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Abstract
The deficiency of freshwater has become a global issue in the recent era, especially in water-scarce hard rock region including 
India. Groundwater (GW) as a natural resource is decreasing at an alarming rate in West Bengal, India. Sustainable use and 
planning for better management of groundwater resources are essential; thus, spatial modelling of GW distribution requires 
proper assessment to conserve and manage the groundwater resource. Machine learning algorithms in RS-GIS environment 
plays a crucial role in exploration, assessing, monitoring and conserving groundwater resource in this regard. Logistic regres-
sion (LR), support vector machine (SVM) and random forest (RF) were used to develop groundwater potential zone (GWPZ) 
of water-stressed district Purulia with the help of 10 GW controlling factors including geology, geomorphology, lineament 
density, slope, soil texture, drainage density, GW level, rainfall, NDVI and NDWI. Multi-collinearity analysis was also used 
to eliminate collinearity issues among all controlling factors. In this study, the total area has been divided into five groups 
under the very low, low, moderate, high and very high groundwater potential zone categories. It has been calculated that 
most of the area has moderate groundwater potentiality, which is 29% of the total regions. About 8%, 19%, 25% and 18% of 
the study area fall under the very low, low, high and very high zones. Finally, all the adopted models were validated through 
ROC–AUC using GW depth data from CGGB and 484 validating point datasets in this area. The AUC values of adopted 
LR, SVM and RF models are 0.801, 0.849 and 0.878, respectively; implies that RF is a more reliable algorithm with better 
predictive ability than other models in the study area. This study's findings will help decision-makers take proper strategies 
and planning of groundwater resource management for this particular water-scare hard rock region.
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Introduction

Water is one of the essential constituents for sustaining all 
forms of life among all renewable resources on earth, which 
exists in three forms, i.e., solid, liquid and gaseous states. It 
is a unique gift to mortality from nature, and it is tough to 
de-pollute, expensive to transport, and impossible to sub-
stitute its most uses (Kumar et al. 2005). Three fourth area 
of the earth's surface is covered with water, out of which 
the ocean holds about 96.54% that, importantly saline in 
nature, only 2.8% is available as freshwater (USGS). Over 

time, these available water sources are also decreasing at 
an alarming rate due to the rapid increase of water demand 
resulting in an increasing number of water-scarce regions. 
It derives the most significant challenge of supplying ade-
quate water to meet social needs (Ayob and Rahmat 2017). 
According to (McDonald and Mitchell 2019), worldwide 
remarkable dropping of freshwater availability put several 
countries to suffer from water scarcity. Water scarcity is now 
a global issue; significant numbers of people live in severe 
water-scarce regions. (Seckler et al. 1999) was estimated that 
several regions of developing countries, having one-third 
of the total population, will experience severe water scar-
city in the near future. Out of 2.8% freshwater, only 0.76% 
is available as fresh groundwater (GW), stored beneath the 
earth's surface through GW recharge (USGS). Water infiltra-
tion from unsaturated zone to saturated zone is identified as 
GW recharge (Yeh et al. 2016); usually formed by entry of 
rain and snow melts into underlying rock structure through 
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soil (Nampak et al. 2014).It is a prime source of fresh water 
in many parts of the world and is essential for human well 
beings.

As a dynamic and essential renewable natural resource, 
GW has a crucial role in global climate change and satisfy-
ing human needs (Chatterjee et al. 2010; Duan et al. 2016). 
Seckler et al. (1999) exposed that about 30% of freshwater 
resources are regarded as GW resources, the second most 
abundant freshwater resource of the globe. It is the only 
available water free from pollution due to no direct contact 
with the earth's surface, contributing around 34% of the total 
annual water supply (Magesh et al. 2012). The consumption 
of GW has been increasing rapidly day by day due to the 
failure of surface water in meeting necessary demands in 
the daily life of humankind (de Vries and Simmers 2002; 
Das and Pal 2019). In recent years, the world has been 
facing threatening conditions regarding the availability of 
groundwater due to its excessive use. The large dependency 
of several regions in India and fast consumption of this valu-
able resource in comparison to its natural recharge leads to 
a significant decline in the water table beneath the surface 
(Rodell et al. 2009). In India, 90% of rural domestic water 
usage is based upon GW. In comparison, 70% of the fresh-
water used for agricultural purposes is extracted from aqui-
fers, and about 50% of urban water usage is based upon GW 
(Das et al. 2019). GW is replenishable in nature but finite in 
distribution; therefore, we should be more concerned about 
sustainable use (Chatterjee and Purohit 2009). At present, 
the resiliency of the aquifer system is under a threatening 
condition due to unsustainable use of GW and evokes a 
dubitation about the ability to provide a long-term water 
source (Richey et al. 2015). In the recent era, the problem 
of rural water supply, drought problem, irrigation project 
and low cost of development draws attention towards GW 
management (Kamila et al. 2018); therefore, identification 
of GW potential zone as well as GW recharge area is criti-
cal to maintaining water quality and better management of 
GW system (Waikar et al. 2014). The GW occurrence and 
movements of a particular region are affected by several 
topographical (geology, surface slope, geomorphology, line-
ament density, NDVI, soil texture) and hydrological factors 
(drainage density, rainfall, NDWI, GW level); considering 
all above controlling factors groundwater potential zone 
(GWPZ) can be identified of an area (Jha and Peiffer 2006; 
Chowdhury et al. 2009; Singh et al. 2019). Until now, sev-
eral methods have been adopted to identify the GWPZ of a 
particular area; traditionally, test drilling and stratigraphy 
analysis (Sander et al. 1996), soil moisture model and hydro-
geological field investigation model (Thorpe and Scott 1999; 
White et al. 2003). However, all those in-situ investigation 
methods are cost-effective and notably time-consuming. 
Remote sensing (RS) and GIS integrated platforms have 
become a quicker and cost-efficient alternative to identify 

GWPZ (Saraf et al. 2004; Solomon and Quiel 2006; Gupta 
and Srivastava 2010; Hatti 2011; Ghosh et al. 2015; Thapa 
et al. 2018). Several statistical techniques (MCDA, AHP 
and Fuzzy logic) were also applied by different researchers 
(Machiwal et al. 2011; Jhariya et al. 2016; Arabameri et al. 
2020; Pal et al. 2020; Mallick et al. 2021) by using expert 
knowledge or literature values. In groundwater data analysis, 
strong and flexible analytical methods are required (Rahmati 
et al. 2015). In such a case, advance data-driven model can 
aid to delineate groundwater potential zone. Recently vari-
ous machine learning (ML) algorithms and artificial intel-
ligence such as logistic regression (LR), decision tree, ANN 
(artificial neural network) random forest, SVM (support vec-
tor machine) get huge importance due to large data handling 
capacities and remarkable accuracy level. Proper approach 
and modeling are essential to finding out groundwater poten-
tiality and planning for the water-scarce region.

This study has applied a comprehensive GIS technique 
with the three most significant ML algorithms like LR, ran-
dom forest, and SVM to delineate GWPZ of Purulia district, 
India. Stage of groundwater development is an important 
index to explain groundwater availability in a particular area; 
based on it, several Safe Category blocks are 215, Semi-
Critical blocks are 53, and Critical block is 1 in West Ben-
gal and same way Purulia has a good position in the stage 
of groundwater development which is 13.78% (GEC 1997). 
Despite that, Purulia is notoriously famous as a water-scarce 
region in every summer season. The village women of this 
area walk a very long distance along village streets in search 
of water. Various factors are responsible for water scarcity 
in Purulia. The rapid growth of the population in this area 
is highly responsible for widening the gap between demand 
and supply of water in recent times. Very few studies have 
been done regarding the GW issues of Purulia (Das et al. 
2019). Our study intends to close the research gap in the 
existing literature. The primary objective of our study is 
to find out the groundwater potential zone (GWPZ) of the 
Purulia district through LR, Random forest and SVM with 
the help of the RS-GIS platform. The final zonation map will 
help predict potential groundwater areas and will also be 
helpful in proper planning to manage this valuable resource 
for the future.

Study area

The Purulia district is situated in the south-western part 
of West Bengal, between 22°43′ and 23°42′ North latitude 
and between 85°49′ and 86°54′ East longitudes (Fig. 1). 
It occupies 5th position in the state according to its area, 
which is 6259. The district is surrounded by several dis-
tricts of Jharkhand and West Bengal. Hazaribagh–Dhanbad, 
Singbhum, and Ranchi districts of Jharkhand are situated 



Environmental Earth Sciences (2021) 80:809 

1 3

Page 3 of 18 809

in the North, South, and West of Purulia, respectively. On 
the eastern side, it is bounded by the Bankura, Burdwan, 
and Midnapore districts of West Bengal. Physio graphically 
Purulia is located at a transition zone between the plateau of 
Chotanagpur and the young alluvial plains of West Bengal 
(Mahato and Gupta 2016). As a part of the Chotanagpur pla-
teau, undulating rugged topography, hills, high ridges, and 
low valleys are the main characteristics of this study area. 
The eastern part consists of a rolling upland which changes 
ultimately into a rugged and dissected topography in the 
west. The study area has numerous streams namely Kang-
sabati, Damodar, Darakeswar, Kumari, and Subarnarekha. 
All the rivers are east and south east-flowing, except for 
Subarnarekha which flows in the south direction. There are 
some alluvial areas found in very narrow strips along the 
rivers. Kangsabati is the master stream of the area. Though 
many rivers flow through the region, more than 50% of it 
runs off due to undulating topography, resulting in low infil-
tration. Porosity and permeability are very low due to hard 
rocky terrain surfaces; that is mainly dominated by meta-
morphic rocks. Shallow low fractures and weathered mantle 
are suitable for GW storage which remains in unconfined or 
semi-confined condition. Purulia district mainly falls under 

sub-tropical climate and is characterized by low precipita-
tion and high evaporation, making it a drought-prone area of 
West Bengal. The district represents extreme climatic con-
ditions with a very low temperature of 5 °C and maximum 
temperature of 46 °C in winter and summer months, respec-
tively. Average annual rainfall of 1000–1600 mm occurs in 
the month of mid-June to September by southwest mon-
soons. There are three types of soil namely residual types 
derived from weathering of igneous rocks and metamorphic 
rocks, lateritic soils in the upland areas, clayey loam to clay 
in the valleys. The soil pH ranges between 5.5 and 7.2 (Lok 
Kalyan Parishad, Purulia); 75.05 thousand hectares of area 
under forest (District Industrial Profile Purulia, 2018–19). 
The study area is endowed with natural forest in the North-
Western part and some areas of Ajodhya Hills and Panchet 
hills in the Northeast. The forest is mainly composed of 
Sal trees with different other species like Kusum, Palash, 
Mahua, Sirish, Neem, Simul, etc.

Materials and methodology

Figure 2 represents the methodological framework used in 
this study.

Materials used

A truthful GWPZ map and its accuracy level depend on the 
size and availability of the data sets as well as used modeling 
approaches to produce the maps. Some factors which affect 
the groundwater potentiality have been considered in this 
study through literature review. They are Geology, Slope, 
Lineament Density, Normalized Difference Vegetation Index 
(NDVI), Geomorphology, Drainage Density, Normalized 
Difference Water Index (NDWI), Rainfall, GW level, and 
Soil texture. The maps of all these factors are prepared by 
the collection of data from different sources. Geology and 
geomorphology map of the study area has been collected 
from the Geological Survey of India (GSI). Slope, lineament 
density, and drainage density maps are prepared from Shuttle 
Radar Topography Mission 1 arc-second for global cover-
age (USGS, 30 m resolution). NDVI and NDWI maps were 
prepared from Landsat 8 (USGS) data. Rainfall and ground-
water level maps are prepared by Inverse Distance Weight-
ing (IDW) method with the help of Indian Meteorological 
Department rainfall data and Central Groundwater Control 
Board (CGWB) respectively. Soil texture data have been 
collected from the National Bureau of Soil Survey and Land 
Use Planning (NBSS and LUP), Government of India. Arc-
GIS 10.4 and ERDAS IMAGINE 2014 software have been 
used for the representation of the data. R software and SPSS 
statistical software were used for adopted ML algorithms to 
delineate GWPZ with the help of available data sets.

Fig. 1  Location map of study area
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Methodology

Multi‑collinearity analysis

In a regression model to ensure the accuracy, testing of 
independence of each factor is very important (Chen et al. 
2011). Multi-collinearity occurs when more than one vari-
able is significantly correlated to each other in a regres-
sion model; a big problem can be resulted through a small 
percentage of multicollinearity (Daoud 2017). For this 
study, several causative factors were used, therefore it is 
essential to identify the linear relationship among the vari-
ables through this test which helps to exclude associated 
variables to eliminate the error chances and increase the 
accuracy in adopted models. In this study, variance infla-
tion factors (VIF) and Tolerance (TOL) techniques play a 
significant role in defining errors. The TOL and VIF were 
calculated as follows:

where the VIF value > 10 and TOL value < 0.1 shows multi-
collinearity issue (Khosravi et al. 2019). For present study, 
the threshold value for GWPZ were considered to be less 
than 5 VIF value.

(1)TOL = 1 − r2

(2)VIF =
1

TOL

Logistic regression

Logistic regression is the most widely used multivariate sta-
tistical techniques in diverse field of science, significantly in 
environmental science (Nguyen et al. 2020; Chowdhuri et al. 
2020). In a generalized linear method this empirical model 
is based on logit link function; by considering several condi-
tioning factors it enhances the prediction accuracy (Yariyan 
et al. 2020). In LR, categorical outcomes can be predicted i.e., 
occurrence and non-occurrence; possibility of occurrence of 
an event is assessed within the range of 0–1. The presence and 
absence of attribute can be predicted by considering several 
independent variables in binomial LR when the dependent 
variables are in binomial nominal level whereas multivariate 
LR is used to measure the relationship between various inde-
pendent variables with one dependent variable. Generally, LR 
model expressed in following equations (Ozdemir 2011; Park 
et al. 2017):

where the probability of occurrence is indicated by P and 
the linear combination of the independent variable by Z. Z 
is expressed as follows:

(3)P =
ez

(1 + ez)

(4)Z = � + �1x1 + �2x2 … … …+ �nxn

Fig. 2  Methodological frame-
work adopted for this study
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where � defines the intercept, n is the number of independent 
variables whereas �n and xn represent the regression coef-
ficients and independents variables, respectively. Z value 
ranges from −∞ to +∞ ; the positive regression coefficient 
defines the positive correlation of dependent variable with 
independent variables whereas the negative regression indi-
cates the negative relation in between dependent and inde-
pendent variables.

Support vector machines

Support vector machine learning is one of the most sig-
nificant supervised algorithms used as a classifier besides 
regression problems; it is performed based on statistical 
learning theory and structural risk minimization (SRM) 
principle (Tien Bui et al. 2012; Tehrany et al. 2015). The 
SRM principle is an important factor in SVR in identifica-
tion of the relationship between input and output variables 
(Saha et al. 2021). However, these learning algorithms 
are mostly used for classification purposes by develop-
ing hyperplane which is decision boundary to segregate 
n-dimensional space into classes. (Vapnik 1998) proposed 
that by maximizing the margin between the classes, hyper-
plane classify the linear data. The epsilon tolerance margin 
is considered, that makes the difference between SVM and 
SVR which is the regression version of SVM (Smola and 
Schölkopf 2004).Generally, the SVR modelling approach 
applied in case of very complex dataset; several curved 
margins are developed to solve this dataset (Kalantar et al. 
2018).

Following mathematical formula can describe the SVM 
model:

The following constraints of subject is

where, ||W| | is the hyperplane, b is the scalar base, (∙) indi-
cates the scalar product. The cost function of SVM can be 
defined by using Lagrangian multiplier:

where,�i indicates Lagrangian multiplier. In the case of non-
separable function the constraints can be modified by intro-
ducing slack variables

And finally the equation becomes as follow

(5)
1

2
||W||2

(6)yi =
(
w ⋅ xi

)
+ b ≥ 1

(7)L =
1

2
||W||2 −

n∑

i=1

�i
(
yi
((
w ⋅ xi

)
+ b

)
− 1

)

(8)yi
(
w ⋅ xi

)
+ b ≥ 1 − �i

where, v (0, 1) represent the generated to account for mis-
classification. In addition to this, kernel function K

(
xi, xj

)
 

was introduced by Vapnik in the year of 1995 to explanation 
for non-linear decision boundary.

Random forest

Random forest (RF) decision tree algorithm was first devel-
oped by Breiman (2001); as an advanced version of bag-
ging, randomness added to it consisted of tree predictors and 
each tree depends on the values of a random vector sampled 
autonomously with the similar distribution for all trees in 
the forest (Breiman 2001). Two types of trees such as clas-
sification trees and regression trees are separated from deci-
sion trees (Rodriguez-Galiano et al. 2014). RF as a flexible 
ensemble learning algorithm constructs a set of classifiers 
rather than one classifier based on multiple decision tree 
helps to produce repeated predictions of similar phenom-
enon (Ok et al. 2012; Micheletti et al. 2014; Zabihi et al. 
2016; Islam et al. 2021). RF classification algorithm helps 
to develop new training sites by choosing sample training 
sites. In this study, RF machine learning approach was used 
to identify key variables for mapping GWPZ. Random forest 
requires two components (Goel and Abhilasha 2017):

where x and y are groundwater potential parameters reflect-
ing the probability of x and y, the edge part of the indicator 
is mg and I( ∗).

Model validation

Model validation is a prominent part to evaluate a model 
that can prove the scientific reliability of the result. There-
fore, the widely applied Receiver Operating Characteris-
tics (ROC) and Area Under Curve (AUC) curve are used 
to determine the accuracy of the models(Chen et al. 2018; 
Gayen et al. 2019). The key focus of this spatial model-
ling approach is to quantify the successful and unsuccessful 
events on the basis of model testing data; it works indepen-
dently to assess the model’s predictive ability of a specific 
probability threshold. According to Mandrekar (2010) this 
curve is regarded as the average value of the specificity of 
a test over all possible values of a sensitivity or vice versa. 
AUC values range between 0.5 and 1, where values closer 1 
denote excellent performance and nearer to 0.5 indicate the 

(9)L =
1

2
||W||2 − 1

vn

n∑

i=1

�i

(10)GE = Px,y(mg(x, y) < 0)

(11)mg(x, y) = avkI
(
hk(x) = y

)
−max

j≠k
avkI

(
hk(x) = j

)
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very poor predicting accuracy (Sameen et al. 2020). In this 
study, three models were adopted to delineate GWPZ, there-
fore comparative review of the adopted models executed by 
this validation technique. Dou et al. (2019) asserts that the 
trapezoidal rule integral calculus helps to calculate AUC 
value:

where area under curve represented by AUC and in case 
of specificity and sensitivity is represented by Xk and Sk , 
respectively.

Result and discussion

Multi‑collinearity analysis

Extensive literature review helps to identify several ground-
water conditionings factors. In the present study, 10 ground-
water affecting factors were identified after positive multi 
collinearity analysis. The results of multi collinearity analy-
sis were shown in Table 1. The results display that the lowest 
TOL is 0.27 and the highest value of VIF is 3.71; that indi-
cate there are no multi-collinearity issues among adopted 10 
groundwater conditioning factors.

Geology

Geology is a major controlling factor in the groundwater 
potentiality of a particular area that generally affects ground-
water recharge by supervising water flow percolation(Elewa 
and Qaddah 2011) and subsequently it is associated with 
water permeability (Oikonomidis et al. 2015). The occur-
rence, movement, and qualities of groundwater are signifi-
cantly affected by the geological units of an area (Rajaveni 
et al. 2017). According to the Geological Survey of India, the 

(12)AUC =

n∑

k=1

(
Xk+1 − Xk

)
(Sk+1 − Sk − Sk∕2)

Purulia district consists of seven separable major lithostrati-
graphic units which are Chotanagpur gneissic complex, 
unclassified metamorphic, Singhbhum GP, Dalma volcano, 
Manbhum granite, Kuilapal granite series, and some places 
covered with sediments (Fig. 3). The study area is mainly 
characterized by numerous rocks and minerals such as gran-
ite, gneiss, schist, phyllite, quartzite, sandstone, shale, mica, 
feldspar, china clay which are abundant in nature. Chotana-
gpur gneissic complex is present throughout the whole dis-
trict with an area of 3465 (55.38%). The southern portion of 
the district is mostly dominated by the Singhbhum GP series 
which covers 1159 (18.53%) area. Some part of this district 
is covered with Dalma volcanic series which have an area of 
338 (5.41%). Some part of the northern and central region 
is dominated by manbhum granite and unclassified meta-
morphic which are distributed in a scattered way with 552 
(8.82%) and 531 (8.5%) area respectively. Sedimentary rocks 
are also present in a very small part of the central region of 
the district with an area of 135 (2.16%). According to Dolui 
et al. (2016), Proterozoic hard granite gneiss including soft 
phyllite and mica-schist of the Singhbhum group are the 
dominant rocks in the Purulia district as a part of the Cho-
tanagpur plateau. Hardy rocks like granite, gneiss, quartzite, 
feldspar, etc. are mostly found in this area; that makes the 
barrier to infiltrate the surface water and increase the surface 
runoff which is not suitable for groundwater potentiality. 

Table 1  Multi-collinearity test of groundwater potential factors

Variables VIF TOL

Geology 1.43 0.70
Geomorphology 2.1 0.47
Lineament density 2.32 0.43
Slope 2.51 0.39
Soil 1.59 0.63
NDVI 2.41 0.41
Drainage density 2.36 0.42
Rainfall 3.71 0.27
NDWI 1.87 0.53
GW level 2.26 0.44

Fig. 3  Geology map
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But there is some strip area covered with sandstone which is 
very preferable for groundwater potentiality in this district.

Geomorphology

Geomorphology of a particular area plays a dominant role in 
estimating the storage and movement of groundwater (Sinha 
et al. 1990; Dinesh Kumar et al. 2007). Many researchers 
(Waters et al. 1990; Krishnamurthy et al. 1996; Sahu and 
Sahoo 2006) have successfully adopted geomorphology as 
a principal parameter in delineating groundwater potenti-
ality. The identification of the geomorphologic features is 
very important to delineate groundwater potential zone. 
Pediment pediplain, dissected hills, valleys are the main 
geomorphic features of this region but water bodies, active 
flood plain, rivers are situated in a very small part of this 
region (Fig. 4), (Geological Survey of India). Most of the 
areas of the district are dominated by high hills and sloppy 
land. Pediment and Pediplain complex are present in almost 
the entire district covering an area of 5458 (85.97%). Apart 
from it, 9% of the district is covered with high hills and 
valleys which are not suitable for groundwater potentiality. 
Ramaiah et al. (2012) stated that structural hill, residual hill, 
and linear ridge landforms are not suitable for GWP due to 
its un-fractured rock characteristics having a low infiltration 
rate. Only a few areas of this district are covered with water 

bodies, dams and reservoirs, rivers, and ponds consisting of 
only around 7% of the study area. The water bodies play a 
very significant role in the groundwater potentiality of this 
rugged and hardy terrain. As a result, only a few areas have 
high potentiality.

Lineament density

Generally geologic structures such as fractures, faults and 
discontinuous surfaces are defined as lineaments that can 
be identified by RS-GIS techniques (O’Leary et al. 1976); 
that is architecture of the rock basement (Hobbs 1904) and 
significantly important in hydrological studies which works 
as pathways of groundwater movement (Abdalla 2012) and 
as a curvilinear feature of earth having a significant role in 
GW exploration (Pothiraj and Baskaran 2013). Lineament 
is basically a permeable zone and has positive relation with 
high GWP (Haridas et al. 1998). According to Krishnamur-
thy et al. (2000), the buffer area of 300 m around lineament 
and faults is considered as suitable groundwater recharge 
and potential zone. Lineament density ( Ld ) is expressed by 
following equation:

where 
∑i=n

i=1
Li defines the total length of lineaments and A 

is the total area (L2).
The distribution of lineament concentration is not uni-

form throughout the district. This has been classified into 
five groups namely very low, low, medium, high and very 
high-density area. Among them maximum portion of the 
study area has very low lineament density zone with around 
5273  km2 (83%). Some part of the northern region, southern 
region and western hilly region are fall under low 475  km2 
(7.48%), moderate 300  km2 (4.73%), high 205  km2 (3.23%) 
and very high density 93  km2 (1.43%) area (Fig. 5). Very 
small region of western hilly area of the district at Bag-
mundi, have greater lineament density which is suitable for 
groundwater recharge and increases groundwater potential-
ity. Similarly, the entire study area having very low line-
ament density is mostly responsible for least groundwater 
recharge.

Slope

Slope gradient is one of the most important parameters in 
zone identification of groundwater potentiality of an area; 
it has a direct influence on the infiltration of surface water 
(Selvam et al. 2015). Generally, the slope is the ratio of 
change in elevation between two points and has an inverse 
relation with GWP. On a steep slope, water flows downward 
quickly having inadequate time to infiltrate that resulting 

(13)Ld =

∑i=n

i=1
Li

A

Fig. 4  Geomorphology
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in very low GW recharge (Machiwal et al. 2011; Magesh 
et al. 2012). Whereas, gentle slopes provide an environment 
for GW recharge due to widespread high retention of sur-
face water. According to Saraf and Choudhury (1998), a 
break in the slope accelerates infiltration leading to more 
groundwater recharge. Here, the study area is categorized 
into five zones viz, very low, low, moderate, high, and very 
high. Among them, the greater part of the study area is char-
acterized by undulating topography which falls under very 
low (0–2 degrees) and low (2–5 degrees) categories cover-
ing 3408 (53%) and 2275 (35%) areas, respectively. This 
region with a very low degree of slope is very suitable for 
groundwater recharge. Western, Southern and NE parts of 
the district are under moderate (5–12 degree), high (12–22 
degree) and very high (22–65 degree) category with an area 
of 461 (7.27%), 142 (2.25%) and 59 (0.93%) respectively 
(Fig. 6). These three regions are not suitable for ground-
water recharge and can be designated as low groundwater 
potentiality areas.

Soil texture

Punmia and Jain (2005) asserts that to delineate GWPZ, 
the soil cover is an essential factor; Porosity and perme-
ability of soil plays a significant role in the infiltration 
of surface water which is based on soil characteristics 

such as texture, depth, and water transmission capac-
ity of an area that control the magnitude of groundwater 
recharge (Terence and Viessman 1977). Generally, soil 
texture means the composition of soil that refers to small 
(clays), medium (silts), and large (sands) size particles. 
Groundwater recharge is significantly controlled by soil 
texture because different soil texture has different infiltra-
tion rate; fine-grained soil has very low GWP compared 
to Coarse-grain soil because of its low level of porosity 
and permeability. This study area is characterized by very 
thin soil cover, containing sandy and reddish laterite mate-
rial resulting from granite and gneiss through weathering 
process (Das et al. 2019). Different parts of this district 
are characterized with different soil textures such as grav-
elly loam–loam soil constitutes 1704 (27%), fine loam soil 
covered 1989 (31%), fine soil fall under the area of 1418 
(22.45%), gravelly loam and fine loamy- coarse loamy soil 
present in the 378 (5.98%) and 772 (12.23%) area, respec-
tively (Fig. 7). This gravelly loam to loam, gravelly loam, 
and coarse loam soil has moderate porosity and permeabil-
ity which is preferable to groundwater potentiality and fine 
and fine loam soil have the least porosity and permeability 
which leads to the least potential zone.

Fig. 5  Lineament density map Fig. 6  Slope map
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Normalized difference vegetation index (NDVI)

NDVI is a very common and broadly used remote sensing index 
(Bhandari et al. 2012); generally, it helps to measure live green 
vegetation and also analyzes the characteristics of vegetation 
cover of a certain area. The groundwater enrichment can be 
directly reflected by surface vegetation (Huajie et al. 2016). The 
quantity of green vegetation in a particular area is an essential 
factor of groundwater recharge; if a large area is covered with 
vegetation, it will be suitable for groundwater recharge because 
the area will gain water holding capacity and get sufficient time 
to infiltrate the surface water in the groundwater layer. As a 
result, the groundwater availability of that area increases. This 
spatial index derived through following equation:

where NIR represent the near infrared band and RED is red 
band in satellite image.

The largest part of the study area is covered with light 
vegetation and few parts have very high vegetation cover 
in a scattered way. The entire area is classified into five 
NDVI zones: very low, low, moderate, high and very high 
region. Among them maximum part of Purulia district 
(Fig. 8) fall under moderate, high and very high vegetation 

(14)NDVI =
NIR − RED

NIR + RED

type covering 2594  km2 (41%), 2097  km2 (33%) and 755 
 km2 (11%) area respectively. These areas are responsible 
for moderate to high groundwater potentiality. The study 
area also has low to very low vegetation which covers 778 
 km2 (12%) and 122  km2 (2%) area respectively but they 
are not suitable and results low ground water potentiality.

Drainage density

Avtar et al. (2011) defined drainage density as the total length of 
the entire stream in a particular basin divided by its total area; that 
is a quantitative measurement of the length of stream channels 
(Singh et al. 2014) and also as spacing of stream channels in a 
specific area. It helps to measure the drainage concentration in 
a specific area which denotes how well and poorly drained the 
area is by stream channels. A lot of work (Bagyaraj et al. 2013; 
Jenifer and Jha 2017; Thomas and Duraisamy 2018; Andualem 
and Demeke 2019) established the inverse relation between 
drainage density and permeability of aquifers; which plays an 
important role in the runoff distribution and level of infiltration. 
There is a close relationship between drainage density and infil-
tration rate of the surface water in a specific area. It has a direct 
relationship with slope but is inversely proportional to perme-
ability. Based on the result, this study area is categorized into 
five drainage density zones. They are very low, low, moderate, 

Fig. 7  Soil texture map Fig. 8  NDVI map
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high and very high zones covering 1736 (27.3%), 1529 (24.9%), 
1515 (23.86%), 1071 (16.87%), and 495 (7.81%) of the study 
area (Fig. 9) respectively. The result depicts that average drainage 
densities are found throughout the district. High drainage density 
is the result of more surface runoff which is not suitable for the 
groundwater potential zone but indirectly it helps in groundwater 
recharge in those areas where the slope is very low. The western 
part of this district, as well as some areas of the northern and 
southern parts have steep slopes causing a high concentration 
of drainage which is not suitable for GWP. But most of the area 
is characterized by a gentle slope which is very suitable for the 
groundwater potentiality of the Purulia district.

Groundwater level

The groundwater depth of an area fully depends on the recharge 
and discharge of the subsurface water and it shows the spatial 
differentiation in the depth of water level of a specified area. 
This is an important factor for GWPZ (Jhariya et al. 2021); the 
connection between the geological formation and average water 
depth carries the ability of its water transmission, storage, and 
discharge capacity (Indhulekha et al. 2019). Therefore, where 
the shallow water depth indicates high water availability and 
deeper water levels define water scarcity instead of its abun-
dance. Based on groundwater depth data, this area is catego-
rized into five groups such as very low, low, medium, high, 

and very high groundwater level zone; which ranges from 1.65 
to 8.15 m (Fig. 10). Higher water depth area denotes lower 
groundwater potentials and lower depth denotes higher ground-
water potentials in this area.

Rainfall

Rainfall plays a vital role in groundwater recharge of a par-
ticular region; without rainfall, recharge of groundwater is 
impossible. Purulia district is a part of the Western Plateau 
region as a result it falls under the dry tropical climatic 
regions. The study area experiences maximum rainfall only 
in the monsoon period (Jun–Sep) (Fig. 11). According to 
the Govt. of West Bengal (1985), the average annual rain-
fall of the study area is around 1200–1400 mm. The key 
source of rainfall in this region is the southwest monsoon. 
The study area experienced a drought situation throughout 
the year except for monsoonal months. Eastern and South-
Eastern parts of this district receive a high amount of rainfall 
compared to other regions. It indicates high groundwater 
potentiality in these particular areas. The western part of 
this district receives the least amount of rainfall and is not 
suitable for groundwater potentiality. This little variation of 
rainfall does not make any greater variability of groundwater 
in this district because here the major dominating factor is 
the geology and geomorphology which control the surface 
runoff of rainwater due to hardy rock terrain.

Fig. 9  Drainage density
Fig. 10  GW level map in the study area
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Normalized difference water index (NDWI)

NDWI is mainly used to delineate the different water bod-
ies as surface water viz, ponds, reservoirs, rivers, lakes etc. 
which are more responsible for sub surface water in a region 
with the location of permeable rocks. There is a strong rela-
tionship between surface and sub-surface water; the reasona-
ble number of surface water source makes good groundwater 
resource by normal hydrologic cycle. The communication 
between surface water and groundwater is mostly controlled 
by an intricate relationship between hydrological, geologi-
cal, geomorphological, climate and landscape factor. This 
index is calculated as follows:

NDWI calculated through green band and NIR band of 
satellite image.

In this study, Purulia district is divided into five areas 
on the basis of the result which can help to understand the 
amount of surface water situation in this region. Those five 
categories are very low (9%), low (42%), moderate (41%), 
high (6%) and very high (2%) which cover the entire area 
(Fig. 12). This is clear that very few areas are under the high 
and very high surface water condition but it is least influ-
ence to groundwater due to its small areal extent throughout 

(15)NDWI =
GREEN − NIR

GREEN + NIR

the district. Majority of the study area have less amount of 
NDWI index which implies least amount of surface water 
present in this area which have negative impact on GWPZ.

Fig. 11  Rainfall map
Fig. 12  NDWI map

Fig. 13  Delineation of groundwater potentiality by using—a LR, b 
SVM, c RF
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Table 2  Groundwater potential 
factors, their classes and 
respective logistic regression 
coefficients

Affecting factors Classes Coefficients

Geology Unclassified metamorphics 0.632
Chotanagpur gnesis complex 2.158
Singhbhum GP 9.632
Panchet/pachmarhifm 1.253
Dalma volcanics −1.547
Undiff. fluvial/aeolian/coastal/glacial sediments 0.512
Manbhum Granite 3.102

Geomorphology Pediment pediplain complex 1.235
River −0.258
Moderately dissected structural hills/valley 3.014
Highly dissected structural hills and valleys 5.023
Dam & reservoir 0.953
Pond/water bodies 0.254

Lineamnet density 0–99 (very low) 0.279
99–326 (low)
326–588 (moderate)
588–908 (high)
908–1485 (very high)

Slope 0–2 (very low) 0.649
2–5 (low)
5–12 (moderate)
12–22 (high)
22–65 (very high)

Soil texture Gravelly Loam–Loam 2.314
Fine loamy 0.023
Fine −0.623
Gravelly loam–loam 3.025
Fine loamy–coarse loamy 1.542

NDVI − 1–0.06 (very low) 2.314
0.06–0.15 (low) 0.023
0.15–0.19 (moderate) −0.623
0.19–0.24 (high) 3.025
0.24–0.45 (very high) 1.542

Drainage density 0–653 (very low) 0.349
653–1475 (low)
1475–2346 (moderate)
2346–3338 (high)
3338–6168 (very high)

Rainfall 602–638 (very low) −0.01
638–663 (low)
663–684 (moderate)
684–703 (high)
703–735 (very high)

GW level 1.65–3.05 (very low) 1.245
3.05–3.79 (low)
3.79–4.50 (moderate)
4.50–5.42 (high)
5.42–8.15 (very high)



Environmental Earth Sciences (2021) 80:809 

1 3

Page 13 of 18 809

Groundwater potential zone and validation

Groundwater potential zone

Groundwater potential zonation mapping is an essen-
tial task for sustainable use and planning of groundwater 
management. As Purulia district is a drought-prone area, 
it is necessary to know about the exact location and zone 
of groundwater storage which in turn helps to make proper 

water management. In this study, three machine learning 
methods such as LR, RF, and SVM methods have been used 
to delineate the GWPZ of the Purulia district. In the current 
study, the stepwise LR model was used to analyze the data 
and the model coefficient was calculated by using SPSS soft-
ware; therefore, that was used to produce GWPZ (Fig. 13a). 
According to the LR model, the Positive coefficient plays 
a significant role to make groundwater recharge whereas 
negative values indicate insignificant roles in groundwa-
ter potentiality (Table 2). Dominating groundwater affec-
tive factors are as follows Singbhum GP (9.632), Highly 
dissected structural hills and valleys (5.023) and Gravelly 
Loam–Loam (3.025) whereas, Dalma volcanics (−1.547), 
fine soil (−0.623), and rainfall (−0.01) have an insignifi-
cant role in GW recharge in this area. SVM method helps 
to reclassify all the data layers and make a reliable result in 
GWPZ mapping (Fig. 13b). RF modeling approach also gave 
the most suitable and acceptable result in this study area 
due to its small spatial coverage (Fig. 13c); by calculating 
relative importance values (Fig. 14). The results illustrate 

Table 2  (continued) Affecting factors Classes Coefficients

NDWI − 0.40–-0.21 (very low) 0.943

− 0.21–-0.17 (low)

− 0.17–-0.12 (moderate)

− 0.12–-0.01 (high)

− 0.01–1 (very high)
Intercept = 0.241

Fig. 14  Determining the relative 
importance of causative factors 
using RF

Table 3  Area coverage (%) of different zones by different methods

Groundwater potential 
zone

LR SVM RF

Very low 7.95 8.89 8.79
Low 19.72 19.94 19.91
Moderate 28.71 28.82 28.86
High 25.54 24.8 25.16
Very high 18.06 17.53 17.25
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that rainfall (77.83), GW level (67.44), slope (63.98), geol-
ogy (61.32), soil (59.14) and lineament density (55.17) have 
great impact whereas, NDVI (39.58), NDWI (24.58), drain-
age density (30.96) and geomorphology (45.36) have the 
least impact on groundwater potentiality. All the adopted 
models in this study construct more or less similar results 
for groundwater potentialities in this region. Based on this 
result, the Purulia district has been categorized into five 
potential zones, those are very low, low, moderate, high, and 
very high area; spatial coverage all the models are shown in 
(Table 3). Very low, low potentiality zones are scattered in 
the Northern, North Eastern, Western, Southern, and Central 
parts of the district. The potentiality areas under high and 
very high zones are also found throughout the district in a 
scattered way which is more or less half of the study area. 
This assessment indicates that groundwater potentiality is 
restricted throughout the majority portion of this district 
while it is relatively high in a small segment of the north-
eastern and north-western part of the study area; water scar-
city is a common thing here because of rugged terrain and 
hardy rock surface. Though sufficient water potentiality is 
present in some places of the district, we have to manage it 
appropriately.

Validation of groundwater potentiality

The Receiver Operating Characteristics (ROC) curve has 
been used in this study for reviewing the result of groundwa-
ter potentiality zone with the help of the current water depth 
data of groundwater which has been taken from CGWB as a 
substitute for groundwater storage data and 484 data points 
also used to validate the produced result (Fig. 15). Assess-
ment of the models reveals that AUC values are 0.801, 
0.841, and 0.878 for the LR, SVM, and RF, respectively 
(Fig. 16). Narkhede (2021) claimed that where the AUC 
value is 0.7, there is a 70% chance to differentiate among 
positive and negative classes conversely where the value is 
greater than 0.7 that means the reliability of this study is 
more than 70%. This evaluation established that RF mod-
eling approach is most effective to delineate GWPZ in the 
present area followed by SVM and LR.

Conclusion

A precise assessment of the GWPZ of a particular area 
especially in water-scare hard rock region plays a signifi-
cant role in proper water resource management, land use 
planning, and also in environmental protection. In recent 
times, RS-GIS technique with data-driven algorithm has 
been emerged and increasingly implemented as a very 
powerful and cost-effective technique. It serves as a use-
ful tool for delineating the groundwater potential zone of 
Purulia district which is one of the water-scarce regions 
of West Bengal. The assessment was performed by apply-
ing different kinds of ML algorithms such as LR, SVM, 
and RF; which gives more or less similar results. These 
coupled algorithms help to identify GWPZ based on differ-
ent causative factors; multi-collinearity analysis was also 
used to eliminate any collinearity issues in this study. GW 
level, rainfall, slope and geology are the most influencing 
factors for prospective GWPZ in the study area. The study 
indicates that some parts of this district are not suitable 
for groundwater recharge and results in low groundwater 
potentialities because of rugged terrain; very low poten-
tiality area is minimal in comparison to other categories 
and moderate potentiality is more common in the entire 
Purulia district. It is evident that porous soil texture, low 
slope, permeable geological strata, high rainfall, the high-
est frequency of water bodies, sufficient vegetation cover, 
and higher lineament concentration are the favorable con-
ditions for the development of GWPZ. The success rate of 
the ROC curve also depicts the efficiency of all adopted 
models and the resulting output is significantly reliable. 
So, this assessment will be helpful in the successful detec-
tion of suitable locations for extraction of further GW and 

Fig. 15  Validation point of groundwater potentiality
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to make planning for better management of this valuable 
groundwater resource in the Purulia district.
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