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Abstract
The soil position in the landscape reveals its formation history. Landscapes combine surface features and subsurface compo-
nents (parent material) of the earth, at which the soil inserts as a three-dimensional and dynamic natural body. The present 
research aimed to study the soil–landscape relationship in a sandstone-gneiss topolithosequence and the factors determining 
soil diversification in the State of Amazonas, Brazil. The study extended along a transect of 9253 m, covering the distance 
between the first and the last profile, for a total of five profiles opened. Profile selection considered landscape topography, 
from the highest to the lowest relief of the terrain. Soil profiles characterization and classification were based on morpho-
logical, chemical, and physical properties and the mineralogy of the clay fraction by X-ray diffraction (XRD). Lithological 
contrasts and landscape variations determined the different soil types along the topolithosequence. Morphological, physical, 
chemical, and mineralogical attributes also varied along the landscape. The relief and the parent material, sandstone-gneiss, 
were the main factors influencing the pedogenesis. Goethite (5–40 g  kg–1) was the predominant Fe oxide in all the soils, 
reflecting the low total iron content  (Fet ≤ 68 g  kg–1) of the soils and parent materials. The predominance of the sand fraction 
in all the studied profiles reflected the alluvial nature of the parent material, with the highest values (total sand > 800 g  kg–1) 
occurring in the convex creep slope. Knowing the geomorphic surfaces and the parent material was effective for understand-
ing the variation of the soil attributes along the landscape.

Keywords Amazonian soils · Pedogenesis · Physical attributes · Weathering · Mineralogy

Introduction

The soil is the product of the combinations of factors and 
formation processes determined by local conditions (Dias 
et al. 2016). The intensity of these factors and processes 
promotes progressive transformations in the parent material, 
which over time are expressed on the morphological, chemi-
cal, physical, and mineralogical properties of the soil (Anjos 
et al. 2007; Miguel et al. 2013; Silva et al. 2020). One of the 
main factors that influence the diversity and characteristics 
of Amazonian soils is the rapid weathering of the mineral 
material by the intense climate of the region, characterized 
by an extreme water regime and high temperatures (Dala-
merlinda et al. 2017). Therefore, identifying the interaction 
between these factors and their role in soil formation is nec-
essary (Campos et al. 2012a; Silva et al. 2020).

Soil position in the landscape reveals its formation history 
(Campos et al. 2011; Rodrigues et al. 2016; Capoane et al. 
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2017). Thus, the landscape reflects the soil underneath it, 
which, in turn, determines landscape features and patterns 
(Minasny and Mcbratney 2006). In general, the soil inherits 
the characteristics of its parent material. Nevertheless, soil 
attributes might variate within a local scale as a reflection 
of rock diversity (Silva et al. 2020) and differences along 
the toposequence. These determine the specific soil forma-
tion processes that occur, and consequently, soil develop-
ment (Campos et al. 2012a; Braga et al. 2019; Tunçay et al. 
2020). Finally, the relief also acts directly on the factors that 
influence soil characteristics, such as water dynamics and 
pedogenic processes, and is, therefore, determinant for the 
variability of soil attributes (Bockheim et al. 2005; Vascon-
celos et al. 2012; Li et al. 2015).

To better understand soil distribution in the landscape, a 
good comprehension of the concepts behind the soil–land-
scape relationship is crucial for the interpretation of the 
spatiotemporal variability of soil attributes and the visuali-
zation of dynamic processes such as the transport of water, 
solutes, and sediments (Sommer 2006; Campos et al. 2011). 
Despite the marked representation of the Middle Madeira 
River, the predominant physiographic environments are 
floodplains, native fields, and transition areas, dominated 
by Cambissolos, Argissolos, and Entisols. These variations 
might have a local scale, since in this exuberant landscape, 
different parent materials originate variations in soil classes 
and their respective mineralogical, morphological, chemical, 
and physical properties (Campos et al. 2012a; b).

Several authors have studied the direct effect of the par-
ent material composition on soil formation. Montanari et al. 
(2010) verified higher contents of goethite and kaolinite in 
a concave landform compared to linear and convex land-
forms. On the other hand, the authors also confirmed higher 
hematite contents in linear landforms. In a toposequence of 
Oxisols, Curi and Franzmeier (1984) found higher gibbsite 
concentration in the higher landscape positions. In the lower 
landscape positions, the authors reported the predominance 
of kaolinite associated with goethite of low mean crystal 
diameter. These results reinforce the importance of char-
acterizing soil mineralogy to comprehend the relationship 
between landscape and parent material. The latter is espe-
cially valid for Fe and Al oxides, influenced by the envi-
ronmental conditions and characterized by their long-term 
persistence in the soil (Kämpf and Curi 2000).

The diffusion of geotechnologies to elaborate pedologi-
cal maps in semi-detailed or detailed scales (Lacerda and 
Barbosa 2012) using soil distribution models that consider 
the triple interaction between landscape, soil, and parent 
material (Campos et al. 2007) represents an alternative to 
be applied. However, implementing these techniques in the 
Amazon is a big challenge given the territorial extension of 
the region. Nevertheless, previous studies indicate various 
characteristics and peculiarities of the Amazonian landscape 

and have revealed new directions for research regarding the 
soil–landscape relationship.

It is, therefore, essential to know the soil within the 
soil–landscape context, to better define its use suitability and 
limitations (Pedron et al. 2004; Carvalho Filho et al. 2010; 
Silva et al. 2020). This information can contribute to the 
strategic planning of land use, mitigating the risks of envi-
ronmental impacts, especially within the State of Amazonas, 
which is globally significant. The present research aimed to 
study the soil–landscape relationship in a sandstone-gneiss 
topolithosequence and the factors determining soil diversi-
fication in the State of Amazonas, Brazil.

Materials and methods

Characterization of the physical environment

The study area is located 150 km from the beginning of the 
Transamazonic Highway, municipality of Manicoré, State of 
Amazonas (08°08′12.6″ S and 61°50′06.5″ W). It belongs to 
the hydrographic basin of Amazonas (Fig. 1). The collection 
of soil samples occurred between April and May, during the 
autumn, which is regionally known as the Amazonian win-
ter. According to the Köppen classification (Alvares et al. 
2013), the regional climate is Am or rainy tropical (monsoon 
rains) and has a short dry period. The temperature varies 
from 25 to 27 °C, and the average annual precipitation is 
2.500 mm. The rainy season begins in October and extends 
until June, with the relative air humidity ranging between 
85 and 90%.

The relief characterizes by the presence of plateaus in the 
highest parts. These have flat topographic surfaces and bor-
ders marked by aligned hills and ridges. On the other hand, 
pediplains occupy the lower areas (CPRM 2001). Regarding 
the geology, the study area extends over Rondonian Granites 
characterized by the presence of muscovite, biotite, adam-
ellites, and granodiorites of intrusive cratogenic origin, in 
the form of stocks and batholiths (Brasil 1978; Melo et al. 
2018). According to the ZEE (2008) and Campos et al. 
(2011), the regional soils are Oxisols. The vegetation in the 
region is dense, dominated by medium and large trees with 
a height of up to 50 m (Fig. 2).

The study extended along a transect of 9253 m, from the 
top of the relief towards the deposition foothill. Measure-
ments of the altitudes were carried out along this transect to 
make the altimetric profile. Hillside segments were identi-
fied based on the model of Dalrymple et al. (1968) using the 
variation of the terrain slope (Fig. 3).

Five profiles were selected and opened, considering topo-
graphic and vegetation variations along the toposequence 
(Fig.  3). Soil characterization was as follows: P1 = top 
(08°08′46.0″ S and 61°49′25.1″ W); P2 = colluvial footslope 
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(08°08′41.8″ S and 61°49′33.9″ W); P3 = convex creep slope 
(08°08′18.3″ S and 61°49′56.3″ W); P4 = transport foothill 
(08°07′59.6″ S and 61°50′17.4″ W); and P5 = deposition 
foothill (08°07′59.6″ S and 61°50′17.4″ W). The identi-
fication, morphological description, and sampling of the 
horizons within the soil profiles followed the methodology 
proposed by Santos et al. (2018). Soil classification followed 
the criteria established by the Brazilian Soil Classification 
System (Santos et al. 2018), the World Reference Base of 
Soils (IUSS Working Group WRB 2015), and Soil Taxon-
omy (2014).

Particle size analysis

The pipette method was used to determine particle size in 
soil samples through chemical and mechanical dispersion 
with a 0.1 mol  L−1 NaOH solution and low rotation mechani-
cal stirring for 16 h, respectively (Donagema et al. 2017). 
The clay fraction was separated by gravitational sedimenta-
tion, the coarse and fine sand fraction by sieving, and the silt 
fraction was calculated by difference.

Fig. 1  Location of the profiles studied in the municipality of Manicoré in the state of Amazonas, Brazil

Fig. 2  Images of the collection environment. A–Savanna vegetation; B–Forest vegetation; C–Cerrado vegetation
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Chemical analyses

The total iron content  (Fet) of the clay fraction was deter-
mined by selectively dissolving the soil in sulfuric acid 
 (H2SO4) in a 1:1 ratio. The latter is a classic procedure in 
the taxonomy of Brazilian soils in which tropical climate 
conditions induce Fe concentration in the clay fraction (Don-
agema et al. 2011). Crystalline free iron  (Fed) was extracted 
with sodium dithionite–citrate–bicarbonate (DCB) at 25 °C 
for 16 h and determined according to Mehra and Jackson 
(1960). Finally, poorly crystalline iron oxides (Feo) were 
extracted with ammonium oxalic acid and quantified accord-
ing to the methodology proposed by McKeague and Day 
(1966).

Soil pH was determined in water and KCl (1.0 mol  L−1), 
the latter with a KCl to soil solution ratio of 1:2.5 (Don-
agema et al. 2017). The exchangeable cations  Ca2+,  Mg2+, 
and  Al3+ were extracted with 1.0 mol  L−1 KCl and measured 
by atomic absorption spectroscopy. The hydrogen ion and 
 Al3+ were extracted with 0.5 mol  L−1 calcium acetate at pH 
7.0 and determined by titration (0.025 mol  L−1 NaOH) (Don-
agema et al. 2017). Organic carbon was determined through 
the wet oxidation method (Walkley and Black, 1934).

The anion exchange resin (AER) was used to extract and 
quantify bioavailable particulate phosphorus (Pbp). The 
principle of the AER is the continuous P removal from the 
solution through exchange with bicarbonate from the resin, 
creating a concentration gradient that forces P release from 
the surface of the colloids until an electrochemical equilib-
rium between the soil and the AER is reached (Skogley and 
Dobermann 1996).

Bioavailable particulate P extraction followed the meth-
odology developed by Kroth (1998). For this, 0.5 g of soil 
(1 mm) was added in 15 mL falcon tubes containing 10 mL 

of distilled water and a sheet of AER saturated with 0.5 mol 
 L−1  NaHCO3. These tubes were stirred for 16 h on an end-
over-end stirrer (33 rpm) followed by the sheet removal 
and washing in distilled water and subsequent dilution in 
10 mL of 0.5 mol  L−1 HCl. The tubes remained uncapped 
for 90 min and then closed and stirred again for 30 min in a 
horizontal stirrer. Subsequently, a 3 mL aliquot was taken 
from the extract to determine P content (Murphy and Riley 
1962). The sum of bases (SB), the cation exchange capac-
ity (CEC), and base (V) and aluminum (m) saturation were 
calculated based on the results of the chemical analyses.

Clay mineralogical analysis

The powder X-ray diffraction method served to characterize 
the minerals of the clay fraction: hematite (Hm), goethite 
(Gt), kaolinite (Kt), and gibbsite (Gb). The latter required 
concentrating the iron oxides by boiling the clay fraction 
in NaOH (Norrish and Taylor 1961) followed by derrifica-
tion (Mehra and Jackson 1960). Sample diffraction had a 
scanning speed of 1° 2θ  min−1 using a Mini-Flex Rigaku 
II (20 mA, 30 kV) equipped with Cu Kα radiation. The 
Hm/(Gt + Hm) ratio was estimated by comparing the Hm/
(Gt + Hm) peak areas with the proportions obtained from the 
standard Gt–Hm mixtures. The percentage of Hm and Gt in 
the clay fraction was expressed as the difference between 
free (Fed) and poorly crystalline iron (Feo).

The peak areas of Gb (002) and Kt (001) reflections were 
used to calculate the Kt/(Kt + Gb) ratio. The calculus of the 
content of isomorphic substitution of iron by aluminum 
in Gt used the equation mol  mol−1 = 1730–572 c (Schulze 
1984). The content of isomorphic substitution of iron by 
aluminum in Hm was calculated through the equation 
mol  mol−1 = 3098.8–615.12 a0 (Schwertmann et al. 1989). 

Fig. 3  Schematic profile of the terrain topography and soils in the 
sandstone-gneiss topolithosequence in the Amazonas state, Brazil. 
Cambissolo Háplico (CXvd), Neossolo Regolítico (RRd), Neossolo 

Quartzarênico (RQo), Plintosolo Pétrico (FFc) and Agissolo Amarelo 
(PAd) in the Amazonas state, Brazil
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The specific surface area (SSA) of Gt was estimated by the 
formula SSA (Gt) = (1049/MCD100

−5))  (m2  g−1) (Schulze 
and Schwertmann 1984),  MCD100 =  MCD110 × 0.42  nm 
(Kämpf 1981), and the SSA of Hm was estimated by the 
formula SSA (Hm) = 2 × (r + h) × d  (m2  g−1) (Schwertmann 
and Kämpf 1985). The mean crystal diameter (MCD) of Hm 
and Gt was calculated from the width at half-height (WHH) 
and the position of mineral reflections using the Scherrer 
equation (Klug and Alexander 1974).

Results

Soil distribution in the landscape

The area had a predominately plain physiognomy with 
minimal relief variations, as typical of Amazonian envi-
ronments where a gradual field to forest transition occurs. 
The lowest position of the terrain characterizes by sea-
sonal flooding, and the dominant vegetation consists of 
small shrub species. Dalrymple et al. (1968) established 
hypothetical hillside units, which may be partially absent 
or repeated. In this study, five hillside segments were iden-
tified and mapped as a representative toposequence of the 
region (Fig. 3).

The first three landscape segments–top, colluvial foot-
slope, and convex creep slope–are close to each other and 
range from 120 to 125 m of elevation. According to Silva 
et al. (2020), the steep slope of the landscape favors the 
movement and transport of sediments and water, condi-
tioning the instability of soil attributes and, therefore, 
originating different soil classes within the same area. 
The transport foothill represents the third segment. It has 
119 m of altitude and might have formed by relief micro-
variations of the previous section. Its residual erosional 
character extends from the edges of the lower third until 
the fifth segment. The fifth segment or deposition foot-
hill varies from 114 to 116 m of altitude, has different 
topographic characteristics, and can be considered a stable 
geomorphic environment.

The identification of five different soil classes along 
the studied segments of the landscape indicates the pres-
ence of more than one parent material during pedogen-
esis. The diverse sandstone-gneiss rocks from which these 
soils originated suggest the parent material as the principal 
source of soil attribute differentiation. Knowing the differ-
ent parent materials in a landscape helps understand the 
variability of soil attributes, confirming that the geology 
explains the local relief and the soil patterns (Marques Jr 
and Lepsch 2000; Campos 2012c).

Morphological and textural attributes

According to the genesis and classification of the soils, all 
the profiles had a moderate A surface diagnostic horizon 
(Table 1). Given the topographic position of the top segment 
(P1), its soil had an incipient B diagnostic subsurface hori-
zon, with no evidence of a predominant pedogenic process. 
The P1 soil was classified as CAMBISSOLO HAPLICO Ta 
Distrófico típico ((Ochric, Arenic) Dystric Leptic Cambisol).

Soils of the colluvial footslope (P2) and convex creep 
slope (P3) were poorly evolved, formed by mineral or 
organic material, with less than 20 cm of thickness, and 
lacking a diagnostic B horizon. In the P2 segment, the 
soil was classified as NEOSSOLO REGOLÍTICO ((Ochric, 
Arenic, Dystric) Cambic, Lithic, Leptosol), given its lytic 
contact (depth > 50 cm) and the occurrence of an A hori-
zon over a C or Cr horizon. The soil of the P2 segment 
had altered primary minerals, with gravels derived from 
the ACr horizon (12–35 cm) and the presence of semi-
weathered rock fragments (Santos et al. 2013). In the P3 
segment, the soil was classified as NEOSSOLO QUARTZ-
RÊNICO ((Ochric, Arenic) Dystric Regosol) with no lytic 
contact within the first 50 cm of depth and an A to C 
sequence of horizons. The texture was sand to loamy sand 
in all horizons up to a depth of 150 cm, mainly consisting 
of quartz with coarse and fine sand fractions of whitish 
colors (Santos et al. 2018).

Seasonal variations of the water table had a marked 
influence on the soil of the transport foothill (P4), which, 
therefore, presented small and contrasting reddish mottles 
in the subsurface horizons. In association with these mot-
tles, plinthite and petroplinthite were also present in amounts 
varying from common to abundant, which numerically cor-
responds to 15–40% of the soil volume. These attributes 
indicate the occurrence of the pedogenic process of plinthi-
zation and represent the diagnostic character of the plinthic 
horizon, according to the Brazilian Soil Classification Sys-
tem (SiBCS) (Santos et al. 2013). From the attributes and 
horizons identified, the profile was classified, at the suborder 
level, as PLINTOSSOLO PÉTRICO Concrecionário típico 
((Ochric, Dystric, Loamy) Petric, Plinthosol).

Finally, the soil profile opened in the deposition foothill 
(P5) was classified as ARGISSOLO AMARELO Distrófico 
abrúptico (Ochric, Hyperdystric, Clayic) Chromic, Abrup-
tic, Acrisol), presenting a textural B horizon dominated by 
colors with hues 10 YR and 7.5 YR in the first 100 cm. In 
this soil, the slope was determinant for the selective removal 
of clay, contributing to the formation of a textural gradi-
ent. In summary, the mineralogical, physical, and chemical 
attributes of the soils along the topolithosequence accurately 
elucidated the characteristics of the sandstone-gneiss rocks 
from which they originated.
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Soil color in the surface horizons ranged from very dark 
grayish brown to dark brown (Table 1). However, subsurface 
horizons had a marked differentiation, varying from yellow-
ish-brown to very pale brown. The grayish tones of most 
horizons are due to the low concentration of iron oxides 
and the predominance in the sand fraction of light-colored 
minerals, such as kaolinite and quartz (Santos et al. 2018). 
The results confirm this pattern and the predominance of 
goethite in all the soils, including the Plinthosol with higher 
hematite contents (Table 3).

Considering the A horizon, the structure of the P1 and P2 
profiles was weak, small, granular, with a sandy texture con-
ditioned by the sandstone, which, in turn, obstructs particle 
bonding (Santos et al. 2018). On the other hand, the gneiss-
derived soils had a higher structural variation, with the P3 
classified as weak, small to medium, granular, the P4 as a 
moderate, medium to large, granular, and the P5 as weak, 
small to large, granular. The increased variability of the A 
horizon in the P3, P4, and P5 soils revealed strong land-
scape influence with a low subsurface structural variation. 
A possible explanation relies on the dynamism or sediment 
transport and movement in the convex creep slope, transport 
foothill, and deposition foothill. The steep slope of the land-
scape contributes to differentiate soil structure, especially in 
the superficial horizons (Bernini et al. 2013).

According to Silva et al. (2001), the topographic position 
conditions soil drainage and is, therefore, strongly related to 
the type of structure. Moderately to well-drained soils tend 
to have granular or angular and subangular blocky structures, 
while poorly to imperfectly drained soils generally exhibit 
a standard structure in polygonal prisms. Relief conditions 
also influence several soil attributes since the slope creates 
complex transport patterns of water and solutes, which act 
on soil profile development (Campos et al. 2012a).

Except for the Neossolos, which had a sandy constitution, 
all profiles had surface horizons with a sandy loam texture 
(Table 1). The sandstone parent material from the Palmeiral 
Formation and the Nova Campo Verde Complex explains 
the dominance of the sand fraction in these soils. However, 
attention should be given to the increased clay content in 
the Argissolo within the Bt1–Bt2–Btf horizon. As verified 
by Campos et al. (2011) and confirmed in the present study, 
the Argissolo and the Plintossolo, given their position in the 
landscape, might have undergone a rejuvenation process, 
with probable clay loss from their surface horizons and con-
sequent abrupt textural change.

Along the toposequence, morphological differences 
between the soil profiles indicated the effect of diverse pedo-
genic factors and processes and confirmed the soil–land-
scape relationship. According to Ribeiro et al. (2012), the 
constitution and formation conditions of the soil determine 
its morphology. Therefore, soil morphology represents 
a good indicator of previous pedogenic processes and 

environmental conditions and allows inferring and inter-
preting soil and plant responses to management practices.

Regarding particle size composition, sand predominated 
over the other fractions, ranging from 207 to 891 g  kg−1 
(Table 1). The high quartz contents of the parent material 
(sandstone) might explain these results. High total sand 
contents were also reported by Schiavo et al. (2010), who 
characterized and classified soils developed from sandstones 
of the Aquidauana Formation.

Silt contents in the A horizon ranged from 53 to 
306 g  kg−1, increasing with soil depth (Table 1). Young 
soils, which are still undergoing formation processes, tend 
to have low silt contents. Since the studied soils formed 
from alluvial sediments, particle selection may have 
occurred, which, in turn, explains the presence of litho-
genic (more resistant to changes) and pedogenic materials 
(with a higher degree of crystallinity). Different from the 
sand fraction, the clay fraction increased gradually with 
soil depth and ranged from 48 to 558 g  kg−1. Neverthe-
less, the latter cannot be attributed to the occurrence of 
the pedogenic process of eluviation and illuviation and 
might be more likely given by selective removal from 
surface horizons (sandier), with clay accumulation in the 
subsurface.

The Neossolos presented higher proportions of coarse 
fractions (> 2 mm) with consolidated ferruginous material 
(plinthite and petroplinthite). Decreased levels of the water 
table might have enhanced the drainage, as suggested by 
the presence, within the first 48 cm of the soil, of a more 
reddish hue (2.5 YR) than in the other profiles (Table 1). 
The predominance of coarse sand fractions combined 
with the remarkable presence of gravels indicates that the 
weathering processes in this soil did not promote a signifi-
cant fragmentation of these fractions (Lima et al. 2008).

In the transport foothill (P4), clay contents ranged from 
95 to 99 g  kg−1 in the A, AB, and BA horizons, reaching 
values of up to 548 g  kg−1, 558 g  kg−1, and 567 g  kg−1 in 
the Bt1, Bt2, and Btf horizons, respectively. The marked 
textural differentiation between the A and Bt1 horizons 
characterizes an abrupt textural change with a signifi-
cant increase of clay compared to the overlying horizons 
(Table 1).

At the top (P1), colluvial footslope (P2) and con-
vex creep slope (P3), the silt-to-clay ratio (S/C) ranged 
from 1.43–1.50, 1.19–1.43, and 0.94–1.86, respectively 
(Table 1), associated with the lower development of these 
soils. The transport foothill (P4) had the lowest S/C ratio, 
with values between 0.7 and 0.8. On the contrary, the dep-
osition foothill presented the highest ratios, ranging from 
1.49 in the surface horizons to 0.41 in the deeper ones. 
According to Campos et al. (2011), higher S/C values are 
due to clay loss or slight increases in the silt fraction, sug-
gesting that minor relief variations provide relative losses 
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or gains and, probably not given by changes in the parent 
material.

Clay and silt contents tended to increase towards the 
youngest geomorphic surfaces, this is, from the top (P1) 
towards the transport (P4) and deposition foothills (P5). The 
opposite direction of this pattern compared to that of the 
total sand reflects the recent sedimentary nature of these 
fractions, since the soils of these geomorphic environments 
are closely related to the parent material. Similar results 
were reported by Campos et al. (2012b) when studying the 

soil-geomorphic surface relationships of a floodplain-upland 
toposequence in the region of Humaitá, Amazonas, Brazil.

Variations of chemical attributes

The values of pH ranged from 4.17 to 5.48  (H2O) and 3.81 
to 5.70 (KCl), especially in the top (P1) and deposition foot-
hill (P5), presenting the highest acidity content in the sur-
face horizon. According to Campos et al. (2012b), the high 
regional precipitation contributes significantly to base leach-
ing, increasing soil pH. The balance of negative net charges, 

Table 2  Soil chemical 
attributes in a sandstone-gneiss 
topolithosequence in the 
Amazonas state, Brazil

1 Brazilian Soil Classification System (Santos et al. 2018)
2 World Reference Base of Soils (IUSS Working Group WRB 2015)
3 Soil Taxonomy (Soil Survey Staff 2014)
SB sum of bases; CEC cation exchange capacity; V base saturation; m: aluminum saturation; OC organic 
carbon

Horizon pH Ca2+ + Mg2 K+ SB Al3+ H + Al CEC m V P resina OC

H2O KCl cmolc  dm−3 % mg  dm−3 g  kg−1

Top–1Cambissolo Háplico Ta Distrófico léptico–CXvd / 2(Ochric, Arenic) Dystric Leptic Cambisol / 
3Inceptisol

 A 4.79 3.81 1.00 0.15 0.12 1.27 4.3 19.42 21 77 6 4.6 5.93
AB 4.94 4.50 0.20 0.14 0.11 0.35 4.4 19.38 20 93 2 3.1 2.65
 Bi 4.62 4.42 0.30 0.09 0.12 0.51 4.9 18.48 19 91 3 2.8 3.14
 BCr 5.11 4.34 0.20 0.06 0.07 0.33 4.8 19.32 20 94 2 2.4 1.59

Coluvial footslope–1Neossolo Regolítico Distrofico leptico–RRd / 2(Ochric, Arenic, Dystric) Cambic, 
Lithic, Leptosol / 3Entisol

 A 4.17 3.89 0.40 0.17 0.11 0.68 5.5 18.21 19 87 4 3.9 4.74
 ACr 4.94 4.30 0.20 0.14 0.09 0.43 5.4 16.23 17 91 3 2.7 3.03
 Cr/Bi 5.19 4.25 0.30 0.14 0.09 0.53 5.2 14.47 15 89 4 2.8 2.63

Convex creep slope–1Neossolo Quartzrênico Ortico típico–RQo / 2(Ochric, Arenic) Dystric Regosol / 
3Entisol

 A 4.91 4.16 0.20 0.12 0.09 0.41 4.3 19.17 20 91 2 2.6 4.81
  C1 5.2 4.70 0.40 0.12 0.06 0.58 5.3 17.25 18 90 3 2.0 3.46
  C2 4.97 4.43 0.40 0.12 0.08 0.60 5.5 15.88 16 90 4 2.1 1.97
  C3 4.72 4.16 0.20 0.12 0.08 0.40 5.7 17.77 18 93 2 2.2 0.63
 Cr 4.8 4.13 0.50 0.15 0.10 0.75 5.6 18.21 19 88 4 2.1 0.01

Transport foothill–1Plintossolo Pétrico concrecionário típico–FFc / 2(Ochric, Dystric, Loamy) Petric, 
Plinthosol / 3Ultisol

 A 4.95 3.97 0.40 0.17 0.12 0.69 3.9 26.03 27 85 3 3.1 5.10
 AB 5.03 4.19 0.20 0.06 0.09 0.34 3.9 23.73 24 92 1 1.9 4.24
 BAf 5.20 4.17 0.60 0.17 0.11 0.88 3.1 18.86 20 78 4 1.4 3.76
 Bf 5.35 4.42 0.20 0.09 0.06 0.35 3.5 19.43 20 91 2 1.7 3.26
 BCr 5.48 4.52 0.30 0.12 0.06 0.48 3.5 18.15 19 88 3 0.7 2.91

Deposition foothill–1Argissolo Amarelo Distrofico abruptico–PAd / 2(Ochric, Hyperdystric, Clayic) 
Chromic, Abruptic, Acrisol / 3Ultisol

 A1 4.23 3.88 0.30 0.15 0.13 0.58 4.3 27.72 28 88 2 5.8 6.98
 A2 4.33 4.06 0.70 0.12 0.10 0.92 4.3 24.98 26 82 4 3.3 4.33
 AB 4.74 4.15 0.20 0.06 0.06 0.32 4.9 18.66 19 94 2 2.0 3.72
  Bt1 4.83 4.22 0.70 0.09 0.07 0.86 4.2 26.5 27 83 3 2.1 3.16
  Bt2 4.8 4.25 0.60 0.17 0.06 0.84 4.6 25.86 27 85 3 2.2 3.14
 Btf 4.23 3.88 0.30 0.15 0.13 0.84 4.9 24.73 26 85 3 2.1 1.06
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expressed by ΔpH in the B horizon, showed the highest val-
ues at the top (P1), which corresponds with the trend of 
poorly evolved soils in the youngest surface (Table 2).

The bases  Ca2+,  Mg2+, and  K+ ranged from 0.20 to 1.0 
 cmolc  kg−1 (Table 2). In general, these elements had only 
slight variations along the toposequence, given their reduced 
levels in the minerals of sandstone-gneiss and the regional 
climate conditions, which favor advanced soil weathering. 
Moreover, the predominance of oxidic minerals generated 
positive charges, which, allied with the sandier texture, pro-
vided the movement or loss of these cations to subsurface 
horizons. This pattern, however, does not apply to K, which 
remained at higher concentrations near the soil surface. 
According to Neves et al. (1961) and Prietzel et al. (2020), 
this is a characteristic attributed to the low diffusion power 
electrostatically adsorbed to negative charges of organic 
matter or the formation of sphere complexes external to the 
solid phase.

Exchangeable aluminum  (Al3+) content had no signifi-
cant variation along the topolithosequence, with low values 
recorded in all profiles, mainly in the A horizon. In addition, 
the potential acidity  (H+ and  Al3+) values were high and 
increased in depth along the topolithosequence (Table 2). 
Possibly, the intense rainy season of the region and the 
unimpeded drainage were determining climate factors for 
edaphic acidity as soil depth increased (Campos et al. 2012).

Along the topolithosequence, organic carbon (OC) con-
tents were higher in the surface horizons because of the 
concentration of organic matter from the decomposition 
of native vegetation residues (Santos et al. 2012). Cation 
exchange capacity (CEC) ranged from high to very high 
(12–28  cmolc  dm−3). The same trend occurred for the sum 
of bases (SB), which was higher in the A horizon because 
of the levels of OC and the low clay content and activity.

Due to the low activity of the clay fraction, all segments 
were classified as dystrophic (Table 2), which is the result 

of base depletion  (Ca2+,  Mg2+, and  K+). Other authors have 
reported similar results in the Amazonian region (Campos 
et al. 2012a; Santos et al. 2012; Martins et al. 2006). The 
geomorphic surface, that is, the landscape did not influence 
the variation of the SB. It is, therefore, inferred that the soil 
inherited the chemical poverty from the gneiss and sand-
stone rocks, revealing the parent material as the determi-
nant formation factor for the dystrophic character of the soils 
along the topolithosequence. These results differ from those 
reported by Campos et al. (2010), who verified a higher 
degree of soil development and dominance of dystrophic 
soils at the top positions of the landscape.

Soils along the topolithosequence were Álico, with alu-
minum saturation (m) ranging from 51 to 91%. These values 
resemble those reported by Martins et al. (2006) for soils in a 
field to forest transition in the region of Humaitá, Amazonas, 
Brazil. This is an inherent characteristic of the sandstone-
gneiss, which has by nature an acidic character. As men-
tioned, the  Al3+ richness justifies the formation of gibbsite 
in the Neossolos (P2 and P3).

Available phosphorus (P) contents did not vary along 
the topolithosequence and were on average 2.0 mg  kg−1, 
decreasing with soil depth. According to Silva et al. (2006), 
P in the deeper horizons remains stable due to its low mobil-
ity. The strong affinity of iron oxides, especially goethite, 
with P also promotes its retention (Pinto et al. 2013; Rotta 
et al. 2015). The high isomorphic substitution (IS) and SSA 
of Gt in goethite-rich soils, like those in the present study, 
also potentialize P adsorption. However, available P in the A 
horizon of the top (P1), transport (P4), and deposition (P5) 
foothills were 4.6, 3.1, and 5.8 mg  kg−1, respectively, rep-
resenting the highest values in the topolithosequence. The 
latter could be associated with the accumulation of OC as 
litter on the soil surface horizon. The OC acts as a physi-
cal barrier, inhibiting the direct contact of P with the active 

Table 3  Crystallographic attributes of soil minerals of a sandstone-gneiss topolithosequence in the Amazonas state, Brazil

Fet total iron; Feo poorly crystalline iron; Fed crystalline iron; MCD mean crystal diameter; WHH width at half-height, SSA specific surface 
area, IS isomorphic substitution; Gt goethite; Hm hematite; Kt kaolinite; Gb: gibbsite; ni not identified

Soil Content Ratio MCD WHH SSA IS

g  kg−1 °2θ m2  g−1 mol  mol−1

Fet Feo Fed Gt Hm Kt/(Kt + Gb) Feo/Fed Fed/Fet Gt110 Gt111 Hm110 Hm012 Kt Gb Gt Hm Gt Hm

CXvd_AB 36 7.4 17 24 5 0.56 0.44 0.47 20.6 9.4 21.6 31.1 0.5 0.25 116.3 54.4 0.43 0.07
CXvd_Bi 28 5.6 12 21 5 0.45 0.47 0.43 15.2 8.9 16.4 54.6 0.51 0.31 159.7 79.9 0.15 0.02
RRd_ACr 12 3.1 5 5 1 0.87 0.62 0.42 25.1 18.2 25.4 28.3 0.5 0.17 94.6 41.3 0.38 0.04
RQo_Cr 9 1.8 3 5 1 0.76 0.60 0.33 25.1 13.9 12.8 36.6 0.7 0.28 94.6 89.4 0.33 0.02
FFc_Bf 35 4.2 21 41 9 0.37 0.20 0.60 18.5 14.9 22.8 30.2 ni 0.34 130.1 47.2 0.39 0.12
FFc_BAf 41 4.9 25 40 9 0.41 0.20 0.61 10.4 7.8 15 89.6 0.48 0.3 234.3 78.6 0.31 0.11
PAd_Bf 68 8.2 52 39 9 0.63 0.16 0.76 23.7 11.9 13.9 63 0.55 0.28 100.5 77.5 0.36 0.17
PAd_Btf 64 7.7 41 25 5 0.60 0.19 0.64 28.4 21.2 17.7 49.1 0.5 0.27 82.93 63.5 0.44 0.13
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sites, therefore, enabling P occurrence in the available soil 
fraction (Fink et al. 2014).

Fe content and mineralogical attributes

The contents of total Fe  (Fet, 9–68 g  kg–1), Fe extracted from 
crystalline oxides  (Fed, 3–52 g  kg–1), and poorly crystalline 
Fe oxides  (Feo, 1.8–8.2 g kg –1) were low (Table 3) (Kämpf 
and Curi 2000). Lima et al. (2006) and Aquino et al. (2016) 
reported similar results for Amazonian environments. The 
low  Fet is typical of the naturally poor levels of Fe miner-
als in the sandstone and gneiss rocks from which the soils 
derived and frame these soils as hypoferric  (Fet ≤ 80 g  kg–1) 
according to the current taxonomic system of Brazilian 
soils–SiBCS (Santos et al. 2018). The levels of  Fed were 
higher than those of  Feo, especially in the most weathered 
soils (PAd) and in those with the presence of plinthite, a 
Fe-rich clay agglomerate, in the diagnostic B horizon of FF. 
Although lower than Fed, high Feo contents marked the soils 
CXvd_AB (7.4 g  kg–1), PAd_Btf (7.7 g  kg–1), and PAd_Bf 
(8.2 g  kg–1). The sandy texture and high levels of organic 
matter in the superficial horizons of these soils explain their 
Feo contents. These characteristics can promote Fe loss, 
inhibiting the crystallization of Fe oxides, this is, the for-
mation of poorly crystalline compounds (Schwertmann and 
Taylor 1989; Anjos et al. 2007; Miguel et al. 2013).

The predominance of  Fed culminated in low  Feo/Fed val-
ues (≤ 0.5), mainly for the B horizon of the FF and PAd due 
to the presence of plinthite. Higher  Feo/Fed values might 
reflect the occurrence of the poorly crystalline Fe oxide fer-
rihydrite in the system, mainly in RQo_Cr and CXvd_Bi, 
indicating water stagnation in the profile of these soils. The 
crystalline Fe forms (hematite and goethite) found as plin-
thite or within pretro-plinthite might dissolve, giving place 
to a new generation of poorly crystalline Fe oxides, such as 
ferrihydrite, for instance (Coelho and Vidal-Torrado 2003; 
Miguel et al. 2013).

The  Fed/Fet ratio indicated different degrees of pedo-
genesis along the topolithosequence (Table 3). In general, 
the lower the  Fed/Fet ratio, the higher the proportion of Fe 
released through the weathering of lithogenic minerals for 
the neoformation of pedogenic Fe oxides such as goethite 
and hematite, which are the main constituents of tropical 
soils (Silva et al. 2020). More than 50% of the  Fet was rep-
resented by  Fed, which associated with the reduction of the 
 Fed/Fet ratio indicated higher pedogenesis following the 
sequence PAd_Bf > PAd_Btf > FFc_BAf > FFc_Bf > CXvd_
AB > CXvd_Bi > RRd_ACr > RQo_Cr. Increased Fed val-
ues are associated with good vertical drainage and a marked 
chemical transformation in soils favorable to the crystallin-
ity of pedogenic Fe oxides such as goethite and hematite 
(Kämpf and Curi 2000; Lima et al. 2006; Cornell and Schw-
ertmann 2003; Camelo et al. 2018; Poggere et al. 2018; Silva 

et al. 2020). Finally, Fe contents, although low, proved to be 
sensible environmental pedoindicators, as attributed by Silva 
et al. (2020) when evaluating the influence of the parent 
material and the cause–effect relationship of landscape dis-
section on soil genesis and the mineralogical variability of 
the clay fraction in basalt-sandstone Brazilian environments.

The minerals kaolinite (Kt), gibbsite (Gb), hematite 
(Hm), and goethite (Gt) were all present in the clay frac-
tion of the diagnostic and transitional B horizons (Table 3). 
Along the toposequence, the Fe oxides Hm and Gt followed 
the order: transport foothill (9–41 g  kg−1) > deposition foot-
hill (5–39 g  kg−1) > top (5–24 g  kg−1) > colluvial footslope 
and convex creep slope (1–5 g  kg−1). Among the iron oxides, 
Gt was present in the clay fraction of all the studied soils, 
which is given by the iron poverty of the sandstone-gneiss 
sediments (Correa et al. 2008; Santos et al. 2010; Silva et al. 
2020; Brito et al. 2021). This lithological condition might 
have favored Gt formation (Barrón and Torrent 2002; Silva 
et al. 2020), as suggested by the low Hm contents, with a 
maximum value of 9 g  kg−1 in the topolithosequence.

The crystallographic parameters MCD, WHH, SSA, 
and IS reflected the peculiarities of the topolithosequence 
(Table 3). The mean crystal diameter (MCD) in the  Gt110 
and  Gt111 peaks varied from 10 to 28 nm and 9 to 21 nm, 
respectively. These values were lower than those detected 
for the  Hm111 and  Hm012 peaks, which were 12–25 nm and 
30–89 nm, respectively. Overall, MCD values revealed the 
persistence of crystalline Hm over Gt, as commonly reported 
for tropical soils (Inda Jr and Kämpf 2005; Barbieri et al. 
2014). The latter was evident in the transport foothill (P4), 
where  Hm012 peaks were well-defined and narrow (Fig. 4). 
The climatic conditions of the Amazonian region, especially 
precipitation and temperature, combined with the naturally 
high contents of OM, the acid pH (Table 2), and the intense 
microbial activity, increase Al presence in the goethite struc-
ture and, in turn, decreases its crystallinity. Except for the 
top segment (P1), the isomorphic substitution (IS) along the 
topolithosequence surpassed 0.33 mol  mol−1, indicating the 
occurrence of markedly weathered, non-hydromorphic, and 
acid soils (high Al activity) (Table 2).

These conditions justify the persistence of Gt with high 
Fe substitution (r = 0.065) by Al (r = 0.053), which promoted 
the contraction of the unit cell and, consequently, increased 
the specific surface area (SSA) that ranged between 82 and 
234  m2  g−1 in Gt and 41–89  m2  g−1 in Hm. These results are 
consistent with previous research in Brazilian soils (Melo 
et al. 2001; Correa et al. 2008) since the higher IS and SSA 
values in Gt reflect its higher structural capacity to accom-
modate Al compared to Hm (Schwertmann and Taylor 1989; 
Carvalho Filho et al. 2015).

Iron oxides concentrated in the soils of each landscape 
segment following the order: transport foothill (P4) > depo-
sition foothill (P5) > top (P1) > convex creep slope (P3) and 
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colluvial footslope (P2) (Table 3 and Fig. 4). The highest 
levels of Fe oxides, especially Hm, in the Plintossolo (P4), 
are given by the increased iron contents in the BAf and 
Bf horizons, characterized by the presence of ferruginous 
concretions, as typical of Amazonian Plintossolos (Cam-
pos et al. 2012). Even in poorly developed soils such as the 
RQo_Cr, marked by the occurrence of lytic contact (weak 
rock or outcropping saprolite), well-defined peaks of Gt 
formed (Fig. 4). This fact was already expected since goe-
thite is the first Fe oxide that forms in the initial horizons 
close to the rock during the early stages of pedogenesis (Curi 
and Franzmeier 1984; Silva et al. 2020).

The Kt/(Kt + Gb) ratio indicated Gb as an important min-
eralogical constituent of the studied soils, except for the top 
and the deposition foothill (P5) (Table 2 and Fig. 5). The low 
Kt contents or even its absence in the transport foothill (P4) 
might reflect the disruption of Kt nucleation probably due 
to increased contents of iron oxides as previously reported 
by Gidhin et al. (2006). Consequently, Kt had higher width 
at half-height (WHH) (0.483–0.703 nm) than Gb crystals 
(0.273–0.307 nm). This result indicates that Gb crystals are 
much more crystalline than Kt, which is characteristic of 
highly weathered soils (Ghidin et al. 2006; Camargo et al. 
2008), where low Si concentrations favor the formation of 
Gb crystals in the soil (Hsu 1989).

Fig. 4  X-ray diffractograms of 
the clay fraction for hematite 
(Hm) and goethite (Gt) in 
the profiles of Cambissolo 
Háplico (CXvd-AB; CXvd-
Bi), Neossolo Regolítico 
(RRd-ACr), Neossolo Quart-
zarênico (RQo-Cr), Plintosolo 
Pétrico (FFc-Bf; FFc-BAf) and 
Argissolo Amarelo (PAd-Bt; 
PAd-Btf) in the Amazonas state, 
Brazil

Fig. 5  Pattern of X-ray dif-
fractograms of the clay fraction 
for kaolinite (Kt) and gibbsite 
(Gb) in the profiles of Cam-
bissolo Háplico (CXvd-AB; 
CXvd-Bi), Neossolo Regolítico 
(RRd-ACr), Neossolo Quart-
zarênico (RQo-Cr), Plintosolo 
Pétrico (FFc-Bf; FFc-BAf) and 
Argissolo Amarelo (PAd-Bt; 
PAd-Btf) in the Amazonas state, 
Brazil
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The proportions of Kt, as expressed by the [Kt/
Kt + Gb > 75] ratio, and the low contents of Fe oxides indi-
cate low pedogenic intensity or predominance of morpho-
genesis over pedogenesis in the Neossolos (Scarciglia et al. 
2005). Thus, geomorphological characteristics such as the 
more rugged and dissected topography of the landscape seg-
ments characterized by the presence of Neossolos (Fig. 3) 
favored the partial removal of basic cations and silicon, 
which combine in the soil to form Kt (Kämpf et al. 2009). 
Additionally, part of the Si and Al removed from the soil 
through weathering in the top segment of the landscape 
could have been transported and accumulated in the lower 
landscape positions, increasing the [Kt/Kt + Gb > 60] ratio 
in the Argissolo (P5). These results are supported by previ-
ous research (Curi and Franzmeier 1984; Ghidin et al. 2006; 
Campos et al. 2007; Silva et al. 2020), which considered the 
landscape a passive factor of soil formation and retribution 
of pedogenic minerals.

Final considerations

Differentiating the landscape into segments and identify-
ing the parent material were efficient to understand the 
variation of soil attributes along the studied transect. Soil 
classes depend on the topography and the parent material, 
thus varying with the physical, chemical, morphological, 
and mineralogical properties. Mineralogically, the clay 
fraction is composed of kaolinite, goethite, hematite, and 
gibbsite, with goethite being the predominant iron oxide. 
Additionally, as confirmed by soil mineralogy, the chemi-
cal properties of the cations of exchangeable bases from 
sediments originated from these soils were naturally poor 
in bases and, therefore, not related to the removal process 
of the system, as widely recognized in the Amazonian 
region.

Independently of the surface, the sand fraction domi-
nated over the other fractions. The alluvial nature of the 
parent material explains this result, with the highest values 
occurring in the Neossolos and increasing with the depth 
of the soil profile.

Conclusions

Lithological contrast and landscape variations determined 
the different soil types as well as morphological, physical, 
chemical, and mineralogical attributes in the topolithose-
quence. The relief and the parent material, sandstone-
gneiss, were the main factors influencing pedogenesis. 
Goethite was the predominant Fe oxide in all the soils, 
reflecting the low total iron content of the parent material. 
The predominance of the sand fraction in all the studied 

profiles reflected the alluvial nature of the parent mate-
rial, with the highest values occurring in the convex creep 
slope. Knowing the geomorphic surfaces and the parent 
material was effective for understanding the variation of 
the soil attributes along the landscape.
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