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Abstract
The main purpose of this study was to compare the performance of Support Vector Machines (SVM), Stochastic Gradient 
Descent (SGD), and Bayesian Logistic Regression (BLR) algorithms for landslide susceptibility modeling in the Yozidar-
Degaga region, Iran. Initially, a distribution map with 175 landslides and 175 non-landslide locations was prepared and 
the data were classified into a ratio of 80% and 20% for training and model validation, respectively. Based on Information 
Gain Ratio (IGR) technique, 13 derived factors from topographic data, land cover and rainfall were selected for modeling. 
Then, the SVM, SGD, and BLR algorithms were selected based on size of the data and required accuracy of the output, to 
learn and prepare landslide susceptibility maps. Statistical criteria were employed to evaluate the models for both training 
and validation datasets. Finally, the performance of these models was evaluated by the area under the receiver operating 
curve (AUC). The results showed that SVM algorithm (AUC = 0.920) performed better than SGD (AUC = 0.918) and BLR 
(AUC = 0.918) algorithms. Therefore, the SVM model can be suggested as a useful tool for better management of landslide-
affected areas in the study area. In this study, all three models (SVM, SGD and BLR) were implemented in WEKA 3.6.9 
software environment to prepare landslide susceptibility maps.

Keywords Spatial prediction · Shallow landslide · Bayesian logistic regression · Stochastic gradient descend · Support 
vector machine · Prediction accuracy · Risk management

Introduction

Landslide, as one of the most important types of mass 
movements, is the down-slope movement of a mass of soil, 
rock and debris which can be affected by gravity (Varnes 

1958). Numerous factors such as geological, morphological, 
hydrological conditions, topography of the region, climatic 
conditions, etc. cause slope instability and landslide occur-
rence, but only one factor causes the landslide to start. The 
factors that prepare the ground for a landslide and make the 
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slope vulnerable are intrinsic factors, and those that initiate 
a landslide are called trigger or stimulus factors (Turner and 
Shuster 1996).

According to the Emergency Events Database at Uni-
versité Catholique de Louvain (UCL)-CRED, from 2008 to 
2017 (OFDA/CRED 2018), landslides have caused 10,338 
deaths worldwide, with more than 3 million citizens affected 
and more than US$ 2.7 billion economic losses, also land-
slides caused by heavy rain killed 32 people in Ethiopia 
in May 2018 (Tiranti and Cremononi 2019). In addition, 
the Emergency Events Database reported that, landslides 
worldwide have caused 66,438 deaths and approximately 
10.8 billion U.S. dollars economic loss from 1900 to 2020 
(Guha-Sapir et al. 2020). In Iran, the Alpine–Himalayan 
seismic belt is mainly responsible for landslide occurrence 
so that it has been suffered about 12.7 billion $ economic 
loss from 4900 landslides only in 2007 (Farrokhnia et al. 
2011). In land use planning, economic, social, and envi-
ronmental parameters must be considered simultaneously 
(Bathrellos et al. 2012; Skilodimou et al. 2019). Therefore, 
it is necessary to use a proper strategy to reduce the dam-
ages caused by landslides, starting with the identification 
of areas prone to landslides such as landslide susceptibil-
ity mapping (LSM). LSM is the first step for assessing the 
risk and controlling landslides, which are useful in landslide 
hazard assessment (Anbalagan et al. 2015; Shadman Rood-
poshti et al. 2016). In this way, the land surface is divided 
into separate areas and ranked based on the actual degree 
or potential risk of landslides on slopes (Yalcin 2008). An 
accurate LSM can recognize the susceptible and high-risk 
areas, to be used by managers to reduce damages by provid-
ing solutions and controlling methods.

The methods that have been used and suggested for the 
LSM are generally divided into quantitative and qualita-
tive methods. Qualitative models are thematic and typically 
use landslide inventory to detect areas prone to landslides 
with similar topographic, geological, and geomorphological 
features.

Some qualitative models such as the analytical hierarchi-
cal process (AHP) (Rozos et al. 2011; Zhang et al. 2016) 
are also considered as the expert-based approach, and might 
be called semi-quantitative models (Tamene et al. 2011). 
Quantitative statistical methods including probabilistic and 
definitive are based on mathematics and they are very use-
ful in predicting landslide event. Due to the need for accu-
rate geological data, the use of these models in large areas 
is difficult (Schilirò et al. 2016). Accordingly, data-driven 
machine learning and soft-computing methods are widely 
applied for landslide susceptibility assessment (Marjanović 
et al. 2011; Pham et al. 2019).

The most common quantitative statistical techniques and 
methods used in preparation of LSM are: statistical index 
(SI) (Pourghasemi et al. 2013a, b), logistic regression (LR) 

(Wang et al. 2015), certainty factor (CF) (Hong et al. 2017), 
bivariate statistical analysis (BSA) (Ayalew and Yamagi-
shi 2005), frequency ratio (FR) (Pradhan and Lee 2010), 
multivariate adaptive regression spline (MARS) (Felicísimo 
et al. 2013), index of entropy (IOE), multivariate regres-
sion (MR) (Akgün and Türk 2011), discriminant analysis 
(DA) (Dong et al. 2009), spatial multi-criteria evaluation 
(SME) (Nsengiyumva et  al. 2018), weight of evidence 
(WOE) (Kayastha et al. 2012), and evidential belief func-
tions (EBFs) (Pourghasemi and Kerle 2016).

Among the machine learning techniques that are a subset 
of artificial intelligence, the following ones are worth to be 
mentioned: (1) artificial neural network (ANN) (Nhu et al. 
2020b); (2) adaptive neuro-fuzzy inference (ANFIS) (Jaafari 
et al. 2019); (3) naive bayes (NB) (Tsangaratos and Ilia 
2016); (4) random forest (RF) (Nhu et al. 2020c); (5) radial 
basis function (RBF) (Wang et al. 2020); (6) support vec-
tor machine (SVM) (Huang and Zhao 2018; Kavzoglu et al. 
2014); (7) logistic model tree (LMT) (Chen et al. 2017); (8) 
random subspace (RS) (Pham et al. 2018; Tien Bui et al. 
2019b); (9) alternating decision tree (ADT) (Nhu et al. 
2020a); (10) reduced error pruning tree (REPT) (Tien Bui 
et al. 2019a); (11) bayesian logistic regression (BLR) (Das 
et al. 2012); (12) grey wolf optimizer (GWO) (Liao et al. 
2020); and (13) random gradient descent (RGD) (Hong et al. 
2020). There is no agreement among researchers to choose 
the best model (Pham et al. 2016) and each of the mentioned 
models has different disadvantages and advantages. Table 1 
shows advantages and disadvantages of models previously 
used for LSM.

To reach a satisfactory conclusion, Bui et  al. (2012) 
emphasized that a good model depends not only on the qual-
ity of the dataset but also on the structure of the selected 
model. Das et al. (2012) used the BLR model to map land-
slide-susceptible areas along the Himalayan roads in India. 
BLR results compared to LR show that BLR is better in esti-
mating parameters and especially in estimating uncertainty. 
Goetz et al. (2015) compared traditional statistical models 
with new statistical machine learning models for modeling 
landslide susceptibility in three areas of Austria. Lee et al. 
(2017) applied the SVM model for landslide susceptibility 
mapping in two study areas in Korea. The obtained results 
from SVM model showed that approximately 81.36% and 
77.49% in the PyeongChang and Inje areas, respectively, was 
predicted correctly. These results indicate that SVMs can 
be useful and effective for landslide susceptibility analysis. 
Chen et al. (2018a) used support vector machine (SVM) with 
four kernel functions (linear-SVM, polynomial-SVM, radial 
basic function-SVM, and sigmoidal-SVM), and entropy 
models in landslide susceptibility mapping, in Shangzhou 
District, China. The results indicated that the entropy model 
had the highest success rate (0.7610), followed by polyno-
mial-SVM (0.7526), the sigmoidal-SVM (0.7518), radial 
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basic function-SVM (0.7446), and linear-SVM (0.7390) 
models.

So far, different modeling techniques including Gener-
alized Logistic Regression (GLR), Generalized Increment 
Model (GAM), WOE, SVM, RF, and Analyzed Autono-
mous Decision Tree (BPLDA) have been used. Evalua-
tions showed that the BPLDA, RF, and WOE techniques 
resulted in more heterogeneous mapping and classifications 
and GLR, GAM, and SVM models led to more homoge-
nous mapping. Many models and methods have been used 
to prepare the landslide susceptibility mapping. However, 
there is an urgent need to use methods and techniques to 
increase the predictive accuracy of landslides in a regional 
scale. Accordingly, it is important to note that the results 
of machine learning algorithms vary from one region to 
another due to differences in conditioning factors. There-
fore, it is necessary to test machine learning algorithms in 
different regions, as well as to select and generalize the best 
model for each region based on their characteristics. Hence, 
we seek to determine the highest performance algorithm for 
identifying landslide-prone areas in the study area.

This study was conducted to introduce and evaluate the 
spatial predictions of landslides based on a comparison 
between the two functional-based algorithms and a Bayes-
based algorithm in the southwestern part of Kurdistan prov-
ince (Yozidar-Dagaga linking route). Among landslide stud-
ies, some researchers have claimed that SVM is a powerful 
and robust benchmark machine learning algorithm that often 
has a high goodness-of-fit and prediction accuracy than 
other machine learning algorithms (Kavzoglu et al. 2014; 
Nhu et al. 2020d). We believe that not only SVM can pre-
dict the landslide-susceptible areas with high potential but 
SGD has a high performance that can also be used as a soft-
computing benchmark algorithm in landslide susceptibility 
assessment worldwide.

Study area and landslide distribution map

The study area is the linking route of Kamyaran city to Mari-
van city which is located in northwest of Kamyaran city and 
southeast of Sarvabad city. It is located between 46° 21′ 12ʺ 
E to 46° 43′ 52ʺ E and 35° 06′ 03ʺ N to 35° 11′ 34ʺ N. The 
route, with a length of about 35 km, passes through the vil-
lages of Yozidar, Palangan, Tafin, Dahakan, Surah Tu, Kani 
Hosseinbag, Jrîje, Saroumal, and Dagaga. The maximum 
and minimum elevations of the study area are 2982 m (south 
of the area) and 758 m (northwest), respectively, indicating 
a height difference of 2224 m (Fig. 1).

Kurdistan province is divided into two parts including 
east, southeast and central areas (as eastern part), west and 
southwest areas (as the western part) based on topographic, 
geomorphological, geological, and climate characteristics. 

Shallow and deep-seated landslides of west Kurdistan are 
caused by the Arabian–Iranian plate convergence, and also 
by its location in the Zagros fold and thrust belt with intense 
faulting and fracturing. Hence, preparing accurate landslide 
susceptibility maps for this region is of high importance for 
the management of landslide-prone areas.

Based on climatic stations’ data inside and near the study 
area, the mean annual rainfall is 513 mm. Rainfall in the 
study area is controlled by the Atlantic Ocean, the Mediter-
ranean Sea, the Black Sea, and to a lesser extent the northern 
cold systems, of which the two Atlantic and Mediterranean 
precipitation systems have the greatest effect on rainfalls of 
the study area. Most of the rainfall is snow in winter and rain 
in spring. The minimum rainfall is in summer, which is due 
to the dominance of subtropical high-pressure system. The 
average annual temperature in the region is about 16.6 °C. 
The climate of the region is semi-arid based on the De Mar-
tonne index climatic classification. The study area, as a part 
of the Sirvan drainage basin, is geologically located in the 
Sanandaj-Sirjan zone, with the exception of its southwest, 
which is located in the High Zagros zone. The geological 
units of the area are: Paleozoic massive limestone; Cream-
colored biomicrosparite units (thick to bulk and alternating 
thin-layer limestone); shale units, lithic sandstone, crystal 
tuff and chert (which is due to the marine conditions after 
the Pyrenean orogenic phase) corresponding to the Late 
Cretaceous and Paleocene; Marl, sandstone and limestone 
units from the Oligo-Miocene; Flysch, sandstone, and con-
glomerate sediments belonging to the Cenozoic and the 
alluvial terraces of the Quaternary period. About 23% of 
the study area is underlain by the Cream-colored biomicro-
sparite units. In the thrust zone of Palangan, the Nagel series 
has been thrust over Ophiolite Mélange series. The trend of 
most of the faults of the region (NW–SE) is parallel to the 
Zagros orogenic elements. In terms of land use, the study 
area is mainly covered by rangelands, scattered oak forests, 
dry lands and gardens.

Overall, due to the topographical and geological condi-
tions (existence of landslide-susceptible formations such 
as marl and shale), active faults of the area (Zagros Main 
Recent Fault), abundant precipitation in the form of snow, 
unstable slopes and numerous geomorphological processes, 
the study area is among the landslide-prone areas of the 
Kurdistan province and the country. Furthermore, anthro-
pogenic factors have also contributed to the intensification of 
instability and mass movements (particularly in the unstable 
zones of the slope, caused by road construction on Kashtar 
to Yozidar route and the removal of slope bases).

Accurate determination of the location of landslides 
and the establishment of a spatial database are essential 
for future risk studies and assessment. The locations of 
landslides were identified by field surveys and checked on 
aerial photographs and satellite imageries. Analysis of these 
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sources showed that susceptible geological formations such 
as abundant calcareous and shale layers, incorrect construc-
tion of roads on slopes, changing land use especially in 
recent years as well as soil texture of the study area were the 
factors affecting the landslide occurrence. The field survey 
also indicated that most of landslides are rotational slides. 
A total of 175 landslides were identified, of which 123 were 
classified as training dataset and 52 as validation dataset. 
Along with the landslide dataset, 175 non-landslide loca-
tions were randomly selected in the places where landslides 
were not observed, especially on the flat areas as well as on 
slopes with hard lithology. Then, they were divided into the 
training and validation datasets similar to landslide datasets. 

Figure 2 shows some images of occurred landslides in the 
study area.

Methodology

Data preparation

Factors influencing mass movement process can be classi-
fied as: geological factors including weathered, sensitive or 
discontinuous material, contrast in permeability, composi-
tion of rock, soil forming slope material; geomorphological 
factors such as tectonic and volcanic uplift, fluvial or glacial 

Fig. 1  Geographical position of the study area
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erosion at toe of the slope or at lateral margins, subterra-
nean erosion, topography or geometry of the slope, gradient 
of slope; climatic factors such as heavy rainfall, freeze and 
thaw cycles; and anthropogenic factors such as, excavation 
at toe of the slope, deforestation, irrigation, mining and land 
use (Pradhan et al. 2019).

At first, landslides were recorded based on field observa-
tions as well as checking them through aerial photographs at 
1: 40,000 scale. Subsequently, their coordinates were identi-
fied by the global positioning system (GPS) and confirmed 
by the aerial photographs and satellite imageries. The first 
step in shallow landslide mapping in the study area is to 
convert vector layers into raster ones. Therefore, vector for-
mat layers were converted to the raster format ones with a 
resolution of 10 m by “resample” tool in ArcGIS 10.2 soft-
ware. Then, all landslide locations were overlapped on the 
converted layers and the geodatabase was finally prepared 
for modeling by the WEKA 3.6.9 software. The 1:25,000 
topographic maps, the 1:100,000 geological maps and the 
Landsat ETM + satellite imagery of 2018 were the main 
tools used in this study.

Twenty conditioning factors based on the literature review 
and data availability were identified (Fig. 3). Accordingly, 
the maps of slope angle (Fig. 3a), slope aspect (Fig. 3b), 
elevation (Fig.  3c), curvature (Fig.  3d), plan curvature 
(Fig. 3e), profile curvature (Fig. 3f), stream power index 
(SPI) (Fig. 3g), topographic wetness index (TWI) (Fig. 3h), 

slope length and steepness factor (LS) (Fig.  3i) were 
extracted from the digital elevation model (DEM) in Arc-
GIS 10.2. The land use map (Fig. 3j), and NDVI (Fig. 3k) 
were obtained from the Landsat ETM + satellite imagery. 
Lithology map (Fig. 3l), distance to faults (Fig. 3m), and 
fault density (Fig. 3n) were extracted from Kamyaran and 
Marivan geological maps at the scale of 1: 100,000. Rainfall 
map (Fig. 3o) was prepared based on the regression relation-
ship between elevation and mean long-term annual rainfall 
of inside and outside rain-gauges in the study area. Maps of 
distance to rivers (Fig. 3p), river density (Fig. 3q), distance 
to road network (Fig. 3r), and road density (Fig. 3s) were 
provided, respectively, based on distance from the river and 
distance from the road network of the study area. To deter-
mine soil texture, 30 soil samples were taken from different 
lithological units of the study area. Then, the percentages 
of clay, silt and sand were obtained by hydrometer method. 
Subsequently, the texture of the soil samples was determined 
by the soil textural triangle (Fig. 3t).

The curvature expresses the topographic shape such that 
the positive curvature represents the surface where the pix-
els are convex, and the negative ones denotes the surface 
at which the pixels are concave. Its zero value shows the 
surface with no slope and is straight/flat (Ohlmacher 2007). 
Profile curvature is a form of slope, defined as the curvature 
of a flow line formed by the intersection of the earth's surface 
with a vertical plane (Shirzadi et al. 2017). Plan curvature is 

Fig. 2  The images show a number of landslides in the study area
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Fig. 3  Landslide conditioning factors used in this study: a slope 
angle, b slope aspect, c elevation, d curvature, e plan curvature, f pro-
file curvature, g SPI, h TWI, i LS, j land use, k NDVI, l lithology, m 

distance to fault, n fault density, o rainfall, p distance to river, q river 
density, r distance to road, s road density, and t soil texture
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Fig. 3  (continued)
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defined as the line formed by the intersection of the earth's 
surface with a horizontal plane (Chen et al. 2018b). This 
factor influences the convergence and divergence of water 
and materials that form a landslide (Regmi et al. 2010). The 
combined slope length and steepness (LS-factor) is obtained 
from the mean LS value of the cells based on equation pro-
posed by Moore and Wilson (1992) as follows:

where As is the specific watershed area and b is the local 
slope angle in degrees. This index was developed based on 
the DEM in the SAGA software environment. The TWI 
is calculated as the ratio between the area of the specific 

(1)LS =

(
As

22.13

)0.4(
sin b

0.0896

)1.3

,

watershed and the slope angle (Wilson and Gallant 2000). 
This index is calculated based on the following formula 
(Beven and Kirkby 1979):

where α is cumulative upstream area of drainage at one 
point, and β is slope angle at a point of slope. This index 
indicates the spatial distribution of soil wetness or soil 
saturation.

The framework of methodology

The current study consists of the following steps (Fig. 4):

(2)TWI = Ln

(
�

tan �

)
,

Fig. 4  Methodology flowchart 
of the research
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Step 1: Preparing and selecting conditioning factors. Based 
on data availability and literature review, the twenty condition-
ing factors were selected.

Step 2: Preparing landslide distribution map. Based on 
field survey, aerial photographs and satellite imageries, 175 
landslide locations were recorded.

Step 3: Selecting landslide conditioning factors. Most 
effective factors for landslide modeling were selected based 
on information gain ratio technique.

Step 4: Modeling the process. In this step, machine learning 
models including SVM, SGD and BLR were used for landslide 
spatial prediction.

Step 5: Preparing of landslide susceptibility map. This step 
was conducted using output of machine learning models.

Step 6: Validation and comparison process. Susceptibility 
maps were validated based on statistical measures.

The most important factors: information gain ratio 
technique

There are several techniques for identifying the competence 
and predictability of variables affecting the occurrence of a 
phenomenon. One of the most important techniques is the 
Information Gain Ratio (IGR), which suggested by Quinlan 
(1993). The basis of IGR is information theory that, by reduc-
ing entropy, determines the importance of effective factors 
and is examined as a standard way to measure the ability of 
predicting factors affecting the occurrence of a data mining 
process (Bui et al. 2014). Higher values of IGR indicate its 
higher ability to be an effective measure in modeling. There-
fore, the IGR was employed to identify the prominent factors 
affecting the occurrence of shallow landslides.

If S is training dataset with an input sample of n
(
Li.S

)
 

belonging to the Li class (landslide, non-landslide). Then,

The information required to divide S into series (S1, S2, ⋯, 
Sn) as estimated below:

The IGR index is calculated for a given factor such A (e.g., 
slope angle) from the following equation:

where Split Info denotes the information produced by the 
S split into the m subset calculated from the following 
equation:

(3)info(s) = −

2∑

i=1

n
(
Li, S

)

|S|
log2

n
(
Li, S

)

|S|
.

(4)Info(S,A) =

m∑

j=1

Sj

|S|
Info(S).

(5)InformationGainRatio(S,A) =
Info(S) − Info(S,A)

SplitInfo(S,A)
,

Bayesian logistic regression

The Bayesian logistic regression (BLR) algorithm, first pro-
posed by Friedman et al. (1997), is recognized as an effec-
tive way of presenting knowledge affected by uncertainty 
(Pearl 2014). Parameter estimates in BLR are probabilistic 
estimates rather than point estimates and therefore Bayesian 
algorithms provide alternatives to conventional methods that 
facilitate uncertainty estimation methods and show higher 
accuracy of parameter estimation (Mila et al. 2003; Das et al. 
2012).

This algorithm is based on the Bayesian theory for graph-
ical and probabilistic expression of the correlation between 
variables (Marcot et al. 2006). The Bayes-based theory 
algorithm is used extensively for modeling complex systems 
(Song et al. 2012).

This algorithm is a combination of a Bayes-based theory 
and a logistic regression function to obtain the weight of 
each example of the training dataset based on the relations 
between dependent and independent variables (Nhu et al. 
2020d). In landslide modeling, first, a Bayesian function is 
constructed using a prior probability function based on the 
behavior and response of the conditioning factors (Nhu et al. 
2020d) in three phases including, (i) identifying the prior 
probability of parameters, (ii) identifying the likelihood 
function for data, and (iii) applying a posterior distribution 
function for parameters. Then, a logistic regression function 
is used to calculate the weights of posterior probability func-
tion for samples belonging to a specific class of landslides 
and non-landslides, as follows:

where xi are the landslide conditioning factors of 
training dataset, x , b is the prior log odds ratio 
( b = logP (landslide class label∕non - landslide class label ), 
and a is the bias of the model. The weights that are trained 
by the training dataset are w0 and wi and ith factors of land-
slide conditioning factors are used to calculate the f

(
xi
)
 

function using the prior log odds ratio ( b).

Support vector machine

The Support Vector Machine (SVM) is based on the princi-
ple of structural risk minimization and can be used to work 
with small sample datasets (Zhao and Zhou 2021). The SVM 

(6)SplitInfo = −
∑m

i=1

Sj

|S|
log2

|||Sj
|||

S
.

(7)

P
�
Class�x1, x2,… , xn

�
= 1

��
1 + exp

�
a+w0∗b+

n∑
i=1

wi∗f (xi)

��
,
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algorithm is based on the theory of statistical learning that the 
rate of the learning machine error for unclassified data can 
be considered as the generalized error rate (Xuegong 2000). 
These boundaries are a function of the set of training error 
rates that show the degree of complexity of the classifiers. 
There are two main ideas in SVM modeling to determine the 
type of statistical problems. The first is distinct optimal linear 
meta-schemes, which are discrete data patterns. The second 
idea is to use the core functions to transform the original non-
linear data patterns into a form that is a distinct line in a high-
dimensional space (Vapnik 1999). The explanatory details for 
SVM modeling in this study are as follows:

xi = (i = 1, 2,… , n) is a landslide training dataset that con-
sists of two classes (landslide (+ 1), and non-landslide (− 1)), 
and it is characterized by their maximum slot. This equation 
is mathematically expressed as follows:

which is subject to the limitation of Eq. (10):

where ∥ W2 ∥ is a rule of the normal meta-scheme with “1” 
being a numerical basis and “0” denoting the operation of 
numerical production, and its value is calculated using the 
method of Lagrange multipliers to define its function as 
follows:

where �i is a Lagrange multiplier and can be zero or non-
zero. Only datasets whose coefficients are non-zero are 
entered in the final equation and these datasets are known 
as support vectors (Schölkopf et al. 2000), and the core func-
tions are used in the SVM model.

Stochastic gradient descent (SGD)

The SGD is mainly applied for solving large-scale learning 
issues with a high excellence performance (Wang et al. 2015). 
An arbitrary input x (conditioning factor) and a scalable output 
y (landslide and non-landslide) constitute a sample of z (x, y). 
There is an h (y-y) function that measures the prediction cost 
of y when the real answer is y, and a function f (x) is chosen by 
a weight vector. Then, we look for the function f, which can 
minimize the coefficient D(z.�) = h(f� .(x).y).

where R(f) measures the generalization efficiency and Rn (f) 
measures the efficiency of the training dataset. The gradient 

(9)
1

2
= ‖W2‖,

(10)Yi =
((
w.xi

)
+ b

) ≥ 1,

(11)L =
1

2
(W(2−

n∑

i=1

�i(Yi
((
W.Xi

)
+ b

)
− 1),

(12)R(f ) = ∫ h
(
f�(x), y

)
dp(Z);Rn(f ) =

1

n

n∑

i=1

h
(
f�(x), y

)
,

descent is an optimization algorithm to find the minimum 
of a function. In this algorithm, work begins with a random 
point on the function and moves in the negative direction 
of the function gradient to reach the local/global minimum. 
The SGD algorithm is an extreme simplification without 
the Rn (f) slope (Wang et al. 2015). The advantage of this 
algorithm is that it does not need the storage of gradients 
and, therefore, in complex problems of machine learning 
such as neural network learning or structured prediction is 
more easily applicable (Johnson and Zhang 2013).

Validation of landslide modeling

Statistical criteria

In this study, for evaluation and comparison of modeling 
results, the Percentage of Correct Predictions test was made 
on data. A 2 × 2 matrix was used to derive the criteria. This 
matrix consists of four possibilities including; false nega-
tive (FN), true negative (TN), false positive (FP), and true 
positive (TP). TP is the factor of ratio of number of pixels 
correctly divided as landslides, FN is the number of pixels 
with landslides (1) that are classified mistakenly as pixels 
without landslides (0), TN is the number of pixels without 
landslides (0) that are classified correctly as pixels without 
landslides (0), FP is the number of pixels without landslides 
(0) that are classified mistakenly as pixels with landslide (1) 
(Tsangaratos and Benardos 2014). Finally, the best result 
of these four states is when the TP value is high and the 
FP value is low (Althuwaynee et al. 2014). Sensitivity, is 
the ratio of landslide pixels that are correctly classified as 
landslides (Bui et al. 2016). This criterion indicates how 
good the predictive power of the landslide model is to clas-
sify landslide pixels (Pham et al. 2016). Specificity is the 
ratio of non-landslide pixels that are correctly classified as 
non-landslide (Pham et al. 2016). This criterion indicates 
how good the predictive power of the landslide model is to 
classify pixels of non-landslide (Pham et al. 2016). Accu-
racy refers to the ratio of occurrence and non-occurrence 
of landslides pixels that are correctly classified (Bennett 
et al. 2013). This criterion indicates how good the model 
performance is (Pham et al. 2016). Root Mean Square Error 
(RMSE) shows how much error is in the data (Bennett 
et al. 2013). The lower the RMSE, the better the landslide 
model performance (Pham et al. 2016). The kappa coeffi-
cient assesses the pairwise agreement or reliability between 
two or more measures (Carletta 1996). Mean absolute error 
(MAE) is an error which shows the difference between the 
paired observations that have widely been used in evaluat-
ing the accuracy of an algorithm (Pham et al. 2016). All the 
mentioned evaluation measures used in this study have been 
formulated as follows:



Environmental Earth Sciences (2022) 81:51 

1 3

Page 13 of 21 51

where Pc is the proportion of observations in agreement and 
Pexp is the proportion in agreement due to chance, xpred.  and 
xact. are the predicted and actual (output) values and n is the 
total samples.

Receiver operating characteristic (ROC) curve

An important strategy to provide meaningful interpretation 
of the results of predictive models, is outcome validation 
(Pourghasemi et al. 2013a, b). The ROC curve is a graphi-
cal curve that the “1-specificiy” denotes the X-axis and the 
Y-axis is defined by the “sensitivity”. The percentage of the 
area under the ROC curve (AUC) is a quantitative indicator 
to determine the overall performance of the models (Shirzadi 
et al. 2017). The larger the AUC is, the better the model 
performance will be. The range of this index varies from 0.5 
(model with poor performance) to 1 (accurate performance 
of the model) (Bui et al. 2016).

The Friedman and Wilcoxon nonparametric tests

Friedman nonparametric test is also used to compare the 
performance of BLR, SVM and SGD methods. Nonpara-
metric methods do not require any statistical assumptions 
(Derrac et al. 2011). The Friedman test can be applied as a 
nonparametric test even if the data are normally distributed 
(Martínez-Álvarez et al. 2013). In this test, it is first assumed 
that there is no difference between the performances of two 
models. After using the p value index (hypothesis probabil-
ity), if the index is correct (< 5%), the hypothesis is rejected, 
and if the p value index is incorrect (> 5%), the hypothesis 
is confirmed. It should be noted that in comparing between 

(13)Sensitivity =
TP

TP + FN

(14)Specif icity =
TN

TN + FP

(15)Accuracy =
TP + TN

TP + TN + FP + FN

(16)Kappa =
Pc − Pexp

1 − Pexp

(17)MAE =
1

n

n∑

i=1

|||xpred. − xact.
|||

(18)RMSE =

�∑n

i=1
(Xpred. − Xact.)

2

n
,

the two or more models, if the p value in the Friedman test is 
true for all models (> 5%), the obtained results are not usable 
for comparing the models (Bui et al. 2015). To solve this 
problem, Wilcoxon nonparametric test is used to systemati-
cally investigate statistically significant differences between 
the two or more models.

Results and discussion

Determining the most important factors

The IGR technique was employed to identify the most 
important factors affecting the occurrence of shallow land-
slides in the study area. Figure 5 shows the ranking waterfall 
chart of the IGR index for 20 selected landslides condition-
ing factors in the study area. Accordingly, the highest val-
ues of the IGR index were allocated to distance to road, 
lithology, and road density, respectively. The factors of SPI, 
curvature, profile curvature, plan curvature, river density, 
distance to river, and LS, due to assigning zero value to this 
index, were excluded from the final modeling and modeling 
was performed with thirteen remaining factors.

Preparing shallow landslide susceptibility maps

According to the research methodology, shallow landslide 
susceptibility maps were prepared based on BLR, SVM, and 
SGD algorithms using quantile, natural breaks and geometri-
cal interval methods in ArcGIS 10.2 environment. Finally, 
based on the landslide frequency histogram in each suscep-
tibility class of these maps, the best method was selected. 
The results showed that natural breaks method was the best 
method and accordingly, all landslide susceptibility maps 
were classified into the five classes: very low susceptibil-
ity (VLS), low susceptibility (LS), moderate susceptibility 
(MS), high susceptibility (HS), and very high susceptibility 
(VHS). Figure 6 shows these maps for the BLR, SVM and 
SGD algorithms, respectively. The results of the SVM model 
showed that about 7.22% of the area was very susceptible to 
landslide; however, these rates in the BLR and SGD models 
were 20.61% and 18.77%, respectively.

Model validation and comparison

Table 2 shows the results of modeling evaluation using 
SVM, BLR, and SGD to check the goodness-of-fit/perfor-
mance and prediction accuracy by the training and valida-
tion datasets, respectively. The results of goodness-of-fit 
or performance based on training dataset showed that the 
SGD and SVM (89%) algorithms had the highest sensitiv-
ity, followed by BLR (86%) algorithm. In terms of specific-
ity, results indicated that the SVM with a value of 86% had 
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higher performance than the SGD (84%) and BLR (81%) 
models. Moreover, the accuracy of the SVM was higher 
(87.8%) compared to the SGD (87%) and BLR (83.7%) 
algorithms. Moreover, the accuracy of the SVM was higher 
(90%) compared to the SGD (88%) and BLR (84%) algo-
rithms. However, results of prediction accuracy of the 
algorithms by the validation dataset revealed that the SVM 
algorithm had higher prediction accuracy than the SGD and 
BLR algorithms. Overall, although the SGD and BLR mod-
els performed well, but the SVM model performed better.

Accuracy assessment of landslide susceptibility 
maps of the study area

Figure  7 shows the ROC curve based on the training 
(Fig. 7a) and validation (Fig. 7b) datasets. Results showed 
that the AUC value in the SVM method was 0.950, indicat-
ing that this method was capable of predicting landslide-
susceptible areas, with a predictability of 95%, while the 
SGD and BLR methods had the predictability of 95.2% 
and 93.9%, respectively. However, for the validation data-
set, the areas under the ROC curve in the SVM, SGD, and 
BLR algorithms were 0.920, 0.918 and 0.890, respectively. 
Although the results showed the excellent performance for 
all the three algorithms, the SVM algorithm had the highest 
ability in landslide classification and susceptibility mapping 
in the study area. In addition to the area under the ROC 
curve, landslide density index was also used to check the 
capability of landslide models in spatial predicting. Results 
pointed out that from VLS to HS classes, this index is added, 
indicated that the areas of high susceptibility had a higher 
incidence of landslides.

Figure 8 shows the landslide density in susceptibility 
classes of SVM, SGD, and BLR algorithms. Results illus-
trated that, in all the three algorithms, the landslide density 
was increased with increasing susceptibility to landslides, 

and hence obtained prediction accuracies by the algorithms 
were confirmed.

The Friedman and Wilcoxon nonparametric tests

The results obtained from the Friedman test are presented 
in Table 3. The average rankings of SVM, SGD, and BLR 
were 2.06, 3.19, and 3.39, respectively. Since the statistical 
significance (Sig.) was less than 5% (0.000) among all three 
models, the null hypothesis was rejected, which indicates 
that there is a significant difference between the algorithms. 
The results of the Wilcoxon signed-rank test are given in 
Table 4. These results showed that there was a significant 
difference between the algorithms at 5% level of statisti-
cal significance (p value < 0.05). The Wilcoxon signed-rank 
test was used to examine the statistical significance of the 
three landslide algorithms. In this test, there is a comparison 
between the two algorithms at 5% significance level. P value 
and z value are used to statistically evaluate the landslide 
susceptibility maps. The null hypothesis was rejected, as 
the P value was less than 0.05 and the z value exceeded the 
threshold value of z (− 1.96 and + 1.96), implied that the 
performance of the three models were significantly different.

The results of factor analysis using IGR showed that seven 
factors including SPI, curvature, plan curvature, profile cur-
vature, river density, distance to river, and LS indices had 
zero values and no effect on landslides, and therefore, they 
were excluded from the final modeling. Moreover, distance 
to road, lithology and road density had the highest effects on 
the occurrence of landslides. This might due to the presence 
of landslide-susceptible formations such as marl and shale, 
along with improper human policies such as road construc-
tion. Improper cutting of the heel of the slopes during the 
construction of roads causes more opportunity for water to 
penetrate into the sensitive soil formations and by saturating 
these soils under the force of gravity on the slopes (slope 

Fig. 5  The ranking waterfall 
chart for IGR values to show 
the importance of conditioning 
factors
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factor) these landslides occur in the study area. Saturation 
of soil under the gravity force on the slopes could facilitate 
the landslide occurrence in the study area. This is consistent 
with the results of Pham et al. (2017) and Pham et al. (2016) 
in terms of greater impact of the road factor than other 

factors affecting the occurrence of landslides. Landslide sus-
ceptibility assessment is one of the most important issues in 
recent decades, due to the identification of susceptible areas 
that can be used in decision-making related to land use plan-
ning and landslide hazard assessment. Different methods of 

Fig. 6  Landslide susceptibility maps in the study area a SVM, b SGD, and c BLR
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landslide susceptibility mapping have been suggested by dif-
ferent researchers. However, the prediction accuracy of these 
methods is still controversial around the world.

Observation of the LSMs based on BLR, SVM and 
SGD algorithms showed that most landslides occurred in 
areas with steep slopes. Also, areas with steep slopes and 
rocky material are less sensitive to landslides, and finally 
low slopes, which have limited areas due to the mountain-
ous nature of the region, have a much lower sensitivity to 
landslides. Accordingly, areas with high landslide sensitivity 
coincide with the middle sections of slopes cut by road con-
struction. Also, the existence of lithological units susceptible 
to landslides (i.e., marl and shale) in the middle parts of the 
slopes played an important role in landslide incidence in 
these areas. The presence of landslide-sensitive formations 
in this part, including marl and shale, plays the role of rup-
ture surface for saturated topsoil and causes the upper layers 

to slip. The upper and the higher altitudes of the area are less 
susceptible to landslides due to the presence of crystalline 
and basaltic units. In the case of land vegetation, landslides 
mostly occurred in dry lands that were formerly semi-dense 
and grassland forests, indicating the impact of forest degra-
dation and land use change on landslides.

The results of this study showed that in addition to the 
above parameters, geomorphological forms and processes 
also played an important role in the occurrence of landslides 
in the study area. High drainage densities, especially in erod-
ible formations such as marl and shale, have led to the crea-
tion of river channels with steep walls, resulted in landslide 
incidence. Also, the presence of many fractures and faults 
with different aspects played an important role in the infil-
tration of water and intensification of weathering of rocks 
and sediments and has finally accelerated the occurrence of 
landslides.

Table 2  Performance and 
prediction accuracy of the 
algorithms by training and 
validation datasets

Index Training dataset Validation dataset

SVM SGD BLR SVM SGD BLR

True positive (TP) 110 110 106 46 46 42
True negative (TN) 106 104 100 44 44 45
False positive (FP) 17 19 23 8 8 7
False negative (FN) 13 13 17 6 6 10
Sensitivity (%) 0.894 0.894 0.862 0.885 0.885 0.808
Specificity (%) 0.862 0.846 0.813 0.846 0.846 0.865
Accuracy (%) 0.878 0.870 0.837 0.865 0.865 0.837
Kappa 0.756 0.739 0.675 0.731 0.730 0.675
MAE 0.206 0.207 0.162 0.207 0.134 0.164
RMSE 0.320 0.322 0.403 0.322 0.367 0.404

Fig. 7  ROC curve for training a and validation b datasets
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Kappa, TP, specificity, sensitivity, accuracy, and chi-
squared statistical measures were used to evaluate the 
models for both the training and the validation datasets. 
Finally, the performance of these three models was evalu-
ated through the AUC. Model validation results indicated 
that SVM model with sub-curve level of 0.920 showed 
better performance than SGD (AUC = 0.918) and BLR 
(AUC = 0.890) with minor differences. Nevertheless, the 
results showed that the performance and prediction accu-
racy of all three algorithms were validated and confirmed. 
Also, the performance of these three models was evaluated 
by the Friedman and Wilcoxon tests and it was found that 
there was no significant difference at 95% level between the 
results of these three models. Eventually, the results of the 
three models can be trusted to identify areas susceptible to 
landslide incidence in the study area.

Conclusions

In this study, the performance of BLR, SVM and SGD algo-
rithms in order to map landslide susceptibility in Yuzidar-
Degaga rout in Kurdistan province was compared. A total of 
175 landslides were identified and 20 conditioning factors 
were employed. Based on the IGR method which was used 
to show the order and importance of the conditioning factors 
on landslide occurrence, curvature, plan curvature, profile 
curvature, SPI, LS, distance to river and river density fac-
tors were removed from the final modeling process, because 
they had not positive roles on landslide occurrence, whereas 
distance to roads and lithology were the most important 
factors in landslide modeling. The values obtained from all 
three algorithms, both in the training and validation datasets, 
indicated that all three models were confirmed in terms of 
accuracy and modeling but the SVM model had the highest 
capability to predict landslide incidence. Finally, the study 
area was classified into five susceptibility zone. One of the 
reasons for the success of SVM model based on comparison 
of results was the strong theoretical assumptions associated 
with nonlinear algorithm and the ability to obtain parameter 
values, which made this model superior to others. Also, the 
results revealed that landslide density increased from VLS 
classes to VHS. This implied that areas of high susceptibil-
ity had a higher incidence of landslides, and the obtained 
maps corresponded well with areas where landslides had 
occurred. Given the high effect of the roads in this model, 
it is suggested that the priority of landslide prevention and 
control measures should be paid attention to reduce the 
effect of road construction in the study area. In addition, 
if the road development operation is planned in the future, 
this operation must be carried out in strict compliance with 
the principles of road construction and the stability of the 
slopes. The proposed landslide sensitivity map can be useful 
for selecting appropriate management measures and deci-
sions in land use planning, identifying hazard points and 

Fig. 8  Bar graphs showing 
landslide densities in suscepti-
bility classes of SVM, SGD and 
BLR algorithms

Table 3  Mean ranks of landslide susceptibility algorithms using 
Friedman test

Algorithm Mean ranks Chi-square Sig

SVM 2.06 900.868 0.000
SGD 3.19
BLR 3.39

Table 4  Pairwise comparison of the three algorithms using Wilcoxon 
signed-rank test

NPD Number of positive differences; NND Number of negative dif-
ferences; Sig. Statistical significance

Pairwise comparison NPD NND Z value P value Sig

SVM. Vs. SGD 431 113 − 18.071 0.000 Yes
SVM. Vs. BLR 538 6 − 20.151 0.000 Yes
SGD. Vs. BLR 243 301 −4.925 0.000 Yes
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preventing damage related to landslide risk. Also, to mini-
mize the effects of landslides, these results can be used in 
early warning system strategies, in addition to slope stabil-
ity models in the Zagros region. The results can be used to 
assess landslide risk in areas with similar environments and 
to help improve landslide susceptibility maps.
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