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Abstract
Monitoring temporal variation of streamflow is necessary for many water resources management plans, yet, such practices 
are constrained by the absence or paucity of data in many rivers around the world. Using a permanent river in the north of 
Iran as a test site, a machine learning framework was proposed to model the streamflow data in the three periods of growing 
seasons based on tree-rings and vessel features of the Zelkova carpinifolia species. First, full-disc samples were taken from 
30 trees near the river, and the samples went through preprocessing, cross-dating, standardization, and time series analysis. 
Two machine learning algorithms, namely random forest (RF) and extreme gradient boosting (XGB), were used to model the 
relationships between dendrochronology variables (tree-rings and vessel features in the three periods of growing seasons) and 
the corresponding streamflow rates. The performance of each model was evaluated using statistical coefficients [coefficient of 
determination (R-squared), Nash–Sutcliffe efficiency (NSE), and root-mean-square error (NRMSE)]. Findings demonstrate 
that consideration should be given to the XGB model in streamflow modeling given its apparent enhanced performance 
(R-squared: 0.87; NSE: 0.81; and NRMSE: 0.43) over the RF model (R-squared: 0.82; NSE: 0.71; and NRMSE: 0.52). Fur-
thermore, the results showed that the models perform better in modeling the normal and low flows compared to extremely 
high flows. Finally, the tested models were used to reconstruct the temporal streamflow during the past decades (1970–1981).
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Introduction

Temporal streamflow records are essential for any long-term 
water resource plans, including optimal design of hydrau-
lic structures, controlling extreme events, and determining 

ecological water budgets for aquatic ecosystems (Hirsch and 
Costa 2004). Streamflow is typically measured using auto-
mated stream gauges mounted in a stream. Such practices are 
constrained by the absence or paucity of gauging stations, 
temporal gaps in the measured time-series data, and data 
quality issues in many parts of the world (Zhang and Post 
2018). Even in the areas with available streamflow records, 
the data are limited to recent decades, making it challenging 
to investigate the long-term variation of streamflow. There-
fore, alternative models and methods have been used to fill 
gaps or reconstruct the past streamflow time series.

Hydrologists have made use of statistical applications 
to predict the streamflow using the observed relationship 
between precipitation and runoff (Khan and See 2006). 
However, the development of advanced machine learning 
algorithms and artificial neural networks (ANNs) in the past 
decade has prompted extensive research into advanced data-
driven models (Alshehri et al. 2020; Sahour et al. 2020a). 
These models can predict the streamflow by establishing 
linear or nonlinear relationships between streamflow and 
a set of explanatory variables (Tongal and Booij 2018). 
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These models have proven to be powerful tools for stream-
flow modeling (Wang et al. 2019; Zhang et al. 2020). For 
instance, Adnan et al. (2019) successfully implemented an 
optimally pruned extreme learning machine (OP-ELM) 
model to predict daily streamflow using hydro-climatic data 
as inputs. They also found that including local hydroclimate 
data significantly improves the accuracy of the model. Meng 
et al. (2019) proposed a modified empirical mode decom-
position support vector machine (M-EMDSVM) to predict 
the streamflow in the Wei River Basin of China. Their com-
parative analysis showed that the M-EMDSVM was supe-
rior to ANN and a single support vector machine (SVM) 
model to predict strong non-stationary streamflow. In all the 
abovementioned studies, streamflow prediction was carried 
out using hydroclimate variables as the models’ inputs. The 
application of those approaches is constrained by the avail-
ability of hydroclimate data such as gauge-based precipi-
tation. Moreover, in many stations, the available data may 
suffer from gaps in the time series. One plausible solution 
could be the use of modeled or downscaled data; however, 
the modeled data are typically associated with high levels 
of uncertainties (Qi et al. 2020).

Dendrochronological records yield valuable information 
about past hydroclimate variability through the response of 
tree growth to variations of precipitation and streamflow 
(Khaleghi 2018; Liu et al. 2018; Wu et al. 2020). There-
fore, tree-rings and vessel features can be used as a proxy 
of hydroclimate variables such as precipitation and environ-
ment moisture for the streamflow modeling (Gholami et al. 
2015, 2017; Liu et al. 2017). The advantage of using tree-
rings and vessel features is to reconstruct the streamflow for 
past centuries, a practice that is not achievable using gauge-
based precipitation records since these data are typically 
limited to the past few decades in most stations around the 
world. The relationship between tree-rings and time series of 
streamflow has been previously used to reconstruct the flow 
in several rivers around the world (Meko et al. 2012). For 
example, Akkemik et al. (2008) reconstructed the 350 years 
of streamflow for the Filyos river basin in Turkey using 
tree-ring records. Therrell and Bialecki (2015) identified 
39 flood-ring years from 1770 to 2009 in the Lower Mis-
sissippi River using dendrochronology records. A network 
of multispecies tree-ring records was used to reconstruct 
the Suwannee River flow in Florida from 1555 to 2005 CE 
(Harley et al. 2017). Similar studies using tree-rings for the 
reconstruction of streamflow have been carried out in Can-
ada (Case and MacDonald 2003), Chile (Urrutia et al. 2011), 
China (Gou et al. 2010), and Sudan (Mokria et al. 2018).

Tree-rings width depends on temperature and environ-
mental moisture. Therefore, tree-ring chronologies can pro-
vide information about past hydrologic conditions of envi-
ronments (Allen et al. 2015; Ferrero et al. 2015; Kames et al. 
2016; Wu et al. 2020). Similar relationships exist between 

vessel features (vessel diameter, vessel area, and vessel 
perimeter) and the presence of moisture. Therefore, these 
parameters can also be used to predict hydrological data dur-
ing growing seasons (Campelo et al. 2010; Fonti and Garcia 
Gonzalez 2004; Gholami et al. 2019).

Previous studies have used a combination of various 
dendrochronology data to reconstruct hydroclimate vari-
abilities. For example, Allen et al. (2015) used wood prop-
erties in addition to tree-rings to reconstruct historical 
December–January inflow and streamflow in southeastern 
Australia.

In this research, vessel features (vessel area, diameter, 
and perimeters) were also incorporated into the streamflow 
modeling process in addition to tree-ring chronologies in 
the three time periods of a growing season. Their modeling 
results rely heavily on new tree-ring chronologies based 
on properties such as tracheid radial diameter, density, and 
cell wall thickness, underscoring the importance of these 
different types of chronologies in reconstructions. Second, 
applying state-of-art machine learning methods to predict 
the streamflow from dendrochronology data, a practice that 
has been typically performed by mathematical data-driven 
methods in previous studies (Anderson et al. 2019; Chen 
et al. 2019; Li et al. 2019; Sahour et al. 2021). Addition-
ally, to investigate the relationships (e.g., linear, nonlinear, 
monotonic) between dendrochronology data (tree-rings, 
vessel features) and streamflow variation using variable 
importance (VI) and partial dependence plots. Third, the 
southern coastal plain of the Caspian Sea is one of the most 
densely populated areas in Iran, where being an agricul-
tural and industrial pole places a higher demand on water 
resources. Using one of the rivers (Khalkaee river) within 
this region as a test site, the study aims to provide a feasible 
conventional approach to reconstruct the streamflow using 
dendrochronology data in the north of Iran. For this purpose, 
Zelkova carpinifolia, a ring-porous species, was selected for 
dendrochronology studies. Zelkova carpinifolia is a meso-
phytic deciduous tree that prefers to grow in the riversides, 
mixed lowlands, and ravine forests. This species has been 
previously used in dendrochronology studies (Grissino-
Mayer 1993; Davis et al. 2012). For example, it was used 
to reconstruct precipitation and water table fluctuations on 
the southern coast of the Caspian Sea in Iran (Gholami et al. 
2017, 2019).

Only a few dendrochronology-based reconstructions of 
streamflow have been carried out in the Middle East (Akke-
mik et al. 2008). Considering the increasing population of 
the region, scarcity of water resources, and the need for 
reliable data to investigate the impact of climate change 
on water resources, the methodology could potentially be 
adopted for other rivers across the region to fill the temporal 
gaps in streamflow records and reconstruct the hydrological 
conditions of rivers during past decades. This study aimed 
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to predict the historical stream flow using dendrohydrology 
and machine learning models.

Study area

The study was conducted on a permanent river in the north 
of Iran, namely Khalkaee, located between 48° 50′ to 49° 
20′ E and 37° 17′ to 37° 28′ N (Fig. 1). The river's length is 
almost 71 km, originating from Alborz Mountains and drains 
into the Caspian Sea. The mean discharge of the Khalkaee 
river is 3.9 cubic meters per second during the trees grow-
ing season (April–September). The study area has a humid 
climate with an average annual precipitation of 1000 mm. 
The primary type of precipitation in the study area is rain-
fall. Precipitation mainly occurs during the fall and winter, 
and it decreases during the growing season as temperature 
increases. The average annual temperature in the region is 
15 °C. The average temperature during the growing season 
is 20.8 °C, with a minimum and a maximum of 13.5 and 31 
°C, respectively.

The major types of land use are forest lands, paddy lands, 
and residential areas. The geologic formation consists of 
alluvial sediment. The altitude of the site is between 30 and 
40 m above the mean sea levels. One stream gauging station 
(Taskoh station) over the Khalkaee river has been record-
ing the streamflow from 1982 to the present (2020). The 
selected trees for records dendrochronology studies were 
located downstream of the river (Fig. 1).

Materials and methods

In this section, the steps toward providing the dendrochro-
nology data and machine learning techniques for streamflow 
modeling are described.

Dendrochronology data

The samples were taken from Zelkova carpinifolia trees, 
also known as Caucasian elm. Caucasian elm is a native to 
the Caucasia and Alborz mountains (Andrews 1993). Thirty 
sampling trees were selected from a single site with an area 
of 4 km2. The sampling trees were near the Khalkaee river, 
because our goal was to reconstruct the streamflow of this 
river (Fig. 1). All sampling trees were young, healthy, almost 
the same age, and with no sign of damages.

First, the full-disc samples were taken from a cross-sec-
tion of the stems perpendicular to the growing axis. The 
samples underwent preprocessing (sanding and polishing) 
to enhance the visibility of the tree-rings. Samples were 
cut into small cubes with width of 2 cm2. The cubes were 
boiled in hot water for 4 h to soften the wooden tissues. The 

thin cross-sectional slices were provided using a microtome. 
Colors were used to increase the visibility of the slices under 
the microscope. High-resolution pictures were taken from 
the tree-rings, and vessel features on a radial path using a 
digital camera mounted on the stereomicroscope (Fig. 2). 
The width of the tree-rings and vessel features (vessel 
diameter, vessel area, and vessel perimeter) were measured 
using Digimizer image analysis software with an accuracy 
of 0.001 mm. Cross-dating of the vessels and tree-rings 
was performed simultaneously according to their cambial 
age. The cross-dating process was evaluated in two vertical 
directions. We used TSAP software to perform time series 
analysis and cross-dating.

Non-hydrologic trends were removed from the tree-ring 
and vessel features time series, the program Auto Regres-
sive STANdardization (ARSTAN) was used (Cook 1985). 
The generated time series was standardized using a spline 
function with a 50% frequency response of 50 years. Non-
hydrologic growth trends were excluded by dividing the 
original data by the fitted curve. Finally, four tree samples 
were excluded from the dataset due to the inconsistency with 
the other tree-rings samples. Those samples produced a high 
standard deviation which could not represent the chronology 
of the sampling trees.

During the growing season, the cambium produces sev-
eral large cells with thin walls that form the earlywood, 
also known as springwood, identified by their light color 
rings (due to the larger size of the constituent elements 
and more favorable environmental conditions) under a 
microscope. Toward the end of summer, when the growth 
rate slows, summerwood is formed. Summerwood can be 
identified by its small-sized and darker color cells (Zhang 
et al. 2008). Moreover, the width of the tree-ring is an 
indicator of climate variability. For example, an increase 
in streamflow causes wider tree-rings and larger vessel 
sizes, because the trees are more likely to receive adequate 
moisture from soil and air. Therefore, different periods 
of the growing season can be identified by evaluating the 
change in wood texture, wood color, and vessels size. Fur-
thermore, identifying earlywood (springwood) and late-
wood (summer wood) is a helpful indicator in this process. 
Finally, the mean tree-rings width and the mean vessels' 
features in the three time periods of growing seasons [early 
spring (April), the early summer (June), and the end of 
summer (August) from 1970 to 2018] was measured. The 
mean values represent the average from the several sam-
ples. Both tree-ring width and vessel features data were 
provided in two types include the tree-ring width and ves-
sel features in the three desired time period and the cumu-
lative tree-rings and vessel features. The tree-ring width 
and vessel features in the desired time period shows the 
mean measurement of tree-ring width and vessel features 
values for a particular period of a growing season (early 
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spring, early summer, and end of summer). The cumula-
tive value of a particular period shows the mean tree-ring 
widths or vessels features from the beginning of the grow-
ing season to the desired time period.

The correlation between the chronology data was ana-
lyzed using the Pearson correlation coefficient. The data-
set was tested to identify the multicollinearity among the 
variables using variance inflation factor (VIF), considering 
a threshold of 10 (VIF > 11) for individual variables as the 

Fig. 1   Location of the study site (Khalkaee river) on the southern coast of the Caspian Sea
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presence of multicollinearity. High VIF values (> 11) were 
observed between vessel perimeter, vessel area, and vessel 
diameter. Therefore, the vessel perimeter and vessel area 
were excluded from sets of input variables.

Streamflow modeling

The streamflow records from 1982 to 2018 were obtained 
from the river's gauging station (Tashkoh hydrometry sta-
tion). The chronology and streamflow data were randomly 
divided into two subsets of training (75% of the total data) 
and testing (25% of the total data). Two machine learning 
algorithms, namely random forest (RF) and extreme gra-
dient boosting (XGB) were employed to establish a rela-
tionship between dendrochronology inputs (tree-rings and 
vessels features in the desired time periods, and cumula-
tive tree-rings and vessel diameter) and streamflow during 
the growing season within the study period (1982–2018). 
Additionally, we compared the results with the traditional 
multivariate regression (MLR) model. The MLR derives 
patterns in the data and establishes the best fitting linear 

relationships between two or more dependent variables and 
the target (stream flow). In an MLR model, every value of 
the input variable X is associated with a value of the target 
variable Y.

The combination of the tree-ring widths and vessel fea-
tures was used for modeling the streamflow. The training 
data were used for developing the models and the testing 
set for the evaluation of the models. The tested model and 
dendrochronology inputs were later used for reconstruction 
of the past streamflow. The streamflow data were available 
from 1982 to 2018, while the chronology data was avail-
able from 1970 to 2018. Therefore, the reconstruction of 
the streamflow was carried out for the years 1970 to 1982. 
Below is a detailed explanation of the RF and XGB models.

Random forest (RF)

The RF algorithm was implemented to predict the interan-
nual streamflow using chronology data as inputs. RF is an 
improved version of a decision tree algorithm that combines 
the base principles of bagging with random feature selec-
tion to add additional diversity to the decision tree models 
(Breiman 2001). Decision tree learners are robust predictive 
modeling approaches that utilize a tree structure to establish 
relationships among the features and the outcomes. A tree 
structure mirrors how a tree begins at a wide trunk and splits 
into narrower branches as it is followed upward. Similarly, a 
decision tree learner uses a structure of branching decisions 
that channel examples into a final predicted class value. A 
decision tree is built on an entire dataset, using all the fea-
tures of interest, whereas an RF randomly selects observa-
tions and specific features to build multiple decision trees 
and then averages the results to make predictions. In the RF 
model, the Gini Coefficient is used. Gini coefficient (Eq. 1) 
indicates how nodes on a decision tree branch. Gini is cal-
culated as follows:

where n represents the number of observations. Likewise, 
entropy (Eq. 2) is another indicator that determines how 
nodes branch in a decision tree and is calculated as

where N1 and N2 are the number of items of each set after 
the split, and E1 and E2 are their corresponding entropies. 
Random forests offer some advantages over other machine 
learning algorithms. For instance, it only selects the essential 
features and can be used on data with an extremely large 
number of features. A schematic diagram of the RF model 
is shown in Fig. 3.

(1)Gini =

∑n

i=1

∑n

j=1
�xi − xj�

2n2x
,

(2)Esplit =
N1

N
E1 +

N2

N
E2,

Fig. 2   Pictures taken from the samples under a microscope showing 
A vessels, and B different widths of the tree-rings during wet and dry 
years
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The RF model developed for this study consisted of 250 
regression trees in which each tree was grown on a bootstrap 
sample drawn from the training dataset that contained the 
streamflow observations and the chronology data as input 
variables. One-third of the input variables (remaining in 
each step of variable selection) were randomly selected to 
grow the tree to reduce the correlation between the predic-
tion errors of a pair of decision trees. The final predicted 
value in the RF model was calculated by averaging the pre-
dictions from all the individual trees. The randomForest 
package written the R programming language was used for 
this purpose.

Extreme gradient boosting (XGB)

XGB was introduced by Chen and Guestrin in 2016. Since 
its introduction, XGB has become one of the most popular 
machine learning techniques (Ni et al. 2020; Sahour et al. 
2020b). The main idea of boosting is to add new models to 
the ensemble subsequently. In essence, boosting advances 
the bias-variance-tradeoff by starting with a weak model 
and sequentially boosts its performance by continuing to build 
new trees, where each new tree in the sequence tries to fix up 
where the previous one made the most significant errors. XGB 

is a significant improvement in Gradient Boosting. Figure 4 
shows the schematic diagram of the XGB model.

Gradient boosting begins with a set of predictors (X1, ...,Xn) 
to predict a set of corresponding target values(Y1, ..., Yn). We 
fit a model F(X) → Y and minimize the sum of the loss func-
tion J =

∑n

i=1
L(Yi,F(Xi)) by improving the model F(X) . Here, 

L is a differentiable convex loss function that measures the 
difference between the prediction F(X) and the target Y. Then, 
the following iterations are performed: first, we calculate the 
negative gradients of J with respect to F(Xi),− �J

�F(Xi)
 . Then, fit 

a regression tree h , to negative gradients − �J

�F(Xi)
 and finally, 

update F(Xi) with F(Xi) + �h , where � is the step size to reach 
the estimated minimum of J . This iteration is performed until 
the desired accuracy is reached. In XGB, the loss function 
(Eq. 3) is

where Ω(h) = �T +
1

2
�‖�‖2 . Here, T is the number of leaves 

in the tree, and � is the leaf weights.

(3)J =

n∑

i=1

L(Yi,F
(
Xi

)
+ h) + Ω(h),

Fig. 3   Schematic diagram of the 
random forest algorithm
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Variable importance (VI)

VI represents the statistical significance of each variable in 
the data with respect to its effect on the generated model. 
VI is each predictor's ranking based on its contribution to 
the model. Variable importance is calculated by the sum 
of the decrease in error when split by a variable. Then, 
the relative importance is the variable importance divided 
by the highest variable importance value so that values 
are bounded between 0 and 1. The measure of VI in tree-
based regressions (RF and XGB) is based on how many 
times a given model selects a variable for splitting and 
how much it is improved because of the splitting (Fried-
man and Meulman 2003).

Performance evaluation of the models

The adopted models (RF, XGB, and MLR) were evaluated 
by comparison between predicted and recorded stream-
flow using three statistical coefficients, namely, coefficient 
of determination (R-squared), Nash–Sutcliffe efficiency 
(NSE), and normalized root mean squared error (NRMSE). 
The values of these statistical coefficients range between 0 
and 1. The higher values for NSE and R-squared, as well as 
lower values for NRMSE, indicate better prediction. The 
coefficients are calculated as follows:

where Yo is the recorded streamflow, Ŷp is the predicted 
streamflow, n is the number of observations, and Yoi is the 
average of the recorded streamflow.

Results

The streamflow during the growing season varies from 
0.48 to 10.9 cubic meters per second. The mean streamflow 
during growing seasons was 3.9 cubic meters per second. 
Streamflow at the hydrometric station has been measured 
by hydrometric instruments. This is a relatively good flow 
rate for a permanent river. The mean vessel diameters in 
the three time periods ranged between 47 and 232 µm. The 
cumulative tree-ring widths ranged between 1.4 and 6.3 mm 

(4)RMSE =

√√√√
n∑

i=1

(
Yo − Ŷp

)2

n
,

(5)NRMSE =
RMSE

Yoi

,

(6)NSE = 1 −

∑n

i=1

�
Ŷp − Yo

�2

∑n

i=1

�
Yo − Yoi

�2
,

Fig. 4   Schematic diagram of 
the extreme gradient boosting 
algorithm
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which decrease from spring to late summer. The vessel areas 
and perimeters ranged from 1700 to 4250 µm2 and 140 to 
1730 µm, respectively. Vessel feature decrease from spring 
to late summer. Moreover, expressed population signal 
(EPS) values were estimated to be 0.88 in the study site. 
Table 1 shows the correlation coefficients of tree-rings and 
vessel features with streamflow during the growing season. 
The highest correlation between streamflow and chronol-
ogy parameters was associated with vessel diameter, fol-
lowed by cumulative vessel diameter, cumulative tree-rings, 
and tree-rings. The variation in streamflow and individual 
chronology parameters (tree-ring and vessel diameter in the 
desired times and cumulative tree-ring widths and vessel 
diameter) during the growing season of the modeling period 
(1982–2018) is presented in Fig. 5.

According to the statistical analysis, sensitivity analysis, 
and variable importance (VI), the vessel diameter, the cumu-
lative vessel diameters, and the cumulative tree-ring widths 
are the most suitable inputs for streamflow modeling. The 
evaluation of the adopted models on the training and test-
ing subset is presented in Table 2. The results show that the 
XGB model performed better considering the higher NSE 
and R-squared and the lower NRMSE value in both the train-
ing (NSE: 0.98; R-squared: 0.98; NRMSE: 0.13) and testing 
(NSE: 0.81; R-squared: 0.87; NRMSE: 0.43) stage. Figure 6 
shows the scatter plot of the observed and predicted stream-
flow in the training and testing stages. The results of the test 
stage showed the high performance of the XGB model in 
predicting the streamflow using vessels diameter and tree-
ring widths during the growing season.

The variable importance for both XGB and RF models is 
presented in Fig. 7. The result shows that for both models, 
the vessel diameter is the most important parameter in the 
modeling process, followed by the cumulative vessel diam-
eters, cumulative tree-ring widths, and tree-rings. How-
ever, the importance ratio of each variable varies between 

XGB and RF. The partial dependence plot (PDP) shows the 
marginal effect that input variables have on the predicted 
outcome of a machine learning model (Fig. 8). A partial 
dependence plot shows whether the relationship between 
the target and a predictor is linear, monotonic, or mixed. 
Figure 8 indicates that in the XGB model, streamflow has 
a linear relationship with tree-ring width, vessel diameter, 
and cumulative vessel diameter. The relationship between 
streamflow and cumulative tree-ring widths is nonlinear. The 
cumulative tree-rings increase by an increase in streamflow; 
after some point, the cumulative tree-ring widths decrease 
by an increase in streamflow (Fig. 8). One plausible explana-
tion is that the vessels already reach their maximum size by 
providing all their water needs, and therefore, the presence 
of additional water does not affect the vessel size anymore. 
It should be noted that this analysis is only valid for growing 
seasons when there is a meaningful relationship between 
tree-rings and environmental moisture.

The streamflow for the period 1970 to 1981 (the period 
with the absence of streamflow data, and the presence of 
dendrochronology records) was reconstructed using the 
tested RF and XGB models (Fig. 9). Results show that 
streamflow during the growing season between 1970 and 
1981, estimated by the XGB model, ranged from 0.45 to 
10.8 m3/s. The streamflow estimated by the RF model was 
between 1.62 and 7.78 m3/s.

As we mentioned before, we also used the widely used 
multivariate regression model to compare the results with 
adopted machine learning algorithms. The results showed 
that both RF and XGB logarithms outperform the regression 
model. For the regression model, the NSE, NRMSE, and 
R-squared in the test set were found to be 0.66, 0.57, and 
0.73, respectively (Table 2; Fig. 9).

Discussion

This study used vessel features and tree-rings as inputs of 
two machine learning techniques (RF and XGBoost) to 
model the temporal variation of streamflow in a permanent 
river in the north of Iran. The analysis of the chronology 
inputs was conducted to select the optimal dendrochro-
nology parameters for modeling and reconstruction of the 
streamflow in the growing seasons. One of the strengths 
of this study was to incorporate vessel features in addition 
to tree-rings chronology for increasing machine learning 
performance in streamflow modeling. We investigated the 
response of the vessel features through statistical analysis. 
VIF and correlation coefficients were used to assess the 
relationships between individual variables and streamflow 
as the target and to investigate the multicollinearity among 

Table 1   The correlation coefficients and VIF values of the dendro-
chronology variables for streamflow modeling

a Variables excluded due to the presence of multicollinearity 
(VIF > 11)

Variable name VIF Correlation 
with stream-
flow

Tree-rings (mm) 2.2 0.68
Cumulative tree-rings (mm) 3.7 − 0.7
Vessels diameter (µm) 8.6 0.87
Cumulative vessels diameter (µm) 9.4 0.81
aVessels area (µm) 14.4 0.65
aVessels perimeter (µm) 12.8 0.62
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the variables. Several vessel features, including vessel diam-
eter, vessel area, and vessel perimeter, were extracted from 
the tree samples. However, due to the presence of multicol-
linearity among the other vessel features, only the vessel 

diameter and cumulative vessel diameters were selected as 
optimum vessel features.

The evaluation of the machine learning models shows 
the high performance of the adopted methodology in 

Fig. 5   Time series each 
chronology parameter versus 
reconstructed streamflow



	 Environmental Earth Sciences (2021) 80:747

1 3

747  Page 10 of 14

modeling and reconstruction of streamflow. The statisti-
cal criteria (NSE, NRMSE, and R-squared) obtained by 
comparing recorded and predicted streamflow on the test-
ing subset are very high. Moriasi et al. (2007) used the 
NSE and NRMSE to rank the performance of the models 
in hydrologic studies. According to their results, the NSE 
values greater than 0.75 and NRMSE less than 0.5 are 
indicators of the high performance of the predictive mod-
els, which was the case in this research. Using the adopted 
methodology, we could also analyze the importance of 
individual chronology parameters in streamflow modeling.

The major limitation of the study was the use of a rela-
tively small dataset for the modeling process. Unfortunately, 
additional samples were not available for this study. It is 
well known that the reliability and the performance of the 
machine learning models increase in a larger dataset (Steed-
man et al. 2003). Therefore, providing additional observa-
tions from trees for a longer period of time could enhance 
the results and subsequently improve the reliability of the 
values for the reconstruction of streamflow during the past 
decades. Another limitation of streamflow modeling is the 
reconstruction of extremely high values. This is due to the 
fact that once the tree is satisfied with its water requirement, 
additional water is not used by the trees to enlarge the tree-
rings and vessel size. Therefore, it is difficult to reconstruct 
the extremely high streamflow using dendrochronology 
inputs. However, very low streamflow values indicate the 
absence of adequate moisture for the trees. This affected 
the tree-rings and vessel growths during the growing season 
and was reflected in the chronology records. Therefore, the 
method works better for the reconstruction of low stream-
flow compared to extremely high flow rates. The high sensi-
tivity of tree-rings and vessel features to low flows indicates 
the applicability of the adopted methodology, especially in 
the reconstruction of river flow during droughts. The precise 
streamflow modeling is an important step for many water 
resource management plans. Moreover, reconstruction of 
the minimum river flows can be used for investigating the 

duration and intensity of hydrologic droughts during the past 
decades.

Conclusion

In this study, dendrochronology parameters, including tree-
ring and vessel diameter and cumulative measurements of 
tree-ring width and vessel diameter in the three time periods 
of the growing season was used to model and reconstruct 
the streamflow in the Khalkaee river of Iran. The statisti-
cal analysis through correlation analysis, variable impor-
tance, and partial dependence plots indicated significant 
relationships between chronology parameters and stream-
flow. Adopted machine learning methods (RF and XGB) 
have proven to be capable tools for streamflow modeling, 
given the enhanced performance of the models in the testing 
subset than LR method. The selection of suitable sites and 
tree samples are two critical parameters in dendrochronology 
studies. The trees were selected from Zelkova carpinifolia 
species that are highly sensitive to the presence of moisture 
and can better reflect the temporal variation of hydrologi-
cal parameters. The sampling trees were also selected from 
those near the Khalkaee river. The study provides a feasi-
ble and new approach for modeling and reconstruction of 
the streamflow. The adopted methodology is suitable for 
modeling and reconstructing the streamflow. According to 
the results, the presented methodology is more suitable for 
the streams with low flows and unstable discharge regimes. 
Because the maximum error in the predicted streamflow was 
observed in modeling the maximum flows and low flows, 
and high fluctuations in river discharge and especially, the 
occurrence of droughts increase the performance of mod-
eling using tree-rings and vessel features.

For the future, we suggest applying the presented method-
ology with more observation records for other rivers across 
the region or similar settings elsewhere.

Table 2   Performance of the 
models in the training and 
testing stage for streamflow 
modeling

NSE Nash–Sutcliffe efficiency, NRMSE normalized root mean squared error, R-squared coefficient of 
determination

NSE NRMSE R-squared

Training Testing Training Testing Training Testing

Extreme gradient boosting 0.98 0.81 0.13 0.43 0.98 0.87
Random forest 0.85 0.71 0.38 0.52 0.87 0.82
Multivariate regression 0.80 0.66 0.44 0.57 0.79 0.73
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Fig. 6   Performance of XGB, 
RF, and LR models on the train-
ing and test subset
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Fig. 7   Variable importance (VI) 
for the extreme gradient boost-
ing and random forest

Fig. 8   Partial dependence of the chronology data in extreme gradient boosting model
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