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Abstract
This paper aims to create spatial maps (SMs) using a spatial interpolation technique based on extensive geotechnical subsoil 
data derived from comprehensive field and laboratory investigations. Sialkot, a rapidly developing industrial and agricultural 
district, is used as a case study. The subsoil information was assessed in terms of Standard Penetration Test N-values (SPT-
N), shear wave velocity, soil type, soil consistency, and chemical analysis. Using ArcGIS, the SMs were created by treating 
each depth level as a surface and using the Inverse Distance Weighting (IDW) interpolation technique. Correlations were 
also developed using linear regression analyses for SPT-N values, and soil consistency in conjunction with depth, allowing 
quick and reliable assessment of soil strength and stiffness, and soil consistency during the preliminary planning and design 
process of any proposed project in the study area. The results show that at shallow depth (i.e., up to 3 m) the fine-grained soil 
is predominant with a plasticity index (PI) ranged between 7 and  > 17; SPT-N values between 2–8; and shear wave velocity 
between 138 and 195 m/s. Beyond, 3 m depth, the non-plastic coarse-grained soil is predominant exhibiting SPT-N values 
between 8 and  > 16; and shear wave velocity between 195 and  > 232 m/s. In addition, the correlation coefficient for SPT-N 
values exhibits good prediction accuracy, i.e., at shallow depth (up to 3 m) the correlation coefficient between actual and 
predicted value ranges between 82 and 90%; whereas beyond 3 m the correlation coefficient varies between 67 and 89%. 
Meanwhile, for PI value the correlation coefficient up to 9 m depth ranges between 82 and 94%. Moreover, the prediction 
accuracy for soil type using SMs is around 83%. This information enables engineers to construct a preliminary ground model 
for a new site using data derived from adjacent sites or sites with the same subsoils exposed to similar geological processes. 
Furthermore, having reliable information on the geometry and geotechnical properties of underground layers will make 
projects safer and more cost-effective.
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Introduction

In any engineering project, the subsoil investigation and 
geotechnical testing of soil become necessary to acquire 
the data, essential to design the substructures. Because of 
the limited availability of time and the lack of data, large 
estimation errors occur in the design, and hence the risk 
factor for stability and cost of the project increases (Rwa-
karehe and Mfinanga 2014). Also, these investigations 
are usually performed under professional supervision and 
always require sophisticated instruments thus may prove to 
be a costly element in any project. On the other hand, the 
aftermath effects of construction with the improper explo-
ration of the subsoil cause the structure to be ruinously 
settled (Muhwezi et al. 2014). Therefore, a proper but eco-
nomical assessment of subsoil strata is always desirable in 
the construction industry all over the world.

Despite rapid technological progress in the construc-
tion industry, the urban underground has remained an 
enigmatic space (Angin 2016). Plenty of projects carried 
out in the past in both urban and developing areas, and 
their subsoil investigation reports (SIRs) based on lethar-
gic laboratory and field tests, and decades of soil behav-
ior observations, eventually has become only the part of 
the documentation, rather than providing guidelines for 
potential project designs. Furthermore, the initial feasi-
bility reports for megaprojects are usually based on inter-
rupted data from different SIRs rather than organized data 
(May et al. 2010; Yoo 2016). Therefore, there is a strong 
need to integrate such SIRs in the form of soil maps which 
not only play an important role for quick and economical 
assessment of subsoil properties during the preliminary 
stage of new projects but also provide a fair idea about 
the purpose for which land can be used (Aziz et al. 2017). 
These maps aid the designers in characterizing the soil 
strength, stiffness, and other critical engineering proper-
ties, which can be used to un-tediously estimate and evalu-
ate the engineering design parameters of the soil (Zer-
aatpisheh et al. 2019; Tajik et al. 2020; Oda et al. 2013; 
Padarian et al. 2019). Furthermore, it can serve as a guide 
for local contractors in terms of foundation design param-
eters for a variety of infrastructure development projects 
where the project budget does not allow for an independent 
subsoil investigation.

There have been numerous studies around the world 
aimed at the development of the various type of soil maps 
using different techniques (Poppiel et al. 2021; Rasaei and 
Bogaert 2019; Pahlavan-Rad et al. 2018; Wang et al. 2016; 
Taghizadeh-Mehrjardi et al. 2020; Cracknell and Reading 
2014; Kidd et al. 2020; Voltz et al. 2020). Among various 
techniques, Geographic Information System (GIS) proving 
to be a very effective tool for capturing, storing, retrieving 

at will, transforming, and displaying spatial data from 
the real world (Robinson and Metternicht 2006; Juárez-
Camarena et al. 2016; Akumu et al. 2019). As per Hennig 
et al. 2013, the data can be displayed in three distinctive 
yet overlapping viewpoints: database, spatial analysis, and 
maps. Using spatial interpolation of subsoil data, some 
recent studies integrated the practical application of GIS 
in the field of engineering (Arrouays et al. 2017; Bargaoui 
et al. 2019; Arrouays et al. 2020). Some other researchers 
used GIS-based coding and analyzed the subsoil investiga-
tion data, and produced geophysical, geological, and sub-
soil maps (Gabàs et al. 2014; Aldefae et al. 2020; Coelho 
et al. 2021). Such maps are essential in providing design 
guidance, as well as the creation of construction and build-
ing rules and regulations, which can lead to cost savings 
in the soil exploration program due to the readily available 
organized data about sub-soil conditions for the site in 
question. Furthermore, such maps serve as a reference and 
solution for dealing with various engineering issues that 
may arise prior to the project's completion.

Different countries have developed their own soil maps, 
however, very few studies have been published in the litera-
ture for the South Asia region (Aziz et al. 2017; Zeraatpisheh 
et al. 2019; Tajik et al. 2020). Therefore, the authors place 
a great emphasis on the development of such maps for this 
region, in particular for rapidly growing cities or districts in 
terms of agricultural and commercial trade points of view, 
such as the district Sialkot. This district planned to connect 
the China Pakistan Economic Corridor (CPEC), through 
a trunk road network that will be extended throughout the 
region. The subject district falls under the flagship project 
of the “One Belt One Road initiative” that aims to establish 
a trade route for the region. In addition, the development of 
a special economic zone named, “Sialkot Export Process-
ing Zone” has also significantly increased the importance of 
this region (Jahangir et al. 2020). Therefore, due to the rapid 
industrialization and infrastructure developments across the 
district, the authorities have recognized the significance of 
readily available subsoil information as an essential part of 
cost-effective construction planning and this study is a step 
forward.

Taking the aforementioned discussion into account the 
current study focuses on developing an organized database 
that can be visualized by employing spatial mapping based 
on different critical geotechnical properties such as strength, 
stiffness, soil type, soil consistency, seismic parameters, and 
chemical analysis at every location in the research region of 
district Sialkot, Pakistan.
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Study area

Sialkot district is located in the east of Pakistan, between 
32◦ 24′ N–32◦ 37′ N latitude and 73◦ 59′ E – 75◦ 02′ E 

longitude, at an average height of approximately 256 m 
above sea level, between the rivers Ravi and Chenab, with 
a population density of 903 people per square kilometer 
(Malik et  al. 2010). The climate is hot and wet in the 

Fig. 1   Location of district 
Sialkot a District Sialkot loca-
tion on the Pakistan map; b 
District Sialkot on the Punjab 
province map; c District Sialkot 
study area

Fig. 2   Administratively 
controlled Tehsils of District 
Sialkot
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summer and cold in the winter, with an average annual 
rainfall of about 1000 mm, with the peak rainfall season 
during the monsoon. Figures 1, 2, and 3 present the loca-
tion, administrative controlled tehsils, and average climatic 
condition of the study area.

Fig. 4 presents the contour map of the Sialkot district. The 
data for elevations from mean sea level were collected using 
satellite data which is further transformed into visualization 

maps to get the idea of undulated landscape. The contour 
intervals are uniformly spaced which shows the study area 
lies in a plain landscape. The lowest point falls within the 
range of 222.03 m whereas the highest points lie in the range 
of 291.29 m above the mean sea level. The peak ground 
acceleration of the study area as per Pakistan's revised 
Building Code (BCP) (2007) ranges between 0.16 and 0.24 
g (Quittmeyer and Jacob 1979).

Database description

A large number of subsoil information were gathered from 
extensive field and laboratory investigation reports carried 
out for various projects throughout the district. These pieces 
of information include numerical and alphanumerical data 
on geographical, geological, and engineering data (Sun 
2012; Wadi et al. 2021). The detailed information gleaned 
from soil investigation reports (SIRs) is presented in Table 1.

Subsoil information data from 155 different construction 
project sites comprise of 282 boreholes executed in the study 
area were compiled. The borehole's average data were retrieved 
and recorded for further analyses. Figure 5 depicts the location 
of each borehole point. The thickness and location of each stra-
tum, as well as the Standard Penetration Test N-values (SPT-
N), soil consistency limits, shear wave velocity, and chemi-
cal analysis (i.e., sulphate content, and soluble salts) results 
at various depths, were also extracted against each borehole. 
Out of 155 sites, the average borehole data of 143 sites have 
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been used to provide accurate lithological and stratigraphi-
cal information of each project site, while the remaining 12 
SIRs evenly distributed throughout the district were used for 
validation purposes. It is pertinent to mention here, in terms of 
sources, the authors ensured that the SIRs selected for valida-
tion are from multiple sources and representative of the whole 
data set used in the development of the soil maps.

Results and discussion

Statistical evaluation of SPT‑N data

To evaluate the homogeneity of the test data of the study 
region, various statistical techniques were incorporated. 

Table 2 presents the results of various statistical evaluations 
that illustrate the mean SPT-N values, their mode, variance, 
and standard deviation along with depth. In addition, skew-
ness and kurtosis analyses were also incorporated to sta-
tistically measures the symmetry and tail-heaviness of the 
distribution of data. The results show that at 1.5m and 3m 
depth the data is slightly positively skewed, while with the 
increase in depth the data tends to be approximately sym-
metrical as can be seen in Fig 6 and Table 2. On the other 
hand, the value of kurtosis was found to be very low and 
negative along with depth showing the uniform distribution 
of data, i.e., platykurtic kurtosis. The statistical analyses of 
the database show that a wide range of data spectrum is 
considered in the development of spatial maps in the cur-
rent study.

Table 1   Data retrieved from subsoil investigation reports

Borehole ID The borehole's general information, such as the identification number, project, point, depth, location, contractor, and so on
Ground water-table The depth of the water table and its variation throughout the monitoring period
Lithology The thickness, consistency, color, characteristics of the soil along with composition and mineralogical details of layers 

encountered are described in detail. Additional information about rocks, such as aperture, roughness, discontinuities, 
weathering effect, and so on

In-situ tests Provides information gleaned from various tests carried out inside the borehole. In general, in situ testing yields reliable 
results among which, standard penetration testing is found to be the most economical and widely used to evaluate the 
strength and stiffness of soil along with the bearing capacity evaluation. Furthermore, widely accepted correlations 
provide a thorough understanding of soil mechanical properties

Lab tests Comprises laboratory test results for a variety of extracted rock and soil samples. Mainly, the retrieved geotechnical test 
data contained results of soil consistency, density, moisture content, soil and textural classification, strength characteris-
tics, and various chemical test including suphate content and total soluble salts

Fig. 5   Study area with locations 
of data points
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Figure 7a, b presents the variation of SPT-N and PI val-
ues with depth considering the maximum and minimum 
ranges and standard deviation. The SPT N-values tend to 
increase with an increase in depth while the PI value of the 
soil ranges from high plastic to non-plastic soil. Based on 
subsoil data, several linear regression models were devel-
oped and documented in Tables 3 and 4 to predict the SPT-N 
value and PI value using the depth factor. Furthermore, as 
developed regression models exhibit a strong relationship 
(i.e., R2 value), thus they can be reliably used for quick and 
economical assessment of SPT-N values and soil consist-
ency with reasonable accuracy during the initial, planning, 
and design phases of future projects in the study zone.

Development of SMs

Subsoil data were gathered from various locations from dif-
ferent reliable authorities throughout the district. All four 
administratively controlled tehsils have a uniform distribu-
tion of scattered points (Fig. 2). The coordinates of the site 
location, elevation from mean sea level, SPT-N values, soil 
type, soil consistency, and chemical composition at different 
depths were digitalized and used as input data in the Arc GIS 
10.5 by integrating pertinent data from SIRs.

For the current study, ArcMap software (ArcGIS 10.5) 
(Booth and Mitchell, 2001) was used to create SMs using 
a spatial analyst and the Inverse Distance Weighting (IDW) 
interpolation technique. The IDW interpolation technique 
is based on the idea that the value at an unknown data 
point can be estimated as a weighted median of values at 
data points within a certain cut-off distance or from a set 
of nearby points (Masser and Crompvoets 2015). For GIS-
interpolated SPT-N subsoil maps, this technique provides 
a better representation of data as demonstrated by various 
pertinent studies (Al-Ani et al. 2013; Aziz et al. 2017). It 
is pertinent to mention here, prior to the development of 

SMs using spatial analyst, IDW technique, various trials 
were made by incorporating different other methods such 
as Geostatistical analyst (i.e., diffusion, IDW, global poly-
nomial, and Kernel), Spatial analyst (i.e., spline, IDW, uni-
versal and ordinary kriging). The interpolation results were 
then compared to the input value points for validation. The 
results show that among the different above-mentioned tech-
niques, the IDW technique was found to be quite effective in 
precisely predicting the various geotechnical soil properties 
with real-time data. In addition, a number of supportive lit-
erature were also found on the efficacy of the IDW technique 
compared to other methods (Zhou and Michalak, 2009; Lu 
and Wong, 2008; Al-Ani et al. 2013; Gong et al. 2014).

SMs based on SPT‑N values

Figure 8 shows the SPT-N-based SMs at various depths, 
i.e., 1.5, 3 m, 4.5 m, 6 m, 7.5 m, and 9 m below the exist-
ing ground level (EGL). These SMs show the consistency 
and strength of the soil at various stratigraphic intervals. To 
evaluate the variation of SPT-N with depth, six maps were 
created. In general, there is an increasing trend in SPT-N 
values with an increase in depth highlighting the transfor-
mation of soil consistency from soft to hard (Terzaghi et al. 
1996). The SMs show different ranges of SPT-N values, i.e., 
< 2, 2–4, 4–8, 8–16, and >16 of the study area at different 
depths highlighting soft, medium, and hard consistency of 
the soil. The results show that up to 3 m depth, the majority 
of the study area is predominant with SPT-N values falling 
in the range of 0–8, highlighting soft to medium-hard con-
sistency of the soil as presented by pink, peach, and light 
brown color.

In addition, at 3 m depth, there are some yellow patches 
in the study area demonstrating hard consistency soil with 
SPT-N values ranges between 8 and 16. Further, with 
the increase in depth up to 9 m, the SPT-N values kept 

Table 2   Descriptive statistical 
analysis of database based on 
SPT-N value

Depth 1.5 m 3.0 m 4.5 m 6.0 m 7.5 m 9.0 m

Mean 6.599 7.472 8.695 9.972 11.702 13.567
Standard Error 0.204 0.202 0.223 0.242 0.268 0.267
Median 6 7 8 9 11 13
Mode 5 7 7 9 10 12
Standard Deviation 3.428 3.389 3.748 4.065 4.501 4.485
Sample Variance 11.750 11.489 14.049 16.526 20.260 20.118
Kurtosis 0.279 − 0.432 − 0.209 -0.590 − 0.573 − 0.291
Skewness 0.850 0.461 0.570 0.217 0.229 0.298
Range 15 14 17 18 22 21
Minimum 1 1 1 2 4 6
Maximum 16 15 18 19 21 23
Sum 1861 2107 2452 2812 3300 3826
Count 282 282 282 282 281 282
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increasing and the study area is primarily displaying hard 
consistency soil with SPT-N values ranges between 8–16 
and >16.

Further, shear wave velocity which is an important seis-
mic design parameter is also taken into account in the cur-
rent study. It is used to calculate various spectral acceleration 
under seismic loading which are regarded as a vital seismic 
design parameter in modern building codes, i.e., ASCE-07, 
IBC (2006) (Mahmood et al. 2016; Haider and ur Rehman 
2021). Therefore, the authors have incorporated the shear 
wave velocity values corresponding to SPT-N values as 
shown in Fig. 8. In general, the shear wave velocity increases 

with an increase in depth corresponding to an increase in 
stiffness. The shear wave velocity for depths at depths 1.5 
m, 3 m, 4.5 m, 6 m, 7.5 m, and 9 m ranges from 0 to > 23 
2m/s, respectively.

SMs based on soil type

SMs were developed based on the soil types found below 
the study area. A Unified Soil Classification System (USCS) 
was used to classify subsoil types. Various soil types were 
assigned numerical codes: (1) CH, fat clay; (2) CL, lean 
clay; (3) CL-ML, silty clay; (4) ML, Silt; (5) SM, silty sand; 
(6) poorly graded silty sand; (5). Six maps were created 
based on the observed trend of soil variation with depth, as 
shown in Fig. 9. SMs were established at depth intervals of 
1.5 m, 3 m, 4.5 m, 6 m, 7.5 m, and 9 m, respectively. The 
maps show that CL and CL-ML were generally dominant at 
shallower depths (up to 3m), whereas the northern side of 
the district (Tehsil Sialkot) was dominated by SP-SM type of 
soil. Beyond the 3m stratum, the SP-SM soil type occupied 
the majority of the district. Further exploration of the depths 
reveals the dominance of the SP-SM/SM soil type. Such 
distribution pattern of soil types conforms with the geology 
of the study area, i.e., alluvium plain.

SMs based on soil consistency

Soil consistency, i.e., plasticity index (plasticity index (PI)= 
liquid limit (LL) – plastic limit (PL)) is an important soil 
property that defines the moisture-volume relatioship which 
is critical for the stability of any civil engineering struc-
ture built on it. In addition, there are various correlations 
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Fig. 7   Statistical variation of SPT-N and PI values with depth

Table 3   Linear Regression analysis of SPT-N with depth

N SPT-N value, D  depth

Linear Regression of SPT-N values with depth

Profile Correlation R2

Average N = 0.906 (D) + 4.476 0.972
Average − SD N = 0.802(D) + 2.915 0.972
Average + SD N = 1.011(D) + 6.038 0.970

Table 4   Linear Regression analysis of PI with depth

N SPT-N value, D  depth

Linear Regression of SPT-N values with depth

Profile Correlation R2

Average PI = −0.666 (D) + 12.00 0.999
Average − S.D N = 0.684(D) + 18.24 0.944
Average + SD N = 0.648 (D) 5.75 0.943
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Fig. 8   SMs based on SPT-N values
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Fig. 9   SMs of district Sialkot based on soil type
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developed in the literature that use soil consistency as a 
predicting tool to envisage various geotechnical properties, 
i.e., soil activity, swelling and shrinkage, compressibility, 
hydraulic conductivity, strength, etc. These correlations are 
of significant importance for quick and preliminary assess-
ment of different aforementioned geotechnical properties 
(Rehman et al. 2017; Ijaz et al. 2020a). Therefore, in the 
current study, the authors established the SMs based on soil 
consistency (i.e., PI) for subsoil strata for quick assessment 
of engineering behavior as shown in Fig 10. The SMs show 
four ranges of PI; (1) non-plastic soil (PI = 0); (2) low plas-
tic soil (0 > PI ≤7); (3) medium plastic (7> PI ≤ 17); and (4) 
high plastic soil (PI > 17). In general, the soil consistency 
(i.e., PI) decreases or tends to exhibit non-plastic behavior 
with an increase in depth of the soil, and these results are 
inconsistent with the soil type maps shown in Fig 10. Up to 
3 m depth, the PI of the major portion of the study area falls 
under the medium to high plastic soil range. Beyond 3 m, the 
high values of PI tend to diminish and gradually reduce and 
fall in the range of low to the non-plastic range. For example, 
at 9 m depth, the study area is predominant with non-plastic 
soil (i.e., PI = 0). This trend is attributed to change in soil 
type as can be seen in Fig. 9, i.e., with an increase in depth, 
the study area is predominant with SP-SM type of soil which 
exhibits non-plastic behavior (i.e., PI = 0) which validates 
the soil consistency behavior.

SMs based on chemical analysis

Chemical analysis is of crucial importance in terms of the 
presence of specific chemicals, i.e., sulphate, soluble salts 
which may play a critical role and affect the foundations if 
its concentration is beyond the permissible limits, i.e., > 
0.5 (sulphate content). Such chemical analyses are impor-
tant for engineers to understand the soil behavior based on 
the presence of hazardous material in the soil. To analyze 
the distribution of the percentage of total soluble salts and 
sulphate content at shallow depth, interpolated SMs were 
developed using the available data at 1.5m depth. The soil 
contains traces of sulphate contents and total soluble salts, 
and the majority of the district area falls under the permis-
sible limits, i.e., 0.24% and 0.50%, respectively, as shown 
in Fig. 11.

Validation of SMs

The borehole logs from 143 of the 155 investigation reports 
in the study area were used to prepare SMs, while the 
remaining 12 reports were used for validation. The actual 
SPT-N values, PI values, and soil type for a given depth and 
location were compared and validated with the predicted 
interpolated points using ArcGIS. In general, the valida-
tion points were evenly distributed throughout the district, 

resulting in a negligible difference between actual and pre-
dicted values.

A comparison of actual and predicted values based on 
SPT-N and PI values are shown in Fig. 12a, b. While Table 5 
shows a comparison of actual and predicted values based on 
soil type. The analyses show that the developed SMs exhibit 
a very good accuracy between actual and predicted values 
of soil type exhibiting accuracy of more than 83%. Besides, 
Table 6. presents the strength of predicted SPT-N and PI 
value using the correlation coefficient approach. The results 
show relatively good strength between actual and predicted 
values of SPT-N and PI, which authenticate the practicality 
of the developed maps.

Civil engineering applications

The SMs developed in this study are critical for construction 
in the Sialkot region and could help in making preliminary 
decisions for future projects. For instance, the SMs based on 
SPT-N value gives an idea about the ground condition for 
footing placement. At 1.5 m depth, many weak spots (i.e., 
SPT-N= 0–2) are identified in the Sialkot district which is 
not suitable for construction and required ground improve-
ment or engineering fill (Fig. 8). However, these weak spots 
tend to diminish beyond 3 m depth which means that founda-
tion at/below 3 m depth could be constructed without prior 
heavy mechanical ground improvement. Similarly, a clear 
idea of the engineering properties of ground could also be 
taken using the SMs based on soil type (Fig. 9). For instance, 
CH is considered to be disastrous soil in terms of its volu-
metric change behavior for Civil Engineering structures. It 
is identified that for the Sialkot region at various depths, few 
spots bear the problematic soil. Thus, prior care must be 
taken to deal with this soil in the highlighted region in the 
SMs (Fig. 9). These soils can be dealt with by the replace-
ment with suitable engineering fill or by stabilization using 
different additives (Rehman et al. 2018; Ijaz et al. 2020a, 
b, c). The selection of these methods depends on the avail-
ability of the additive/filler materials at the site. Moreover, 
the idea about the soil-moisture volume behavior could be 
taken using SMs based on soil consistency (Khalid et al. 
2015, 2019). For instance, different spots have been identi-
fied in the Sialkot region for which soil consistency could 
be regarded as highly plastic. Furthermore, the chemical 
analysis results exhibit that total soluble salts and sulphate 
content within the study area falls within the permissible 
range with few exceptions (Fig. 11). Therefore, care should 
be taken while carrying out construction in those spots for 
which sulphate content is not within the permissible limits, 
i.e., use of sulphate resistant cement which enhances the 
durability of the foundation in high sulphate zone.
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Fig. 10   SMs based on soil consistency (i.e., PI)
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Summary

The current study presents the spatial maps of district 
Sialkot by integrating a large database of SIRs. SMs show 
that CL and CL-ML were generally dominant at shallower 
depths (up to 3 m) with average SPT-N values ranges 
between 2-8 and shear wave velocity between 138-195 
m/s. While the soil consistency up to 3m exhibits higher 
values of plasticity index (PI) falls in the range of 7 ≥ PI 
> 17. Whereas beyond 3m, the soil stratum was enriched 

with SP-SM soil type having SPT N-value ranges between 
9 AND >16 with average shear wave velocity through 195- 
>232 m/s. While the soil consistency beyond 3 m depth 
tends to exhibit low plastic and non-plastic behavior. Fur-
thermore, at shallow footing depth (i.e., 1.5m) the sulphate 
contents and soluble salt presents non-hazardous nature 
of the soil. In addition, the statistical analyses of the data-
base show that a wide range of uniformly distributed data 
spectrums is considered in the current study to develop 
spatial maps.

Fig. 11   SMs based on chemical analysis
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