF and the MLP, com-
prehensively for the LSM production in the region. Besides 
the visual investigations on the LSMs and the volumetric 
change maps, statistical metrics (i.e., ROC curve and AUC) 
obtained from the evaluated methods were assessed for the 
QA. The main novelties of the present study are; (i) three 
different approaches were used to comparatively evaluate 
the performances of the LSMs obtained from the RF and the 
MLP, (ii) only a part of the landslide inventory located in the 
western part of the study area was used for the model train-
ing to assess the model transferability, and (iii) the LSMs 
were produced for the whole study area.

Materials and methods

For the purposes of the study, temporal landslide invento-
ries obtained from the pre-and post-event (i.e., before and 
after the Elazig earthquake) data derived by Karakas et al. 
(2021a) using aerial photogrammetric datasets acquired in 
three different years were employed. The pre-event landslide 
inventory and the DEM were used in the ML models to pro-
duce the LSMs. The pre-earthquake datasets were acquired 
in two different years (2017 and 2018) during regular photo-
grammetric mapping campaigns of the General Directorate 
of Mapping (GDM), Turkey. The temporal difference was 
caused by the flight planning based on province boundaries 
(2017 for Malatya and 2018 for Elazig Provinces). There-
fore, the ML methods were trained only by using the data 
that remains in Malatya Province located in the western part 
of the study area; and the LSMs were produced for both 
provinces using the same model parameters. Thus, the trans-
ferability of the model parameters to the different parts of the 
same geographical area was also assessed in the study. The 
preliminary LSM results of the area were obtained with the 
RF method by using the inventory of both parts for model 
training (Karakas et al. 2021b) and the AUC results of the 
test pixels were 0.90 and 0.92 in Malatya and Elazig parts, 
respectively. A frequency ratio analysis (FRA) between the 
landslide occurrence and the pre-defined conditioning fac-
tors was also presented by Karakas et al. (2021b). In the 

following sub-sections, the study area characteristics, the 
datasets, the earthquake event and further methodological 
details are presented.

Study area and characteristics

The study area is located in the southeastern part of Turkey 
in the administrative boundaries of Malatya and Elazig Prov-
inces (Fig. 1). As there is high seismicity and active tecto-
nism in the region, the topography is very young and steep. 
Therefore, the lithological units have weak shear strength 
characteristics. Due to the topographical and lithological 
characteristics, the area is prone to landsliding (Sevgen 
et al. 2019). The FRA presented by Karakas et al. (2021b) 
indicated that Maden Complex, Puturge Metamorphites and 
Unconsolidated Gravel, Sand, Silt, Clay lithological units 
are most prone for landslides. The Puturge Metamorphites 
of uncertain age (Paleozoic to Mesozoic) in the study area is 
composed of different metamorphic rock units (gneiss, aphi-
bolite, calcschist, etc.) of different origin, whereas pebble-
stone, sandstone, limestone, spilitic basalt etc. constitute the 
lithology of the Maden Complex of early to middle Eocene 
age (Keskin 2002). The geological characteristics of the 
study area is provided in Fig. 2. The geological units vary 
with the altitudes, such as magmatic and metamorphic rocks 
exist in the upper altitudes whereas young sedimentary rock 
are observed in the lower altitudes. Figure 1 depicts also the 
produced DEMs of the study area obtained from two differ-
ent photogrammetric flight missions carried out in 2017 and 
2018 in Malatya and Elazig Provinces, respectively. Thus, 
the datasets were named after Malatya and Elazig for clarity 
and processed separately for these two parts. The maps in 
Figs. 1 and 2 are presented in Universal Transverse Mer-
cator (UTM) projection and World Geodetic System 1984 
(WGS84) Datum Zone 37 North with the unit of meters 
(European Petroleum Survey Group—EPSG code 32637). 
While the altitude values range between 453 and 2172 m for 
the Malatya part in the study area, they range between 553 
and 2031 m for the Elazig part. The FRA results presented 
by Karakas et al. (2021b) have shown that approximately 
1000–1650 m altitudes are more critical for landslide occur-
rence. After the Elazig Earthquake, several slope deforma-
tions and failures were observed and reported by researchers 
(Tatar et al. 2020; Gokceoglu et al. 2020; Cetin et al. 2021; 
Temur et al. 2021).

Photogrammetric datasets

The aerial photos were processed in three sets of photo-
grammetric blocks based on the dates of the acquisitions. 
The first two sets, i.e., pre-event photos, were acquired in 
2017 and 2018 in Malatya and Elazig Provinces, respec-
tively. The last set, the post-event photos, was acquired on 
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Fig. 1   The location map of the 
study area with (a) the generic 
view, (b) the DSM produced 
for Malatya (left, from the year 
2017) and Elazig (right, from 
the year 2018) parts

Fig. 2   The geological map of 
the study area for Malatya (left) 
and Elazig (right) parts (Akbas 
et al. 2016)
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26 Jan 2020, two days after the earthquake event. The part 
of the inventory including the landslides triggered by the 
Elazig earthquake was prepared by using the 3D surface 
models and orthophotos obtained by processing the last set 
obtained after the event. This inventory was used for valida-
tion. These aerial photos have 30 cm spatial resolution and 
were processed to produce high-resolution digital surface 
models (DSMs) with 5 m grid spacing and orthophotos with 
2 m spatial resolution. The post-event dataset was acquired 
for the earthquake region for disaster mitigation purposes 
by the GDM and has a 20 cm resolution. The photogram-
metric dataset was explained in more detail in a previ-
ous publication (Karakas et al. 2021a). The DSMs were 
employed here as the elevation information (i.e., DEM) to 
avoid any errors which may be caused by post-processing 
to produce a digital terrain model (DTM) as the region has 
mostly open terrain.

The earthquake event and the landslide inventory

The Elazig earthquake with the Mw of 6.8 occurred on the 
Hazar-Sincik Segment of the EAFZ on January 24, 2020 
(AFAD 2020). The maximum acceleration was measured 
as 0.293 g by Turkey Disaster and Emergency Management 
Presidency (AFAD). The landslide inventory was deline-
ated manually using visual interpretations of the orthopho-
tos and the DEMs (Gokceoglu et al. 2020; Karakas et al. 
2021a). The smallest and the largest landslide areas are 
133 m2 and 3 × 106 m2, respectively. Within the scope of 
preparing the landslide inventory, the suggestions made by 
Cruden and Varnes (1996) were taken into consideration. 

Accordingly, the landslide inventory was classified into 
four groups such as (i) inactive mass movements (L1), (ii) 
active mass movements (L2), (iii) areas containing new 
active zones occurred after 2018 inside the existing land-
slide (L3), and (iv) newly developed areas after 2018 (L4) 
(i.e., triggered by the earthquake). In this study, the inac-
tive mass movements (L1) are dormant position. It was 
concluded that the L3 and L4 activities were induced dur-
ing the Elazig earthquake (Karakas et al. 2021a). Out of a 
total of 328 landslides mapped by Karakas et al. (2021a), 
316 of them were utilized in the present study (Fig. 3). 
21% (67) of the landslides were defined as L1, 57% (180) 
as L2, 18% (57) as L3 and 4% (12) as L4. In addition, an 
iso-intensity map of the earthquake event was prepared 
by Yalcin et al. (2020a) using citizen science methods as 
proposed by Yalcin et al. (2020b) (Fig. 4). The distribution 
of the landslides is provided in Fig. 4. As can be seen from 
the Figure, the study area and the landslides are located in 
areas with intensity values between 5 and 7.

Methodology

The overall methodological workflow is provided in 
Fig. 5. The topographic derivatives of the study area, 
such as slope, aspect, plan and profile curvature, etc., 
were computed from the DEMs of the pre-event acqu-
sitions (i.e. 2017 and 2018). The lithology data were 
digitized from 1:100,000 scale geological maps (Akbas 
et al. 2016), and rasterized with 5‐m grid spacing. The 
landslide inventory and the features extracted from the 
topographic data were used to produce the LSMs by 

Fig. 3   The DSM of the study 
area for Malatya (left) and 
Elazig (right) parts produced 
from pre-event photogrammet-
ric datasets and the landslides 
classified by the activity type, 
such as L1: inactive mass move-
ments, L2: active mass move-
ments, L3: areas containing new 
active zones inside the existing 
landslide occurred after 2018, 
L4: newly developed areas after 
2018 (triggered by the earth-
quake, 24 Jan 2020, Mw 6.8) 
(Karakas et al. 2021a)
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Fig. 4   The distribution of the 
landslides on the iso-intensity 
classes of the Elazig Earth-
quake produced by Yalcin et al. 
(2020a)

Fig. 5   The study workflow
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employing the RF and MLP methods. The LSMs were 
validated using the test data, which were not utilized in 
the model training and were also compared with the land-
slide inventory which was not included in the training. 
L1 and L2 type landslides, which fall into the Elazig part 
of the study area were excluded from the training. The 
L3 and L4 type landslides triggered by the event were 
omitted from the LSM prediction and used for valida-
tion purposes only. In addition, the volumetric change 
detection maps produced in a previous study (Karakas 
et al. 2021a) were used for the performance evaluation 
by visual inspection.

Feature extraction for landslide susceptibility mapping

The conditioning factors used for the landslide susceptibil-
ity modeling in the study can be investigated in two sub-
categories, such as topographical and geological. The PGA 
or another earthquake-related parameter was not considered 
here because it is the main trigger of the landslides inven-
toried in the study. Consequently, the PGA should be used 
in landslide hazard assessment. The topographic factors 
considered here include seven parameters, such as altitude, 
slope, aspect, TWI, SPI, and plan and profile curvatures as 
summarized previously. The geodata types with their reso-
lution/scale used in the study are shown in Table 1. These 
parameters were derived from the DEMs of 2017 and 2018. 
As an additional feature, the lithology data obtained from 
Akbas et al. (2016) were included in the prediction. The 
lithology is one of the parameters defining the most impor-
tant unit in which the landslide occurred. These parameters 
are frequently used for producing the LSMs in the literature 
(e.g. see Gokceoglu and Ercanoglu 2001; Brenning, 2005; 
Nefeslioglu et al. 2012; Pourghasemi et al. 2013; Sevgen 
et al. 2019).

The plan and profile curvatures, which are two types of 
curvatures and are mostly considered, were used in the study. 
They are the second derivatives of the digital elevation mod-
els (DEMs). The SPI defines the erosive power of flowing 
water (Zakerinejad and Maerker 2015). When calculating 

the SPI, the slope and the contributing area are used as 
shown in Eq. (1) (Moore et al. 1991).

where As is the catchment area and β is the slope gradient 
(°).

The TWI is used in the determination of the hydrological 
conditions of the topography; and refers to the location and 
dimensions of the water-saturated areas in the basin area. 
This approach was first proposed by Beven and Kirkby 
(1979). Moore et al. (1991) suggested Eq. 2 to calculate 
the TWI.

where As is the catchment area and β is the slope.
The statistical values obtained from the altitude val-

ues and the derived topographic features, which include 
slope, aspect, plan and profile curvatures, TWI, and SPI 
are provided separately for Malatya and Elazig DEMs in 
Tables 2 and 3. The statistical summary explains the mini-
mum (Min), Maximum (Max), Mean, Standard Deviation 
(σ), and Median (Med) values for the whole area (Table 2) 

(1)SPI = As x tan �

(2)TWI = ln

(

As

tan �

)

Table 1   Topographical and 
geological features used as 
conditioning factors in the study 
area and their source geodata

Sub-categories Parameters GIS data type Scale or resolution Source

Topographical Altitude Grid 5 m DEM
Slope
Aspect
Plan and Profile 

Curvature
SPI
TWI

Geological Lithology Polygon 1:100 000 Geological maps pub-
lished by Akbas et al. 
(2016)

Table 2   The model parameters used RF and MLP algorithms

Model Parameter and Value

Random Forest n_estimators = 128
criterion = '‘entropy’
max_depth = 16
min_samples_split = 2
min_samples_leaf = 4 

class_weight = ‘bal-
anced’

bootstrap = 'true'
Multi-layer Perceptron Neural Network hidden_layer_sizes = 100

max_iter = 150
solver = ‘adam’
learning_rate = ‘adaptive’
activation = ‘relu'’
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and the parts inside the landslide inventory (Table3). The 
slope values range from 0° to 87° for the study area and 
the majority of the slopes accumulates between 20 and 25°. 
The higher slope values were observed along with directions 
of northeast-southwest (NE-SW) and northwest-southeast 
(NW–SE). The spatial distributions (maps) are provided in 
Fig. 6. When the aspect map is analyzed (Fig. 6), no accu-
mulation in the values was observed.

The histograms of all topographic parameters are presented 
in Figs. 7 and 8 for the Malatya and Elazig parts, respectively. 
The peaks in the altitude histograms are caused by the errone-
ous altitude values over the water surface. These errors are 
sourced from the false image matches in the DSM production 
process due to the textureless surface. The distributions of 
the plan and profile curvatures, TWI and SPI are in Gaussian 
pattern.

Landslide susceptibility mapping using MLP and RF 
methods

In this study, the RF and MLP methods were applied for LSM 
production and their performances were compared by using 
different approaches to produce the landslide susceptibility of 
the study area. The models are data-driven and learns the prob-
ability of spatial occurrence of the landslides from the data, 
i.e. by using landslide and non-landslide samples given for 
the area. The input features explained previously were used as 
conditioning factors for the prediction.

The MLP is a feedforward NN (Abiodun et al. 2019) and 
is currently a popular and widely used a supervised learning 
algorithm. It consists of two layers as input and output, and one 
or more hidden layers between them. Each neuron in the hid-
den layer processes the values from the previous layer with a 
weighted linear summation. The output layer receives the val-
ues from the last hidden layer and produces the output values 

(Chen et al. 2017a; Zare et al. 2013; Harmouzi et al. 2019; 
Sahana et al. 2020). In this study, the method was implemented 
using the Scikit-learn library (Scikit-learn 2021) in a Python 
programming environment. The final transformation was per-
formed by using a non-linear activation function. The formula 
for MLP is given in Eq. 3.

where f represents the activation function, i is the number 
of neurons in layer m, wm

k
 refers the weight of kth neuron in 

layer m, xm−1
k

 is the activation of kth neuron in layer m−1, n 
is the neuron indices, and j is the layer indices.

The input layer is composed of a set of neurons represent-
ing the input features (altitude, slope, aspect, plan and profile 
curvatures, lithology, TWI and SPI). Here, the input layer has 
eight neurons containing the conditioning factors. The network 
was modelled with one hidden layer with 100 neurons in each. 
The Relu activation function was applied for the hidden layer. 
The Adam algorithm was used for weight optimization across 
the nodes. This algorithm is a stochastic gradient-based opti-
mizer proposed by Kingma and Ba (2014). The maximum iter-
ation denotes the number of epochs and used as 150 here. The 
learning rate approach used for weight updates was adaptive.

The RF algorithm is a powerful ensemble learning method 
of decision trees (DTs) (Breiman 2001). This algorithm cre-
ates DTs by a random selection at the training stage. The DTs 
are evaluated for the best score based on the average of the 
results of the trees. The most important features are in princi-
ple selected from all trees for classification. The RF minimizes 
the correlation between trees and provides higher classification 
performance. The general expression of RF is given in Eq. 4. 
The number of trees in RF defines how many DTs will be 
created while the model is being trained. Another important 

(3)xm
n
= f

(

i
∑

k=0

wm
k
xm−1
k

)

Table 3   Statistical summary of 
elevations and the topographic 
derivatives in the study area

Data part Parameters Min Max Mean σ Median

Malatya Altitude (m) 452.25 2171.94 1145.94 338.32 1103.76
Slope (°) 0.00 87.40 20.99 11.17 20.17
Aspect (°) 0.00 360.00 171.92 101.41 167.94
Plan cur − 0.772 0.841 0.002 0.0103 0.007
Profile cur − 0.857 0.683 − 0.002 0.009 0.003
TWI 0.001 24.081 5.736 2.178 5.268
SPI 0.004 23.639 8.327 1.851 8.255

Elazig Altitude (m) 552.65 2030.88 1223.46 361.08 1204.29
Slope (°) 0.00 87.57 23.13 11.31 22.62
Aspect (°) 0.00 360.00 190.45 99.71 192.26
Plan cur − 0.299 0.369 0.001 0.011 0.006
Profile cur − 0.363 0.352 − 0.001 0.009 0.002
TWI 0.011 24.124 5.646 2.177 5.176
SPI 0.005 23.135 8.497 1.826 8.394
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parameter is the maximum depth of the tree. In the present 
study, the hyperparameters used for running the RF and MLP 
algorithms were chosen heuristically. Since successful results 

were obtained using these parameters in previous studies using 
aerial photograps, similar parameters were also used in this 

Fig. 6   a The slope map, b the aspect map, c the plan curvature map, d the profile curvature map, e the TWI map and f the SPI map of the study 
area
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study (Sevgen et al. 2019; Karakas et al. 2020). The parameters 
used for each algorithm are summarized in Table 4.

where Y(X) represents RF model, yn(x) represents a single 
decision tree model, Z is the output variable and I (.) denotes 
the indicative function.

The RF and MLP algorithms were performed using 
Python scikit-learn library (Scikit-learn, 2021). Only the 
landslides with activity type 1 and 2 were used to train the 
model. These landslides were denoted with the black (L1) 
and the blue (L2) areas in Fig. 9. Due to the imbalanced 
distribution of the landslide inventory in the study area, 
a sub-area of Malatya part (marked with red rectangle in 
Fig. 9) was used for the model training for landslide and 
non-landslide samples. The ratio of the landslide non‐land-
slide samples was 1:2 as performed by Yanar et al. (2020). 
The other landslides, which fall outside the red rectangle in 

(4)Y(x) = argmax
z

k
∑

n=1

I
(

yn(x) = Z
)

Fig. 9, were not employed during the model training stage 
but utilized for the performance assessment. The trained 
model was used for the LSM production for the whole study 
area including Malatya and Elazig parts. A training/test ratio 
of 70/30 percent of all samples was used for the model train-
ing and testing. Finally, the natural breaks classification was 
used to reclassify the predicted values into five categories 
using the Jenks optimization algorithm (Jenks 1967) imple-
mented in ArcGIS software from ESRI Inc. USA. The algo-
rithm minimizes the squared deviations of the class means 
and has the potential for an improved representation of the 
spatial distribution pattern in the data.

Accuracy assessment and validation

Three performance assessment approaches were employed in 
this study. The first one was the assessment of the prediction 
performance metrics obtained from the ROC curve, includ-
ing the AUC; and the visual analysis of the ROC curve. 
The second assessment approach was the comparison of the 

Fig. 7   Histograms of the altitude values and the topographical features for Malatya part. a Altitude, b slope, c aspect, d plan curvature, e profile 
curvature, f TWI, and g SPI
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Fig. 8   Histograms of the altitude values and the topographical features for Elazig part. a Altitude, b slope, c aspect, d plan curvature, e profile 
curvature, f TWI, and g SPI

Table 4   Statistical summary 
of the altitudes and the 
topographic derivatives inside 
the landslide inventory (all 
activity types)

Data part Parameters Min Max Mean σ Median

Malatya Altitude (m) 679.00 1737.28 1155.53 247.90 1158.83
Slope (°) 0.06 71.53 25.00 9.35 24.84
Aspect (°) 0.00 360.00 157.47 59.45 156.39
Plan cur − 0.111 0.075 − 0.004 0.011 0.002
Profile cur − 0.149 0.087 − 0.001 0.009 0.002
TWI 0.901 20.718 5.670 1.699 5.428
SPI 0.795 20.069 9.063 1.608 8.920

Elazig Altitude (m) 678.032 1845.216 1223.361 255.864 1236.829
Slope (°) 0.029 69.230 25.685 9.386 25.813
Aspect (°) 0.000 360 159.203 53.006 157.630
Plan cur − 0.116 0.085 − 0.002 0.011 0.004
Profile cur − 0.098 0.082 − 0.001 0.009 0.006
TWI 0.533 20.821 5.691 1.693 5.452
SPI 0.275 18.449 9.147 1.571 9.020
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prediction results with the landslide inventory, in particular 
the L3 and L4 types, which occured after the acquisition 
dates of aerial photogrammetric data (i.e. 2017and 2018) 
used for the LSM production. Thus, it is expected that the 
L3 and L4 type landslides must be located in highly suscep-
tible areas.

As the last approach, the performances of LSMs for both 
parts were was assessed by visual comparison with the vol-
umetric change maps with the same expectation (i.e. the 
L3 and L4 type landslides can be observed in the changes). 
Here, it must be noted that the surface changes were not only 
sourced from the earthquake-induced mass movements; but 
also include seasonal and land use land cover (e.g. vegeta-
tion, infrastructure, buildings, snow cover, etc.) changes in 
the area in the period of 2–3 years (Karakas et al. 2021a). 
The LS3D (least square surface matching) software (4DiX-
plorer AG, Switzerland) developed by Gruen and Akca 
(2005) was used for the production of volumetric change 
maps.

Results

Landslide susceptibility maps

The produced LSMs are provided for Malatya and Elazig 
parts in Fig. 10a (RF) and Fig. 10b (MLP). The LSMs were 
evaluated in five classes as very low, low, moderate, high 
and very high (Fig. 10, Table 5) obtained from the Jenks 
classification algorithm. The probability of occurrences are 
mostly at higher altitudes, but the slopes close to the water 
body and the drainage channels are also highly susceptible. 
Although the LSMs obtained from the both methods have 
similar patterns, the MLP has in general predicted lower 

susceptibility values in comparison to the RF especially for 
high and very high susceptibility areas.

Table 5 shows the areal distributions and the percentages 
of the different susceptibility classes in the predictions. The 
areas with high and very high susceptibility values obtained 
from the RF within the Malatya part was 36.94 km2 and 
39.87 km2, respectively. The same classes in the Elazig part 
have coverages of 32.51 km2 and 31.65 km2, respectively. 
When the areal coverages of high and very-high suscepti-
bility classes obtained from the MLP method for Malatya 
(high: 35.44 km2, very high: 27.63 km2) and Elazig (high: 
26.54 km2, very-high: 33.57 km2) are considered; the RF 
results show higher susceptibility values especially for 
Malatya part, even though the ranges obtained from Jenks 
classification are also higher for the RF. In Elazig part, MLP 
produced slightly more pixels in the very-high susceptibil-
ity class, and less pixels in the high susceptibility class in 
comparison to the RF.

Quality assessment results

Prediction results

Figure  11 shows the ROC curves and the AUC values 
obtained from the RF model (Fig. 11a) and the MLP model 
(Fig. 11b). A total of 350,412 landslide and 700,824 non-
landslide pixel samples were used for the training (735,865 
pixels) and testing (315,371 pixels). The total number of 
samples contained in the eight feature sets was 8,409,888. In 
Fig. 11, the classes 0.0 and 1.0 reflect the non-landslide and 
landslide pixels. The curves were obtained from the training 
and test samples obtained from the training area, which is 
depicted with a red rectangle in Fig. 9. A ratio of 70/30 was 
preferred between the training and test samples. The AUC 
values were for both the non-landslide and landslide classes 
were 0.93 for the RF model. For MLP, these values were 
0.87. These results show that the RF method exhibits higher 
prediction performance.

Comparison of the LSMs with the post‑earthquake 
landslide inventory

A visual comparison between the landslide inventory and the 
predictions was carried out using Fig. 12, which shows the 
LSMs and the inventory data in 3D perspective view. The 
results were analyzed in 3D geovisualization software. The 
pixels within the L3 (denoted with green) and L4 (denoted 
with pink) activity type landslides were not considered in the 
model training stage. For Malatya Part RF results, when the 
probability of the susceptibility results in the produced LSM 
was considered, the probability values between 0.55 and 
0.76 indicate high class, and probability values between 0.76 
and 1.00 correspond to very high class. For the Elazig Part 

Fig. 9   The model training area (red rectangle) in the Malatya part 
with the landslide inventory used for the training (L1 type: black pol-
ygons; L2 type: blue polygons)
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Fig. 10   The LSMs of the study area (left: Malatya part, right: Elazig part) produced with the a RF and b MLP methods
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RF results, these values are between 0.59 and 0.79 in the 
high class and between 0.79 and 1.00 in the very high class 
(Fig. 12a). When the MLP results are analyzed in Fig. 12b 
for Malatya Part, the probability values are between 0.53 
and 0.75 in the high class and 0.75–1.00 in the very high 
class. For Elazig Part, the values are between 0.55 and 0.79 
in the high class and between 0.79 and 1.00 in the very high 

class. In addition, a statistical summary of the susceptibility 
predictions obtained from a total of 69 L3 and L4 type land-
slides are provided in Table 6 for both methods. The values 
were grouped per region and the landslide types. According 
to the Table, the RF method predicted higher susceptibility 
values both for Elazig (mean values for L3: 0.62 and L4: 
0.74) and for Malatya (mean values for L3: 0.64 and L4: 
0.53) in comparison to the MLP. This shows the transfer-
ability of model parameters for RF for similar sites. These 
values show the success of RF and MLP models. On the 
other hand, according to Fig. 12, the MLP results seem to 
be a better fit when different geological characteristics are 
observed between the training and validation sites. As can 
be seen in Fig. 2, the lithological unit of unconsolidated 
gravel, sand, slit, clay type exists more in Elazig part and 
less in Malatya. The area is marked with red dashed ellipse 
in Fig. 12. Thus, the MLP produced more successful results 
in this lithological unit in Elazig. 

Volumetric change detection results

The volumetric change detection was performed previously 
by Karakas et al. (2021a) using high-resolution DSMs pro-
duced from pre- and post-earthquake aerial photos. The 
Euclidean distances (i.e. discrepancies) between the DSMs 
were calculated using the LS3D software. Figure 13 shows 
the Euclidean distance residual plots of Malatya and Elazig 
parts together with the landslide inventory. The red and 
the blue colours in Fig. 13 demonstrate the largest eleva-
tion changes in meters. The results were assessed visually. 
Figures 14, 15 and 16 show sub-areas from the different 
parts with their change detection maps, RF and MLP LSMs, 
and orthophotos from the pre- and post-event datasets. Note 
that the L3 activity type landslides are depicted with red 

Table 5   The landslide probability distributions obtained from RF and 
MLP algorithms

Data part Method Class Probabil-
ity range 
(%)

Area 
(km2)

Percentage 
(%)

Malatya RF Very High 76–100 39.87 15.72
High 55–76 36.94 14.57
Moderate 33–55 32.98 13.01
Low 13–33 42.51 16.77
Very low 0–13 101.26 39.94

MLP Very High 75–100 27.63 10.90
High 53–75 35.44 13.98
Moderate 32–53 41.33 16.30
Low 13–32 50.55 19.94
Very low 0–13 98.61 38.89

Elazig RF Very High 79–100 31.65 15.52
High 59–79 32.51 15.94
Moderate 36–59 28.51 13.98
Low 15–36 30.36 14.88
Very low 0–15 80.94 39.68

MLP Very High 79–100 33.57 16.46
High 55–79 26.54 13.01
Moderate 33–55 31.10 15.25
Low 13–33 36.57 17.93
Very low 0–13 76.20 37.36

Fig. 11   ROC curves obtained from the (a) RF and (b) MLP methods using the training and test samples. Class 0.0: non-landslide; Class 1.0: 
landslide
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Fig. 12.   3D perspective views of LSMs predicted with (a) the RF and (b) the MLP algorithms together with the landslide inventory and the 
DEMs. The red dashed ellipses denote the area with lithological unit of unconsolidated gravel, sand, slit, clay type



	 Environmental Earth Sciences (2022) 81:144

1 3

144  Page 16 of 22

polygons instead of green for increasing their visibility on 
the change detection maps.

Discussions

The present study provided a comparative evaluation of 
various validation approaches for the LSMs, which were 
produced using two different supervised ML classifiers, 
i.e. the RF and the MLP methods. The classifications were 
performed for pixels. The landslide inventory produced by 
Karakas et al. (2021a) is a comprehensive one reflecting 
the landslides triggered by the Elazig Earthquake (24 Jan 
2020, Mw 6.8) occured in Turkey. Considering the activity 
type, the landslide inventory was classified into four cat-
egories, such as inactive (L1), active (L2), areas contain-
ing new active zones occured after 2018 inside the existing 
landslide (L3), and newly developed areas after 2018 (L4), 
thus triggered by the earthquake. The LSMs were produced 
using the pre-event DSMs and the topographic derivatives, 
the geological characteristics of the area (lithology), and 
only the two types of landslides (L1 and L2), which were 
observable in the site in the pre-event datasets and thus were 

not triggered by the earthquake. The results were validated 
using the landslides triggered by the Elazig earthquake, i.e. 
the L3 and L4 activity type landslides. The LSMs were pro-
duced separately for the two sub-parts of the study area, i.e. 
Malatya and Elazig parts, due to approximately 1 year differ-
ence between the acquisitions of photogrammetric datasets 
in these provinces. There were a total of 40 landslides with 
activity type L3 and L4 for the Malatya part of the study 
area, and 29 landslides in total for the Elazig part.

The outcomes of the study can be discussed as follows;

•	 The conditioning factors derived in the present study 
are the factors commonly used in the literature (e.g. see 
Gokceoglu and Ercanoglu 2001; Brenning 2005; Prad-
han et al. 2010; Nefeslioglu et al. 2012; Pourghasemi 
et al. 2013; Sevgen et al. 2019; Dag et al. 2020; Chang 
et al. 2021; Guo et al. 2021; Mahalingama and Kim 
2021). These parameters were found to be sufficient for 
obtaining high performance in landslide susceptibility 
modeling here. Although it is possible to employ further 
parameters, highly correlated conditioning factors may 
cause multicollinearity problem.

Table 6   Statistical summary 
of probability results obtained 
from a total of 69 landslides (L3 
and L4)

Data part Model Landslide type Min Max Mean σ Median

Malatya RF L3 0.29 0.84 0.64 0.12 0.66
L4 0.25 0.71 0.53 0.12 0.54

MLP L3 0.14 0.76 0.47 0.13 0.47
L4 0.17 0.63 0.41 0.12 0.43

Elazig RF L3 0.17 0.84 0.62 0.14 0.64
L4 0.45 0.88 0.74 0.11 0.76

MLP L3 0.10 0.82 0.56 0.14 0.58
L4 0.28 0.79 0.53 0.11 0.52

Fig. 13   The Euclidean distance residual plots of Malatya (left) and Elazig (right) parts
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•	 There are different supervised ML algorithms used for 
LSM production in the literature. However, the RF and 
the MLP algorithms are the most commonly used and 
also accurate ones among these algorithms (Zare et al. 
2013; Chen et al. 2017a, b; de Oliveira et al. 2019; Har-
mouzi et al. 2019; Sevgen et al. 2019; Adnan et al. 2020; 
Karakas et al. 2020; Sahana et al. 2020). For this reason, 
in the study, RF and MLP algorithms were used to pro-
duce more accurate and effective LSM.

•	 The most important contribution of the study is the 
detailed comparison of three different approaches for 
validating the LSMs. The first approach was based on the 
ROC curve and AUCs obtained from the model outputs. 
The training/test ratio was 70/30 percent in the training 
area, which only falls inside Malatya part. The second 
approach was qualitative and quantitative validations via 
visual assessments on the LSMs and the L3 & L4 type 
landslides; and the analysis of prediction statistics for the 
pixels which fall into these landslides. The last approach 

was a qualitative evaluation based on the comparison of 
volumetric change maps and the LSMs.

•	 When the first approach is considered, the RF provides 
higher prediction performance with an AUC value equal 
0.93 in comparison to the MLP (AUC = 0.87). The suc-
cess of DTs and in particular the RF method for LSM 
production is well-known in the literature (e.g. see Chen 
et al. 2017b; Sevgen et al. 2019; Adnan et al. 2020; de 
Oliveira et al. 2019; Karakas et al. 2020). In this study, 
the RF algorithm has proven to be successful.

•	 When the second approach is considered, the quantitative 
results presented in Table 6 show that the RF could pre-
dict higher susceptibility values for the L3 and L4 type 
landslide pixels with the mean values that fall into high 
susceptibility class as explained in Fig. 12 and Table 5. 
For Malatya part, the MLP provided mean susceptibility 
values for both landslide types that remain in the mod-
erately susceptible class. For Elazig part, the mean sus-
ceptibility value (0.56) inside the L3 type landslides fall 
into the high susceptibility class, whereas for L4 type the 

Fig. 14   The plots of a the Euclidean residuals in Malatya part; b RF LSM; c MLP LSM; d pre-event ortophoto from 2017; and e post-event 
orthophoto from 2020; all draped on the DSMs



	 Environmental Earth Sciences (2022) 81:144

1 3

144  Page 18 of 22

mean value was 0.53 and thus moderately susceptible. 
The standard deviations obtained from both methods are 
quite similar for both parts and range from 0.11 to 0.14. 
The median values are comparable to the mean values, 
which imply a normal distribution of the predictions. It 
must be noted here that the numbers and the sizes of 
L3 and L4 type landslides are diverse; and the L4 type 
landslides are smaller and less frequent.

•	 On the other hand, although the quantitative assessment 
in the second approach indicates the better performance 
of the RF, MLP was found more successful in a litho-
logical unit which was not included in the model training 
area, which falls into the Malatya part. As can be seen 
from Fig. 16, MLP outperformed RF for this unit. Thus, 
it can be said that although the model parameters can be 
transferred to another site in the same basin, the RF is 
more sensitive to the changes in the data and may not be 
able to predict correctly.

•	 When the third approach is considered, a relation-
ship between the residual maps and the LSMs can 
be observed. It can be thought that small movements 
inside the susceptible areas could be detected by the 
high-resolution change detection map. Again, due to 

the DSM production approach and the temporal dif-
ference between the pre- and post-earthquake datasets, 
the Euclidian residuals presented here have uncertain-
ties caused by the other types of surface changes.

•	 When the prediction performance obtained in the pre-
sent study is compared to the results of Wang et al. 
(2020), it was observed that the AUC values obtained 
in the present study are higher (RF AUC = 0.82 and 
MLP AUC = 0.81). While the MLP results are similar 
to the study by Bui et al. (2020), the RF (0.83) results 
were better here. The differences can be associated 
with the differences in the geographical setting and 
the data characteristics.

•	 When the landslide conditioning parameters applied 
here are considered, they were found suitable. 
Although the LULC was not considered as an effec-
tive factor in the study, the LSMs can be updated when 
important LULC changes occur in the region. In addi-
tion, the new landslides triggered by the earthquake 
must be taken into account when the new LSM using 
the DSM of 2020 is produced.

Fig. 15   The plots of a the Euclidean residuals in Elazig part; b RF LSM; c MLP LSM; d pre-event ortophoto from 2017; and e post-event ortho-
photo from 2020; all draped on the DSMs
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Conclusions and future work

The study area is a region with high seismicity, which 
is located along the EAFZ. In addition, the study area is 
prone to landsliding. In this study, two LSMs were pro-
duced considering the data before the earthquake and their 
performances were assessed using the landslides triggered 
by Elazig Earthquake (24 Jan 2020, Mw 6.8). The RF and 
MLP algorithms were applied to produce the LSMs. The 
landslide inventory prepared by using pre-event datasets 
were used in the LSM production and validated with the 
landslide inventory triggered by the earthquake. The ROC 
curves and volumetric change detection map were used for 
this purpose. Considering the AUC values, the RF outper-
forms the MLP. When the susceptibility values inside the 
landslides triggered by the earthquake were statistically 
analysed, again the RF provided higher values, which fall 
into the high susceptibility class. On the other hand, in 

a lithological unit, which was not used for training, the 
MLP provided better performance. The results show that 
the RF can provide higher performance in different sites 
only if the similarity between the sites are also high. It is 
also recommended to check the LSMs via visual qualita-
tive assessment.

The study contains two main novelties. One of these is the 
production of a susceptibility map with a landslide inven-
tory map prepared before a major earthquake, and perfor-
mance validation using the inventory map prepared after the 
earthquake. In particular, the existence of a landslide inven-
tory both before and after the earthquake made a significant 
contribution to the performance evaluation. This contribu-
tion is another important novelty of the study. As a result, a 
procedure for assessing landslide susceptibility triggered by 
earthquakes was put forward by including these novelties in 
the study. After this stage, the production of landslide hazard 

Fig. 16   The plots of a the Euclidean differences in Elazig part; b RF 
LSM; c MLP LSM; d pre-event ortophoto from 2017; and e post-
event orthophoto from 2020; draped on the DSMs. The area was 

selected based on the red dashed ellipses, which denote the part with 
lithological unit of unconsolidated gravel, sand, slit, clay type, given 
in Fig. 12
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maps and risk management will become more applicable, 
taking into account earthquake parameters as the triggers.

As a future recommendation, depending on the devel-
opment of geo-spatial technologies, high-resolution 
images to be obtained immediately after major earth-
quakes allow the inventory of triggered landslides to 
be compiled with high precision. Such inventories will 
enable the production of LSMs with much higher predic-
tion capacity.
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