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Abstract
As an important indicator of vegetation coverage, the normalized difference vegetation index (NDVI) reflects the changing 
pattern and evolving trend of the environment. In the Loess Plateau, vegetation plays a critical role in soil and water conser-
vation, which strongly affects the achievement of sustainable development goals. The study of the spatial distribution and 
temporal trends of NDVI is of great practical importance for the planning of soil and water conservation measures and the 
evaluation of the environmental situation. In this study, the NDVI, precipitation, land use and land cover data of the Jing 
River Basin were collected, the emerging hot spot patterns of the NDVI analyzed, the characteristics of spatial distribution 
and temporal variation of the NDVI in the basin obtained, and the impacts on NDVI from the climate changes and the land 
cover changes discussed. The results show that the NDVI in Jing River Basin represents a spatial trend of decreasing from 
northwest to southeast. The emerging hot spot analysis results show that diminishing cold spot, oscillating hot spot and 
intensifying hot spot are predominant patterns in the basin. The whole basin shows a statistically significant upward trend 
of high value aggregation of NDVI. The temporal trend of NDVI in the basin varies from − 0.0171 to 0.0185 per year. The 
increasing trend of vegetation coverage in the basin is statistically significant. The positive correlation between the NDVI 
and the precipitation mainly observed upstream of the basin reveals that the growth of vegetation in the Loess Plateau is 
more dependent on the water supply from the precipitation. Land cover transition patterns and the land use patterns also 
impact the spatial–temporal trends of the vegetation coverage in the basin. The study results may be helpful for the vegeta-
tion restoration, soil and water conservation and sustainable development of the Jing River Basin.
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Introduction

Remote sensing is an important technology to quickly obtain 
the vegetation types and vegetation coverage in a large area, 
and it can perform long-term dynamic monitoring of veg-
etation coverage at different scales. Normalized difference 
vegetation index (NDVI) was proposed by Kriegler et al. 
(1969) and is one of the most widely used vegetation indices 
based on remote sensing data, also known as biomass index 
change, which can separate vegetation from water and soil. 
It has been widely used in ecological and environmental 
monitoring, drought monitoring, vegetation growth capac-
ity evaluation, land use, and so on (He et al. 2020; Huang 
et al. 2021). In recent years, many scholars have conducted 
more in-depth research on the temporal trend and spatial 
distribution of vegetation coverage based on the NDVI (Jin 
et al. 2021).
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The Jing River locates in the Yellow River Basin and 
is the second largest tributary of the Yellow River (Li 
et al. 2013). The Jing River flows through the Loess Pla-
teau, where soil erosion is serious (Liu et al. 2018). While 
recharging the Yellow River, it also brings a large amount 
of sediment to the Yellow River. The Jing River is also the 
main source of irrigation water for many large irrigation dis-
tricts in the Guanzhong Plain of Shaanxi Province (Xu et al. 
2019; Zhang et al. 2018a). For a long time, the problems of 
vegetation degradation, soil erosion, runoff reduction, and 
water pollution in this area have attracted much attention 
(Li et al. 2014), making it a landmark object for studying 
soil and water conservation, ecological protection, human 
health risk assessment, and sustainable development of the 
Loess Plateau and the Yellow River Basin (Ning et al. 2016; 
Chang et al. 2016; Li et al. 2018, 2019a, b; He and Wu 2019; 
Zhang et al. 2020, 2021; Deng et al. 2021). A lot of research 
work concerning the Jing River Basin has been carried out 
by scholars worldwide (Li et al. 2013; Liu et al. 2018; Xu 
et al. 2019).

In the past two decades, through a series of environmental 
restoration measures such as the Grain for Green Program, 
the vegetation coverage in the basin has been improved, the 
spatial distribution of land–water resources has undergone 
significant changes, and soil erosion has been effectively 
curbed (Delang and Yuan 2015). However, problems of 
water shortage, water use conflicts, and ecosystem degrada-
tion in the basin still exist. In 2019, ecological protection 
and high-quality development of the Yellow River Basin 
have become a national strategic goal in China (Li 2020a, 
b). Therefore, analyzing the characteristics of vegetation 
changes in the Jing River under the influence of climate 
change and anthropological activities is important for opti-
mizing the allocation of regional land–water resources, 
adjusting soil and water conservation patterns, promoting 
ecological restoration, and achieving sustainable high-qual-
ity development goals in the Yellow River Basin.

The geographical objects and phenomena usually change 
in both spatial and temporal dimensions. However, in previ-
ous studies regarding NDVI variation, the spatial distribu-
tion and the temporal trend were analyzed and discussed 
separately (Li et al. 2013; Liu et al. 2018). The spatial dis-
tribution of NDVI mainly reflects the spatial heterogeneity 
of NDVI in the study area at a specific time, that is, a certain 
year, a certain month, or a certain day. The temporal trend is 
mainly obtained through the Mann–Kendall trend test, which 
usually takes the time series data of points in the study area 
as the investigating objects. The Mann–Kendall trend test 
results can only reflect the temporal trend at the points, but 
cannot analyze the temporal trends at the location between 
the points. Moreover, the temporal trend can only reveal the 
overall changing direction and degree throughout the period, 
and cannot identify the changing patterns of different stages 

within the time span. In the view of above issues, it is nec-
essary to introduce new approaches to analyze the change 
characteristics of NDVI considering the spatial distribution 
of temporal trends.

Emerging hot spot analysis is a new tool provided by Arc-
GIS, which can identify spatial–temporal trends and chang-
ing patterns of different stages within a time span (ESRI 
2021). In recent years, the emerging hot spot analysis has 
gradually been applied to different scientific fields (Betty 
et al. 2020; Chambers 2020). However, few studies using the 
emerging hot spot analysis have been carried out to analyze 
the NDVI variation and the related factors. This study was 
conducted for the first time using the emerging hot spot anal-
ysis method to analyze the change characteristics of NDVI 
in the Jing River Basin. This study aims to: (1) analyze the 
aggregation mode and hot spots trend of vegetation cover in 
the basin, (2) obtain the spatial–temporal trends of vegeta-
tion cover in the study area, and (3) discuss the relationship 
between vegetation and climate change, and anthropological 
activities in the basin. This study may provide a meaning-
ful reference for the vegetation restoration, soil and water 
conservation, and sustainable development of the Jing River 
Basin.

Materials and methods

Study area

Located in the middle reaches of the Yellow River, the Jing 
River is a secondary tributary of the Yellow River and the 
largest tributary of the Wei River (Fig. 1). The Jing River has 
a total length of 455.1 km and a drainage area of 45,400  km2 
(Li et al. 2013; Liu et al. 2018). It straddles the three prov-
inces (regions) of Gansu, Ningxia, and Shaanxi. The basin 
is divided into mountainous forest areas in the southwest, 
mountainous river areas in the southeast, and hilly areas of 
the Loess Plateau in the central and northern parts (Li et al. 
2013; Liu et al. 2018). The basin is a typical temperate con-
tinental climate zone, located in the transition zone from a 
semi-humid climate to a semi-arid climate (Li et al. 2013; 
Liu et al. 2018). The annual average precipitation from 1981 
to 2020 is 508.59 mm, and the annual average temperature 
is 9.7 °C. The Jing River flows through the high-intensity 
soil erosion area of the Loess Plateau. A large scope of the 
basin is covered by thick loess which has poor corrosion 
resistance. The soil erosion in the basin has been severe for 
a long time, and the ecological environment is fragile (Li 
et al. 2013; Liu et al. 2018).

The Jing River Basin exists across the typical agropasto-
ral regions of Northwest China. The dominating land cover 
is cultivated land, grassland, and forest, with percentages of 
47.0%, 32.9%, and 16.5%, respectively. The Jing River Basin 
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is a very important irrigation water source for large irriga-
tion districts. The proportion of agricultural water consump-
tion exceeds 60% of the total water resources in the basin.

Data

Climate

The daily meteorological data of the Jing River Basin from 
1981 to 2020 were collected. Totally, 18 meteorological sta-
tions’ data were acquired from the China Meteorological 
Data Service Center (CMDSC 2021). The distribution of 
the meteorological stations is shown in Fig. 1.

NDVI

The MODIS product was chosen to analyze the spatial and 
temporal trends of NDVI. The Terra/MODIS Vegetation 
Indices Monthly L3 Global 1 km SIN Grid datasets were 
downloaded from the Level-1 and Atmosphere Archive and 
Distribution System (LAADS 2021) Distributed Active 
Archive Center (DAAC), located in the Goddard Space 
Flight Center in Greenbelt, Maryland (https:// ladsw eb. nas-
com. nasa. gov/). The data spatial resolution is 1000 m. The 
annual NDVI of the basin was generated by the maximum 
value composite (MVC) method.

Land use and land cover

The land use and land cover data were acquired from the 
website of GlobeLand30 (Jun et al. 2014) (http:// www. 
globa lland cover. com/). The GlobeLand30 is a is 30 m spa-
tial resolution global land cover data product, developed by 
the National Geomatics Center of China (NGCC 2021) and 

supervised by the Ministry of Natural Resources of the Peo-
ple’s Republic of China.

Digital elevation model (DEM)

The elevation data were obtained from the website of the 
Consultative Group for International Agricultural Research 
(CGIAR 2021). The data were measured by the Shuttle 
Radar Topographic Mission (SRTM) project and produced 
by NASA. The spatial resolution of the DEM is 3 arc-second 
(about 90 m).

Methods

Getis‑Ord Gi* statistic

Among GIS tools, the Getis-Ord Gi* statistic is widely used 
for hot spot analysis. By calculating the Gi* statistics of 
spatial features (spatial variable), it is possible to reflect the 
aggregation degree of the high-value area (hot spot) and 
low-value area (cold spot) of the spatial variable (Chambers 
2020; ESRI 2021). The calculation is as follows (Getis and 
Ord 1992; Ord and Getis 1995):

where xj is the attribute value for spatial feature j , �i,j is the 
spatial weight between feature i and j , n is the total number 
of features, and (Getis and Ord 1992; Ord and Getis 1995):
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Fig. 1  Location map of the study area

https://ladsweb.nascom.nasa.gov/
https://ladsweb.nascom.nasa.gov/
http://www.globallandcover.com/
http://www.globallandcover.com/
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When the analyzed data is a time series, emerging hot 
spot analysis can identify the changing trend of the data 
(Betty et al. 2020; ESRI 2021). For example, it can find 
new, enhanced, reduced, and scattered hot and cold spots. 
The emerging hot spot analysis can classify the hot spot 
as patterns listed in Table 1, which is defined by ArcGIS 
online help documentation (classifications of the cold spot 
are similar) (ESRI 2021):

In this study, the Getis-Ord Gi* statistic and the emerging 
hot spot analysis were implemented by Python and ArcGIS. 
In the analysis parameter setting, the time-step interval is 
1 year, space–time bin size is 1 km, and the neighborhood 
distance interval is 20 km.

Mann–Kendall trend test

The Mann–Kendall (Mann 1945) trend test method is widely 
used in many fields of geoscience. It uses the data sequence 
order to judge the correlation degree between two variables 
and achieve the variation trend of the long-term data series. 
The Mann–Kendall trend test statistic can be calculated as 
follows (Mann 1945):

(2)
X =

n∑
j=1

xj

n
,

(3)
S =

������
n∑
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x2
j

n
− (X)2.

where n is the length of the time series, xj and xk are the vari-
able values in the time series ( j > k ). “sgn” is a symbolic 
function, and (Mann 1945):

The Mann–Kendall trend test uses a significance level 
of trend ( Z ), and the slope of the trend ( S ) to determine 
the trend significance of data changes. The significance 
level indicates whether the trend is statistically signifi-
cant, while the slope shows the degree and direction of the 
trend. The statistic Z can be calculated as follows (Mann 
1945):

If Z > 0 , the time series shows a monodic upward trend. 
If Z < 0 , the time series shows a monodic downward trend. 
The absolute critical value of Z for the significance level 
0.01, 0.05 and 0.1 are 2.576, 1.96 and 1.645, respectively.

The variance ( S ) can be calculated by the following 
equation (Mann 1945):
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Table 1  Emerging hotspot patterns and the definitions

Pattern Definition

No pattern detected Does not fall into any of the hot or cold spot patterns defined
New hot spot A location that is a statistically significant hot spot during the final time step and has never been a statistically significant 

hot spot before
Consecutive hot spot A location with an uninterrupted run of the statistically significant hot spot bins in the last time step interval. The location 

has never become a statistically significant hot spot before the final hot spot run and less than 90% of all bins are statisti-
cally significant hot spots

Intensifying hot spot A location that has been a statistically significant hot spot for 90% of the time-step intervals, including the last time step. 
In addition, the clustering intensity of high counts in each time step increases overall and the increase is statistically 
significant

Persistent hot spot A location that has been a statistically significant hot spot for 90% of the time-step intervals with no perceptible trend 
indicating an increase or decrease in the clustering intensity over time

Diminishing hot spot A location that has been a statistically significant hot spot for 90% of the time-step intervals, including the last time step. 
In addition, the clustering intensity in each time step generally decreases and the decrease is statistically significant

Sporadic hot spot A location that is an on-again then off-again hot spot. Less than 90% of the time-step intervals have been statistically 
significant hot spots and no time-step intervals have been statistically significant cold spots

Oscillating hot spot A statistically significant hot spot for the last time-step interval that has a history of also being a statistically significant 
cold spot during a prior time step. Less than 90% of the time-step intervals have been statistically significant hot spots

Historical hot spot The most recent time period is not a hot spot, but at least 90% of the time-step intervals have been statistically significant 
hot spots
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where, q is the number of sets with the same variable value, 
and tp refers to data’s number in the pth set.

Pearson correlation coefficient

The Pearson correlation coefficient is used to measure 
the strength of a linear association between two variables, 
and the equation is as follows (Forthofer et al. 2007):

where r represents the Pearson correlation coefficient, xi 
denotes the value of the variables x , and yi is the value of 
the variable y , x refers to the arithmetic mean of variables 
x , and y is the arithmetic mean of variables y . The larger the 
absolute value of r , the stronger is the correlation. When 
r > 0 , it indicates that the two variables are positively cor-
related, and r = 1 means a perfect positive correlation. When 
r < 0 , it indicates that the two variables are negatively cor-
related, and the value r = −1 means a perfect negative cor-
relation. When r = 0 , it indicates that the two variables are 
not linearly related.
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Spatial data interpolation and basic statistical analysis

The daily precipitation data within 1 year were summed 
up to obtain each station’s annual precipitation during the 
period of 1998 –2018. Then, the annual precipitation data 
were used as the input of the ArcGIS spatial data interpola-
tion tools to generate the spatial distribution raster of the 
annual precipitation. The main raster interpolation models 
used in this study are radial basis function and kriging.

Based on the spatial distribution raster of the annual pre-
cipitation, the ArcGIS Calculate Statistics tool is used to 
calculate the min, max, standard deviation, and average of 
the precipitation of the basin.

Thematic analysis

Figure 2 demonstrates the major logical procedures of the 
thematic analysis to obtain the emerging hot spot patterns, 
Mann–Kendall temporal trend, and Pearson correlation coef-
ficient. In ArcGIS, the raster layers of different years’ NDVI 
data are organized as a space–time cube according to the 
time order. Each cell in the raster layer is located by the col-
umn index (col) and row index (row). At the same location 
(col, row), a single cell of each NDVI layer can be extracted 
separately, and then the cells of all layers form a data bin. In 
the data bin, the cells’ value that records the annual NDVI 
can be converted into the NDVI time series data. After that, 
we use the Getis-Ord method to analyze the time series data 
and to generate the G∗

i
 of the location (col, row). Finally, the 

G∗
i
 will be recorded as a cell value and saved to the output 

raster layer of the emerging hot spot patterns. This procedure 
was directly implemented by the Space Time Pattern Mining 
Tools in ArcGIS.

Fig. 2  The logical procedures of the thematic analysis
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Using the same logic, set the NDVI time series data as the 
input of the Mann–Kendall trend test model, and then use 
Eqs. (4, 5, 6, 7) to calculate the temporal trend and the statis-
tical significance, and save the data to the output raster layer 
of temporal trend. The procedure is programmed in Python 
script, and the whole basin is processed by traversal logic.

For the Pearson correlation coefficient, the precipitation 
data are organized to form a space–time cube like the NDVI 
data, and then the precipitation time series data of the loca-
tion (col, row) are extracted. Taking the NDVI time series 
data and the precipitation time series data as input, Eq. (8) 
is used to calculate the Pearson correlation coefficient ( r ) of 
the location. Finally, r will be recorded as a cell value and 
saved to the output raster layer of the Pearson correlation 
coefficient. The procedure is programmed in Python script, 
and the whole basin is processed by traversal logic.

Results and discussion

Spatial trend of NDVI

The mean and coefficient of variation (CV) of the NDVI 
series in the Jing River Basin were generated by calculat-
ing the arithmetic mean of each cell in the time series of 
NDVI raster, and the spatial distribution characteristics of 
the NDVI statistics in the basin are shown in Fig. 3.

The mean NDVI varies from 0.2699 to 0.8600 with an 
average of 0.5610, and shows a decreasing trend from south-
east to northwest. The two wings of the basin had the highest 
value of NDVI. The NDVI in the north loess hilly region is 
the lowest. The zone of NDVI lower than 0.5610 is mainly 
distributed in the upstream part divided by Guyuan, Kong-
tong, Xifeng, and Wuqi, which accounts for about 51.67% 
of the total area of the basin.

The CV of NDVI varies from 0.0727% to 7.7147% (aver-
age 1.2776%) and shows an increasing trend from southeast 
to northwest, which differs from the distribution of mean 
NDVI. As can be seen in Fig. 3b, there is a local aggrega-
tion of the high value of CV at the west of the basin nearby 
Guyuan and Kongtong, indicating the vegetation coverage 
there varies more strongly than other places in the basin.

Annual variation characteristics of basin mean NDVI

The annual variation of the NDVI in the Jing River Basin 
from 1998 to 2018 is shown in Fig. 4. The mean NDVI in 
the basin is 0.561, the minimum NDVI is 0.128 (2000), and 
the maximum NDVI is 0.92 (2012). The NDVI anomaly 
changed from negative to positive in 2010. The annual 
NDVI shows an upward linear trend with the R2 coefficient 
of 0.8363, indicating that the vegetation coverage in Jing 
River Basin has gradually increased in the past 20 years.

Fig. 3  Spatial distribution of NDVI statistics in the Jing River Basin; a mean of NDVI, b CV of NDVI
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Spatial patterns of NDVI emerging hot spots

Emerging hot spot analysis can reflect the aggregation pat-
tern and trend of vegetation coverage and low NDVI value 
aggregating as the cold spot of vegetation coverage, while 
high NDVI value aggregates as the hot spot of vegetation 
coverage. During a period, the hot spot or cold spot emerges 
or diminishes with the variation of vegetation coverage. 
Using the emerging hot spot analysis tool, the time series of 
NDVI data was analyzed, and the spatial patterns of emerg-
ing hot spots of NDVI are depicted in Fig. 5. The NDVI 
statistics of each hot spot pattern and cold spot pattern are 
shown in Table 2.

At the upstream of the basin, the primary spatial pat-
tern is diminishing cold spot, indicating that this region 
has been a statistically significant cold spot of vegetation 

Fig. 4  The change curve of NDVI in the Jing River Basin, a annual NDVI and trend, b NDVI anomaly

Fig. 5  Emerging hot spot patterns of NDVI in the Jing River Basin, a hot spot patterns, b hot spot trends

Table 2  The NDVI statistics of hot spot pattern and cold spot pattern 
in the Jing River Basin

Pattern NDVI

MIN MAX Mean STD

New hot spot 0.3539 0.6485 0.5026 0.0800
Consecutive hot spot 0.5262 0.7901 0.6664 0.0777
Intensifying hot spot 0.6507 0.8493 0.7562 0.0580
Persistent hot spot 0.6464 0.7855 0.7155 0.0357
Diminishing hot spot 0.5864 0.7771 0.6910 0.0496
Sporadic hot spot 0.5478 0.7879 0.6748 0.0695
Oscillating hot spot 0.4436 0.7270 0.5887 0.0800
Persistent cold spot 0.2206 0.4766 0.3187 0.0634
Diminishing cold spot 0.2509 0.5525 0.3822 0.0719
No pattern detected 0.3463 0.6556 0.4805 0.0863
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coverage for more than 18 years during the whole period, 
including the year 2018. The intensity of clustering low 
vegetation coverage in each year is decreasing overall 
and the decrease is statistically significant. This region 
accounts for 18.41% of the total area of the basin. In addi-
tion, two small persistent cold spots are observed, which 
have statistically significant low value aggregation of veg-
etation coverage for 18 years with no discernible trend 
showing increase or decrease in the clustering intensity 
of vegetation coverage over time.

In the mid-upstream of the basin, there is a strip between 
Huanxian and Xifeng that shows no obvious pattern of hot or 
cold spot, indicating that in this region no obvious aggrega-
tion pattern or trends of vegetation coverage were observed 
in these two decades. This strip accounts for 16.36% of the 
total area of the basin.

At the central part of the mid-downstream of the basin, 
from Xifeng to Qindu, large scope of oscillating hot spot is 
observed, representing the vegetation coverage at this region 
is high in 2018, but also has a history of low coverage during 
a prior period, and the period of high vegetation coverage is 
less than 18 years during the last two decades. This pattern 
of vegetation coverage trend reaches 44.70% of the total area 
of the basin.

The intensifying hot spot mainly distributes at the west 
and east wing of the basin, indicating that the vegetation 
coverage in these regions keeps high for more than 18 years 
during the period including 2018 and has a significant 

increasing trend in each year. The percentage of this pattern 
in the basin is 14.57%.

In addition, the proportions of the consecutive hot spot, 
the sporadic hot spot, the persistent hot spot, the diminish-
ing hot spot, and the new hot spot in the basin are 3.00%, 
1.87%, 0.47%, 0.27%, 0.22%, and 0.11%, respectively. The 
new cold spot, the consecutive cold spot, the intensifying 
cold spot, the sporadic cold spot, the oscillating cold spot, 
and the historical cold spot are not observed in the basin. 
The highest mean NDVI is observed in the intensifying hot 
spot region, while the lowest mean NDVI is observed in the 
persistent cold spot.

As can be seen from Fig. 5b, almost the entire basin has 
a statistically significant upward trend in the aggregation 
of high NDVI values, indicating that vegetation coverage 
generally increased during this period, whether in hot spots 
or cold spots.

Temporal trend of NDVI

As presented in the foregoing, the NDVI in the basin has 
obvious spatial differences and temporal trends. The time 
series data of the NDVI in the Jing River Basin from 1998 
to 2018 are analyzed using the Mann–Kendall test. Figure 6 
depicts the spatial distribution of NDVI changing trends and 
statistical significance.

As shown in Fig. 6a, the variation rate of NDVI in the 
Jing River Basin is from − 0.0171 to 0.0185 per year, and 

Fig. 6  Spatial distribution of the NDVI temporal trends. a Trend of NDVI, b significance of trends
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the average variation rate is 0.0095 per year. There is no 
obvious spatial trend of variation rate shown in the basin. 
However, the distributions of high variation rate are consist-
ent with the distributions of high CV of NDVI. The largest 
increase is found at Guyuan and Kongtong, and a decreasing 
trend is found at Qindu.

As can be seen from Fig. 6b, the trend of NDVI shows the 
significance of P < 0.05 and P < 0.01 at most of the basin, 
indicating that the increasing trend of vegetation coverage 
is significant.

The NDVI temporal trend statistics of each hot spot pat-
tern and cold spot pattern are shown in Table 3. Among all 
patterns in the basin, only the diminishing hot spot has a 
negative mean trend of − 0.0046; however, it just accounts 
for 0.22% of the basin and will not impact the general 
increasing trend of the vegetation coverage. The government 
may need to pay more attention to the oscillating hot spot 
region and the no pattern detected region. The area of these 
two regions covers more than 60% of the basin. In these 
two regions, the downward trend is stronger or weaker than 

the upward trend alternately, implying that the environment 
may be unstable and would evolve in an uncertain direction.

Relationships between NDVI and climate 
and anthropological activities

According to previous similar study results, the NDVI is 
mainly affected by climate and anthropological activities 
(Zhang et al. 2018b; Jin et al. 2021).

Climate change

The relationship between the NDVI time series and the 
precipitation time series was analyzed using the Pearson 
correlation coefficient. Under the premise of ignoring spa-
tial heterogeneity, Fig. 7 illustrates the general relationship 
between the regional annual NDVI and the regional annual 
precipitation of the entire basin. As can be seen in Fig. 7a, 
the change curves of the NDVI and the precipitation show a 
similar shape and trend, indicating the potential correlation 
between the two factors. In Fig. 7b, the upward linear trend 
with the Pearson correlation coefficient of 0.46 between the 
NDVI and the precipitation indicates that the NDVI is gener-
ally controlled by the precipitation.

The mean and coefficient of variation (CV) of the precipi-
tation series in the Jing River Basin were generated by cal-
culating the arithmetic mean of each cell in the time series 
of annual precipitation raster, and the spatial distribution 
characteristics of the precipitation statistics in the basin are 
shown in Fig. 8.

The mean precipitation varies from 327.2 to 604.5 mm 
with an average of 512.4 mm and shows a decreasing trend 
from southeast to northwest. The two wings of the basin had 
the highest value of precipitation. The precipitation in the 
north loess hilly region is the lowest.

The CV of precipitation varies from 16.1480 to 25.8485% 
(average 19.6119) and shows an increasing trend from 

Table 3  The NDVI temporal trend statistics of hot spot pattern and 
cold spot pattern in the Jing River Basin

Pattern MIN MAX Range Mean STD

New hot spot 0.0101 0.0117 0.0015 0.0110 0.0007
Consecutive hot spot 0.0007 0.0169 0.0162 0.0111 0.0029
Intensifying hot spot − 0.0015 0.0185 0.0200 0.0085 0.0032
Persistent hot spot − 0.0053 0.0054 0.0107 0.0011 0.0028
Diminishing hot spot − 0.0095 0.0023 0.0118 -0.0046 0.0041
Sporadic hot spot 0.0007 0.0143 0.0137 0.0097 0.0027
Oscillating hot spot − 0.0024 0.0184 0.0208 0.0108 0.0026
Persistent cold spot 0.0029 0.0053 0.0024 0.0042 0.0006
Diminishing cold spot 0.0017 0.0115 0.0098 0.0066 0.0019
No pattern detected − 0.0171 0.0171 0.0342 0.0103 0.0031

Fig. 7  The relationship between the NDVI and the precipitation in the Jing River Basin, a Change curve of the NDVI and the precipitation, a 
annual NDVI and trend b Pearson correlation coefficient
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southeast to northwest. As can be seen in Fig. 8b, a high 
CV is mainly observed at the north loess hilly region. There 
is a local aggregation of the high value of CV at Huanxian 
and the surrounding area, indicating the annual precipitation 
there varies more strongly than other places in the basin.

The time series data of the precipitation in the Jing River 
Basin from 1998 to 2018 are analyzed using the Mann–Ken-
dall test. Figure 9 depicts the spatial distribution of precipi-
tation changing trends and statistical significance.

As shown in Fig. 9a, the variation rate of precipitation in 
the Jing River Basin varies from − 0.2222 to 3.0745 mm per 
year and the average variation rate is 2.0326 mm per year. A 
lower variation rate is mainly observed at the two wings of 
the basin. The largest increasing trend is found at the north 
loess hilly region.

As can be seen from Fig. 9b, the trend of precipitation 
shows the significance of P < 0.1 and P < 0.05 at the north 
loess hilly region, indicating that the increasing trend of pre-
cipitation is significant there.

To study the spatial heterogeneity of the relationship, the 
spatial distribution of Pearson correlation was generated 
using the thematic analysis method introduced previously. 
As shown in Fig. 10, the Pearson correlation coefficient var-
ies from − 0.1121 to 0.8077 with an average of 0.3863. A 
positive correlation was mainly observed upstream of the 
basin. In the Loess Plateau, the lower the NDVI, the larger 
is the correlation between NDVI and precipitation, reveal-
ing that the growth of vegetation in this region is more 

dependent on the water supply from the precipitation. At 
the mid and downstream of the basin, the strength of the 
association is weak, showing that climate change may have 
limited impacts on the vegetation coverage there during the 
period. The statistical confidence data signify that the cor-
relation analysis results are statistically significant at the mid 
and upstream basin, but uncertain at part of the downstream 
basin.

Figure 11 illustrates the relationship between the NDVI 
and the precipitation at several typical stations. The upward 
trends are shown at Huanxian, Liupanshan, and Kongtong, 
with a medium positive correlation. The downward trends 
are shown at Xifeng and Changwu; however, the strength of 
association is very weak.

Anthropological activities

Land use and land cover change are the predominant anthro-
pological activities that will change the vegetation coverage. 
Using satellite images, major land use and land cover change 
can be observed on a large scope. As shown in Fig. 12, the 
land cover change, that is, the increase of the green patches 
can be found during the period of 2000–2020. In the image 
of 2010, the land cover area is obviously greater than that 
of 2000, indicating the increase of vegetation coverage is 
significant during the period, while the difference in land 
cover area between 2010 and 2020 is difficult to differentiate. 

Fig. 8  Spatial distribution of precipitation statistics in the Jing River Basin. a Mean of precipitation, b CV of precipitation
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Therefore, the land use and land cover data of the basin are 
used to analyze the changing pattern.

Cultivated land, forest, grassland, and shrub are four 
major land covers that can reflect the regional vegetation 
coverage. Figure 13 demonstrates the four major land cover 
transitions that happened in the basin from 2000 to 2020. 
The statistics of land cover transition are shown in Table 4.

Forest and shrubland mainly transited at the downstream 
of the basin and cultivated land mainly transited at the 
upstream of the basin, while grassland mainly transited at 
the mid and the upstream of the basin. During the period 
of 2000 to 2020, forest and shrubland increased 0.46% and 
0.31%, respectively. Cultivated land and grassland decreased 
1.04% and 0.87%, respectively.

Fig. 9  Spatial distribution of the precipitation temporal trends. a Trend of precipitation, b significance of trends

Fig. 10  Spatial distribution of Pearson correlation analysis results in the Jing River Basin, a Pearson correlation coefficient, b strength of the 
association, c statistical confidence
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As shown in Fig. 14, the primary mixed land cover pat-
terns in diminishing hot spot, no pattern detected region, 
oscillating hot spot, intensifying hot spot are grassland–culti-
vated land, cultivated land–grassland, cultivated land–grass-
land–forest, forest–cultivated land–grassland, respectively. 
These transition patterns and the primary mixed land cover 
patterns can explain the spatiotemporal trend of NDVI ana-
lyzed previously.

On the views above, the change characteristics and evolv-
ing path of NDVI in the Jing River Basin are clear and obvi-
ous. According to previous studies, the vegetation change 
has improved the soil and water conservation situation. 
Moreover, the increased vegetation, especially the forest, 
has a positive effect on promoting the capacity of carbon 
sequestration and oxygen release (Paustian 2014; Wang et al. 

2016). However, it has also impacted the runoff of the Jing 
River and caused water utilization conflict in agricultural 
development (Zhang et al. 2021). The increased vegetation 
also consumes more water than before, causing soil mois-
ture loss and the drop in the water table, which affects the 
growth of some bushs and juvenile trees. Therefore, it is 
better for the government to strengthen the monitoring of 
the environment and the ecosystem from a global view, bal-
ance the relationship between social development the natural 
resource management, and ensure the achievement of sus-
tainable development goals.

Conclusions

(1) The spatial distribution characteristics of NDVI indi-
cate that the NDVI in Jing River Basin shows a spatial 
trend of decreasing from northwest to southeast. The 
two wings of the basin had the highest value of NDVI. 
The NDVI in the north loess hilly region is the lowest.

(2) The emerging hot spot analysis results show that dimin-
ishing cold spot, oscillating hot spot, and intensifying 
hot spot are predominant patterns in the basin. The 
region of no pattern detected also covers a large area 
of the mid and upstream. The whole basin shows a sta-
tistically significant upward trend of high-value aggre-
gation of NDVI, indicating that irrespective of being 
hot spots or cold spots, the vegetation coverage in these 
regions has increased overall during the period.

(3) The temporal trend of NDVI in the basin varies from 
− 0.0171 to 0.0185 per year, and the average varia-
tion rate is 0.0095 per year. No obvious spatial trend of 

Fig. 11  The relationship between the NDVI and the precipitation at 
typical stations in the Jing River Basin

Fig. 12  The satellite images of the Jing River Basin from 2000 to 2020
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variation rate was observed in the basin. The increasing 
trend of vegetation coverage in the basin is statistically 
significant.

(4) The positive correlation between the NDVI and the pre-
cipitation is mainly observed upstream of the basin. In 
the Loess Plateau, the lower the NDVI, the larger is the 
correlation between NDVI and precipitation, revealing 
that the growth of vegetation in this region is more 
dependent on the water supply from the precipitation. 
At the mid and downstream of the basin, the strength 
of the association is weak, showing that climate change 
may have limited impacts on the vegetation coverage 
there during the period.

(5) Anthropological activities have been changing the 
land cover patterns in the Jing River Basin. During 
the period of 2000–2020, forest and shrubland have 
increased 0.46 % and 0.31 %, respectively. Cultivated 
land and grassland have decreased 1.04 % and 0.87 %, 
respectively. Land cover transition patterns and the 
land cover patterns also impact the spatial and temporal 
trends of the vegetation coverage in the basin.

Fig. 13  Land cover transition in the Jing River Basin from 2000 to 
2020

Table 4  Land cover transition 
statistics of the Jing River Basin

Category in 2000 Category proportion (%) Total in 2000

Cultivated land Forest Grassland Shrubland Other

Cultivated land 43.68 0.51 2.29 0.07 1.50 48.05
Forest 0.36 14.23 1.28 0.15 0.02 16.04
Grassland 2.54 1.65 29.12 0.35 0.12 33.77
Shrubland 0.02 0.10 0.15 0.46 0.00 0.73
Other 0.42 0.01 0.06 0.00 0.91 1.40
Total in 2020 47.01 16.50 32.90 1.04 2.55 100.00

Fig. 14  Land cover proportions 
of hot spot patterns in the Jing 
River Basin
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