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Abstract
With growing concerns on renewable energy and environment, the multi-objective operation (MOO), which considering 
the economic benefits and ecological benefits, becomes an important optimization problem. To handle this problem, a new 
multi-objective optimization approach named improved chaotic bat algorithm (ICBA) is proposed in this paper. In ICBA, 
chaos theory is used to generate initial population and update pulse emission rate to improve population diversity. The self-
adaptive loudness update mechanism is designed to control the convergence speed according to the iterations process. Fur-
thermore, the Montana Method with seasonal variation is proposed to calculate downstream ecological flow. The feasibility 
and effectiveness of the proposed ICBA method are demonstrated by the simulations of the Qingjiang cascade reservoirs 
in different hydrological years. Four scenarios are set up to compare the power generation results and the downstream eco-
logical flow satisfaction rate under different ecological flow requirements. The results show that average annual operation 
schemes obtained by the ICBA can meet the minimum and suitable ecological flow requirements. Compared to the scenario 
1 (optimization goal only consider the power generation requirement), the scenario 4 (optimization goal consider both power 
generation and ideal ecological flow requirement) proposed in this paper can improve the satisfaction rate of ideal ecological 
flow requirement, and has little influence on the average annual power generation. As compared with other several algorithms, 
the ICBA can obtain better operation results in different hydrological years and provide a new effective tool for designing 
reasonable operation schemes of cascade reservoirs.

Keywords Bat algorithm · Chaos · Multi-objective operation · Self-adaptive

Introduction

Reservoirs alter the spatial and temporal distribution of run-
off to serve multiple functions, such as flood control, water 
resources allocation, hydropower generation, navigation and 
recreation, which play an important role in promoting social 
and economic development (Chang et al. 2017). The conven-
tional practice of reservoir operation mainly focuses on the 
maximization of social-economic benefits while ignoring 

the downstream ecosystem requirements, and serious dam-
aging the structure and function of river ecosystems (Xia 
et al. 2008). The goal with maximizing satisfaction rate of 
downstream ecological flow is to minimize the ecological 
lack water volume in hydropower generation, which requires 
enough water discharge. At the same time, maximum power 
generation is the basic requirement of hydropower station 
(Hu et al. 2019), which mainly focuses on more water vol-
ume for power generation in flood season and high water 
level in non-flood season (Zhang et al. 2013). However, 
the high water level in the non-flood season will lead to 
a decrease in outflow. Ecological goals and power genera-
tion goals are contradictory and difficult to optimize at the 
same time. Therefore, the multi-objective operation (MOO) 
is becoming an important optimization problem.

At present, many researchers solve the MOO problem 
using evolutionary and metaheuristic algorithms, such as 
genetic algorithm (GA) (Chen et al. 2016; Dai et al. 2016; 
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Liu et al. 2019), artificial bee colony (ABC) (Choong et al. 
2017), shuffling frog leaping algorithm (SFLA) (Yang et al. 
2018), shark machine learning algorithm (SMLA) (Allawi 
et al. 2018) and harmony search (HS) (Bashiri-Atrabi et al. 
2015). The bat algorithm (BA) is a new metaheuristic algo-
rithm based on the echolocation features of microbats (Yang 
2010). The applications of BA demonstrated that it was easy 
to implement and can deal with highly nonlinear problems 
efficiently (Yang 2010; Yang and Gandomi 2012). Case stud-
ies included micro-grid operation management (Bahmani-
Firouzi and Azizipanah-Abarghooee 2014), interconnected 
power system (Sathya and Mohamed Thameem Ansari 
2015) and dam-reservoir operation (Ethteram et al. 2018), 
and others. Original versions of bat algorithm have been fre-
quently modified or hybridized to improve performance. To 
improve the convergence rate and precision of bat algorithm, 
Xie et al. (2013) put forward an improved bat algorithm 
based on differential operator and Levy flights trajectory 
(DLBA). The results showed that the proposed DLBA is fea-
sible and effective. Mirjalili et al. (2013) proposed a binary 
bat algorithm (BBA), which has artificial bats navigating and 
hunting in binary search spaces by changing their positions. 
They calculated dispersion relation of photonic crystal wave-
guide, and compared the BA with binary particle swarm 
optimization (BPSO) and genetic algorithm (GA). They rec-
ommended applying the BBA to different practical applica-
tion. The hybrid self-adaptive bat algorithm (HSABA) was 
proposed by combined bat algorithm with different evolu-
tion (DE) in literature (Fister et al. 2014). They compared 
this algorithm with some algorithms, and concluded that the 
HSABA performs better than other comparison algorithms. 
However, there are some limitation in BA and proposed 
algorithms: (1) the initial population randomly generated in 
BA may be highly repetitive and concentrated in a limited 
space, which will lead to the decrease of population diver-
sity. (2) The rapid change of loudness A may cause BA to 
trap into local optima. (3) The most popular penalty method 
for dealing with equality constraints of reservoir operation 
problem is difficult to satisfy complex multi-objective sched-
uling of cascade reservoirs.

In this paper, to realize win–win goal of economic ben-
efits and ecological benefits of cascade reservoirs, a multi-
objective operation model is established to consider power 
generation and different ecological flow requirements. The 
new method named the Montana Method with seasonal vari-
ation is proposed to calculated different ecological flows. 
Moreover, to solve the multi-objective operation model, 
an improved chaotic bat algorithm (ICBA) is proposed in 
this paper. The main improvements of the proposed ICBA 
method are as follows: (1) Chaos is a common non-linear 
phenomenon with certainty, ergodicity and the stochas-
tic property (Alatas and Akin 2009). Recently, chaotic 
sequences have been adopted instead of random sequences. 

Somewhat good results have been shown in many applica-
tions (Aydin et al. 2010; Wong et al. 2005). To improve the 
population diversity, the population initialization based on 
chaos theory was adopted. (2) The pulse emission rate was 
generated based on Sinusoidal map and varied to a chaotic 
number between 0 and 1. (3) The self-adaptive loudness 
update mechanism was designed to control the convergence 
speed according to the iterations process. (4) The constraint 
handling method with constraint transformation was used 
when solve the MOO problem.

The rest of the paper is organized as follows. The math-
ematical modeling of the MOO problem is introduced in 
“Mathematical modeling of the MOO problem”. The stand-
ard Bat Algorithm is described in “Overview of standard bat 
algorithm”. “Improved chaotic bat algorithm (ICBA)” pre-
sents the proposed improved chaotic bat algorithm (ICBA) 
for solving the MOO problem in detail. “Case study” reports 
the application in Qingjiang River and discusses the applica-
tion results. Finally, “Conclusions” outlines the conclusions 
of this work.

Mathematical modeling of the MOO 
problem

Objective function

In this paper, multi-objective operation mainly consid-
ers economic benefits and ecological benefits, which are 
reflected in the total power generation of cascade power 
stations and the downstream ecological flow requirement. 
Therefore, the mathematical modeling of the multi-objective 
operation need meet two objective functions:

① Maximizing power generation:

where f1(kWh) is the total power generation of cascade 
reservoirs during the scheduling period; I is the num-
ber of reservoirs; K is the number of periods; Ni,k is the 
power output of ith reservoir at the kth period (kW); 
ti,k is the operational time of the ith reservoir at the kth 
period (h); Pi is the synthetic output coefficient of ith 
reservoir; QLEC

i,k
 is the generation flow of ith reservoir at 

the kth period  (m3/s); Hi,k is the average water head of 
ith reservoir at the kth period (m).

② Maximizing satisfaction rate of downstream ecological 
flow:

(1)max f1=max

I∑
i=1

K∑
k=1

Ni,k × ti,k,

(2)Ni,k=Pi × QLEC
i,k

× Hi,k,
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where f2 is the total satisfaction rate of downstream eco-
logical flow during the scheduling period; I is the num-
ber of reservoirs; K is the number of periods; �i is the 
weight coefficient assigned to ith reservoir, 

∑I

i=1
�
i
= 1 ; 

�k is the weight coefficient assigned to kth period, ∑K

k=1
�k = 1 ; Gi,k is the satisfaction rate of downstream 

ecological flow of ith reservoir at the kth period; QOUT
i,k

 
is the outflow of ith reservoir at the kth period  (m3/s); 
QDE

i,k
 is downstream ecological flow of ith reservoir at the 

kth period  (m3/s).

Two optimization objectives are competitive with each 
other, and it is generally impossible to obtain optimal solu-
tion at the same time. The magnitude order of two objective 
functions is different. Therefore, this paper adopts the Tech-
nique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) method (Srdjevic et al. 2004) to transform the 
multi-objective function into a single-objective function, so 
that the optimization results can be as close as possible to 
their respective ideal points. The converted objective func-
tion is given as follows:

where f (f1, f2) is holistic objective that contains both power 
generation objectives and ecological objectives; fmax

1
 is the 

maximum total power generation of cascade reservoirs when 
the objective function ① is considered only; fmax

2
 is the maxi-

mum total satisfaction rate of downstream ecological flow 
when the objective function ② is considered only.

Constraints

Objective functions are subject to following constraints:

① Reservoir storage continuity constraint:

where SVi,k and SVi,k−1 are reservoir storage of ith res-
ervoir at the kth and (k-1)th period, respectively  (m3); 
QIN

i,k
 and QOUT

i,k
 are inflow and outflow of ith reservoir at 

the kth period, respectively  (m3/s).

(3)max f2=max

I∑
i=1

�i

K∑
k=1

�k × Gi,k,

(4)Gi,k =

⎧
⎪⎨⎪⎩

QOUT
i,k

QDE
i,k

× 100% ifQOUT
i,k

< QDE
i,k

100% ifQOUT
i,k

≥ QDE
i,k

,

(5)f (f1, f2) = min

√√√√(
fmax
1

− f

fmax
1

)2

+

(
fmax
2

− f

fmax
2

)2

,

(6)SVi,k = SVi,k−1 + (QIN
i,k

− QOUT
i,k

) × ti,k,

② Reservoir water level constraint:

where Zi,k is the reservoir water level of ith reservoir 
at the kth period (m); Zmin

i,k
 and Zmax

i,k
 are minimum and 

maximum reservoir water level of ith reservoir at the kth 
period, respectively (m).

③ Reservoir release constraint:

where QOUT,min

i,k
 and QOUT,max

i,k
 are minimum and maxi-

mum reservoir outflow of ith reservoir at the kth period, 
respectively  (m3/s).

④ Power generation constraint:

where Nmin
i,k

 and Nmax
i,k

 are minimum and maximum res-
ervoir power output of ith reservoir at the kth period, 
respectively (kW).

⑤ Reservoir storage constraint:

where SVmin
i,k

 and SVmax
i,k

 are minimum and maximum res-
ervoir storage of ith reservoir at the kth period, respec-
tively  (m3).

Downstream ecological flow acquisition

There are more than 200 methodologies for calculating envi-
ronmental flow. They could be classified into hydrological, 
hydraulic rating, habitat simulation and holistic methodolo-
gies. Hydrological methods constituted the highest propor-
tion of methodologies recorded (Tharme 2003), with the 
Montana Method (Tennant 1976) being the most popular. 
Grading standard of the condition of river ecosystem in 
Montana Method is shown in Table 1.

The downstream ecological flow at the kth period can be 
obtained according to the base flow standard recommended 
by Montana Method:

where Φmin
i,k

,Φsui
i,k

 and Φide
i,k

 are minimum, suitable and ideal 
downstream ecological flow of ith reservoir at the kth period 
obtained by Montana Method, respectively; Qavg

i
 is the aver-

age annual downstream flow of ith reservoir; �min
i,k

,�sui
i,k

 and 
�ide
i,k

 are requirement index of minimum, suitable and ideal 
downstream ecological flow of ith reservoir at the kth period, 

(7)Zmin
i,k

≤ Zi,k ≤ Zmax
i,k

,

(8)Q
OUT,min

i,k
≤ QOUT

i,k
≤ Q

OUT,max

i,k
,

(9)Nmin
i,k

≤ Ni,k ≤ Nmax
i,k

,

(10)SVmin
i,k

≤ SVi,k ≤ SVmax
i,k

,

(11)

⎧⎪⎨⎪⎩

Φmin
i,k

=Q
avg

i
�min
i,k

Φsui
i,k
=Q

avg

i
�sui
i,k

Φide
i,k
=Q

avg

i
�ide
i,k

,
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respectively. Based on base flow regimes in Table 1, assum-
ing that the �min

i,k
 , �sui

i,k
 and �ide

i,k
 are 10%, 30% and 65% in Octo-

ber to March, and 30%, 50% and 75% in April to September, 
respectively.

The original Montana Method used the average annual flow 
as reference. The calculation results are susceptible to extreme 
flow (extreme wet or extreme dry) events. Montana Method 
focuses on the flow inter-annual change of flow, weakening the 
gap between river flow in wet season and dry season. If the 
original Montana Method is used to calculate the ideal down-
stream ecological flow in this paper, the ideal downstream eco-
logical flow may be much higher than average flow in some 
dry months. When the river flow season changes greatly in 
1 year, the river flow may not be able meet suitable and ideal 
ecological flow requirements in many months. It is more nec-
essary to consider seasonal changes of rivers and select more 
realistic ecological flow at this time. Therefore, the Montana 
Method with seasonal variation is presented in this paper. The 
specific expression is given as follows.

where QDE,min

i,k
 , QDE,sui

i,k
 and QDE,ide

i,k
 are minimum, suitable and 

ideal downstream ecological flow when considering seasonal 
changes of ith reservoir at the kth period, respectively; Φmin

i,k
 , 

Φsui
i,k

 and Φide
i,k

 are minimum, suitable and ideal downstream 
ecological flow of ith reservoir at the kth period obtained by 
Montana Method, respectively; �1 and �2 are weight coef-
ficient, �1 + �2 = 1 ; �min

1
 and �min

2
 are assumed as 0.7 and 

0.3, respectively; �sui
1

 and �sui
2

 are assumed as 0.5 and 0.5, 

(12)

⎧⎪⎨⎪⎩

Q
DE,min

i,k
=�min

1
Φmin

i,k
+ �min

2
�i,kΦ

min
i,k

Q
DE,sui

i,k
=�sui

1
Φsui

i,k
+ �sui

2
�i,kΦ

sui
i,k

Q
DE,ide

i,k
=�ide

1
Φide

i,k
+ �ide

2
�i,kΦ

ide
i,k

,

(13)�i,k =
Q

avg

i,k

Q
avg

i

,

respectively; �ide
1

 and �ide
2

 are assumed as 0.3 and 0.7, respec-
tively; Qavg

i,k
 is the average downstream flow of ith reservoir at 

the kth period; Qavg

i
 is the average annual downstream flow 

of ith reservoir.

Overview of standard bat algorithm

The bat algorithm is a new heuristic algorithm based on the 
echolocation behavior of microbats. To simplify and facilitate 
application, the algorithm adopts following idealized rules:

① All bats apply echolocation to sense distance, and they 
always "know" the difference between prey and obsta-
cles in some magical way.

② Bats fly randomly with speed V and a fixed frequency 
Fmin to search for prey at position X, varying frequency 
F and loudness A. They can automatically accommodate 
the frequency and adjust pulse emission rate r according 
to their proximity to the target.

③ Assume the loudness changing from maximum to mini-
mum.

In the BA, position and speed update can be obtained from 
Eqs. (15) and (16).

where j is the number of bats; g is the iteration number; 
Fj ∈

[
Fmin,Fmax

]
 is frequency; � ∈ [0, 1] is a random vector 

drawn from a uniform distribution; Vg

j
 is the speed of jth bat 

in gth generation; Xg

j
 is the position of jth bat in gth genera-

tion; X∗ is the current global best location.
If rand 1 > r

g

j
 , bat walks around the current best solution to 

complete local search according to Eq.  (17). If 
rand 2 < A

g

j
&f

(
X
g

j,new

)
< f

(
x∗
)
 , accept new solution Xg

j,new
 . 

Then, reduce Ag

j
 and increase rg

j
 according to Eqs. (18) and 

(19):

(14)Fj = Fmin +
(
Fmax − Fmin

)
× �,

(15)V
g

j
= V

g−1

j
+

(
X
g−1

j
− X∗

)
× Fj,

(16)X
g

j
= X

g−1

j
+ V

g

j
,

(17)X
g

j,new
= X

g

j
+ � × Ag,

(18)A
g+1

j
= � × A

g

j
,

(19)r
g+1

j
= r1

j
×
[
1 − exp(−� × g)

]
,

Table 1  Grading standard of the condition of river ecosystem in 
Montana Method

Description of flows Recommended base flow regimes 
(Percent of average annual flow)

Oct. ~ Mar (%) Apr. ~ Sep (%)

Maximum 200 200
Optimal range 60 ~ 100 60 ~ 100
Outstanding 40 60
Excellent 30 50
Good 20 40
Fair or degrading 10 30
Poor or minimum 10 10
Severe degradation  < 10  < 10
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where � ∈ [0, 1] is a random number; Xg

j,new
 is the new posi-

tion of jth bat in gth generation after local search; Ag is the 
mean loudness of all bats in gth generation; Ag

j
 is the loud-

ness of jth bat in gth generation; rg
j
 is the pulse emission rate 

of jth bat in gth generation; � and � are constants. For any 
0 < 𝛼 < 1 and 𝛾 > 0:

Improved chaotic bat algorithm (ICBA)

Assuming that the D-dimensional real space is the search 
space of optimization problem, the algorithm is a generation 
population Rg =

{
X
g

1
,X

g

2
,… ,X

g

i
,… ,X

g

NP

}
 composed of NP 

D - d i m e n s i o n a l  r e a l  p a r a m e t e r  v e c t o r s 
X
g

j
=

{
x
g

j,1
, x

g

j,2
,… , x

g

j,d
… , x

g

j,D

}
 . Where j is the number of 

individuals in the population, j = 1, 2,… , NP ; g is the itera-
tion number, g = 1,… , gmax . Based on the introduction of 
standard BA in previous section, we will explain how to 
combine the bat algorithm with chaotic theory in this 
section.

The population initialization based on chaos theory

The diversity and distribution of the initial population can 
influence final optimal solutions of the algorithm. As other 
evolutionary algorithms, initial population is usually gen-
erated randomly, which may lead to problems such as the 
repeated solutions occupying memory space and the con-
centration of initial solution in a certain interval. Generating 
random sequences with a long period and good uniform-
ity is very important for heuristic optimization. Its quality 

(20)A
g

j
→ 0, r

g

j
→ r1

j
, as g → ∞.

determines the reduction of storage and computation time 
to achieve a desired accuracy. Chaos is a deterministic, 
random-like process found in non-linear, dynamical sys-
tem, which is non-period, non-con verging and bounded. 
The nature of chaos is apparently random and unpredictable 
and it also possesses an element of regularity. In this paper, 
the initial population is generated based on chaos principle, 
which could enhance diversity and uniformity of the popula-
tion distribution (Alatas et al. 2009). Here the Logistic Map 
is selected. Its equation is as follows:

where xq
d
 is a chaotic variable, x1

d
∉ {0.25, 0.5, 0.75} ; q is 

the iteration number;� is the control parameter. When � = 4, 
Eq. (21) is chaotic state.

Generate D different initial values within interval (0, 1) , 
and then generate D chaotic sequences with different tra-
jectories by iteration using Eq. (21). For example, when 
� = 4, x1

d
 = 0.7, and qmax = 100, Logistic sequences diagram 

is shown in Fig. 1a.
Convert chaotic variables xq

d
 to value interval of the deci-

sion variables [ Zmin
d

,Zmax
d

 ], and the individual j is expressed 
as Zj =

{
Zj,1, Zj,2,⋯ , Zj,d ⋯ , Zj,D

}
:

where Zmax
d

 and Zmin
d

 are the upper and lower limitations of 
the dth decision variable, respectively;  Zj,d is the value of 
the jth bat in dth dimension.

The pulse emission rate based on chaos theory

In the standard BA, pulse emission rate is monotonically 
decreased in the iterations progress. However, better results 

(21)x
q+1

d
=�x

q

d

(
1 − x

q

d

)
d= 1, 2… ,D ; q= 1, 2… , qmax,

(22)Zj,d=Z
min
d

+
(
Zmax
d

− Zmin
d

)
⋅ x

q

d
j = q,

Fig. 1  Chaotic value distributions during 100 iterations
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have been reported when the rj has been varied chaotically. 
In literature (Gandomi and Yang 2014), thirteen different 
chaotic sequences were tried to tune rj . The best results is 
the CBA-IV with Sinusoidal sequences. Therefore, pulse 
emission rate rj is generated based on Sinusoidal map and 
varied to a chaotic number between 0 and 1 in this paper. Its 
equation is as follows:

where xg
j
 is a chaotic variable; g is the iteration number;� is 

the control parameter. When � = 2.3 and x1
j
 = 0.7, it can be 

simplified to xg+1
j

= sin
(
�x

g

j

)
 , where g= 1, 2… , gmax.

Generate NP different initial values within interval (0, 1) , 
and then generate NP chaotic sequences with different tra-
jectories by iteration using Eq. (23). Finally, assign chaotic 
variables to pulse emission rate rg

j
 . For example, when 

� = 2.3, x1
j
 = 0.7, and gmax = 100, Sinusoidal sequences dia-

gram is shown in Fig. 1b.

Self‑adaptive loudness update mechanism

In standard bat algorithm, both the local search operation 
and the condition of accepting optimal solutions are related 
to loudness. Therefore, the value of loudness directly affects 
the local search range and optimization results of the algo-
rithm. In standard bat algorithm, the attenuation coefficient 
of loudness � is a constant, which can largely determine 
the convergence speed of the algorithm. If the loudness 
reduces too fast, the convergence speed of the algorithm 
can be improved, but the algorithm may fall into the local 
optimal solution. Therefore, the self-adaptive loudness 
update mechanism is designed in this paper, which controls 
the convergence speed according to the iterations process. 
Now we have:

where j is the number of bats; g is the iteration number; � is 
the attenuation coefficient of loudness; Ag

j
 is the loudness of 

jth bat in gth generation; Amin and Amax are minimum and 
maximum loudness, respectively; gA is the maximum num-
ber of iterations that satisfies �Ag

j
≥

Amax

2
 ; gmax is the maxi-

mum iteration.
Set Amax = 1 , Amin = 0 according to the reference (Yang 

2010). It is assumed that better solutions can be found in 
each generation, and the loudness Ag

j
 in each generation 

(23)x
g+1

j
=�

(
x
g

j

)2

sin
(
�x

g

j

)
g= 1, 2… , gmax,

(24)

A
g+1

j
=

⎧
⎪⎪⎨⎪⎪⎩

𝛼A
g

j
if 𝛼A

g

j
≥

Amax

2

Amax

2
−

�
Amax

2
− Amin

�
∗
�
g − gA

�

gmax

if 𝛼A
g

j
<

Amax

2

,

needs to be updated. The comparison of the Ag

j
 between 

ICBA and BA is shown in Fig. 2.
Loudness Ag

j
 is the search range of local search. As seen 

in Fig. 2, the change of loudness Ag

j
 in ICBA is slower than 

that in BA when � changes. Therefore, compared to the BA, 
the search range of local search in ICBA is less influenced 
by the value of � . Moreover, the condition for accepting new 
solutions in BA and ICBA is rand 2 < A

g

j
&f

(
X
g

j,new

)
< f

(
x∗
)
 , 

the greater opportunity to accept better solutions can be 
achieved by using the proposed ICBA over BA, which dem-
onstrates the superiority of the ICBA algorithm.

Constraint handling method

This section mainly focus on how to handle the reservoir 
water level constraint (7), reservoir release constraint (8) 
and power output constraint (9) when the proposed ICBA 
algorithm is applied to solve MOO problem. The way of 
constraint handling determines whether a reasonable opti-
mal solution can be found for reservoir operation. At pre-
sent, the penalty method is most popular strategy for deal-
ing with equality constraints of reservoir operation problem. 
However, this strategy is difficult to satisfy complex multi-
objective scheduling of cascade reservoirs, so the constraint 
handling method with constraint transformation (Lu et al. 
2011) is used in this paper.

The reservoir release constraint (8) and power output con-
straint (9) are converted to constraint corridor of water level 
in the constraint handling method with constraint transfor-
mation. Flow-water level corridor [ Zmin

Q(i,t)
,Zmax

Q(i,t)
 ] and output-

water level corridor [ Zmin
N(i,t)

,Zmax
N(i,t)

 ] can be obtained respec-
tively. Then, combining the water level corridor with 
reservoir water level constraint [ Zmin

i,t
,Zmax

i,t
 ] in formula (7), 

feasible water level range of the reservoir can be obtained 
by taking intersection. In addition, the intersection is empty 
if there is a conflict between constraints. At this time, reser-
voir water level constraint will have priority.

The implementation of ICBA for MOO problem

The flowchart of the improved chaotic bat algorithm (ICBA) 
for MOO problem is presented in Fig. 3.

Case study

Study area and scenarios setting

The Qingjiang River is one of the main tributary of Yang-
tze River. The 423 km long Qingjiang River has a catch-
ment area of 1.7 ×  103  km2. Along the Qingjiang River, 
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a three-step cascade reservoir (Shuibuya, Geheyan, and 
Gaobazhou) has been constructed from upstream to down-
stream (Guo et al. 2018). The characteristic of these three 
reservoirs and main parameters of power stations are given 
in Table 2. Figure 4 shows the location of cascade reser-
voirs in the Qingjiang River. The downstream ecological 
flow results are listed in Table 3.

According to the requirements of power generation and 
downstream ecological flow, four different scheduling sce-
narios are carried out in this paper.

Scenario 1: Power generation operation for cascade 
reservoirs is conducted. The downstream ecological flow 
requirement is not considered as the optimization goal. 
However, the satisfaction rates of minimum, suitable and 
ideal downstream ecological flow are calculated based on 
the outflow results of power generation operation.

Scenario 2: Cascade reservoirs are focused on the power 
generation and minimum downstream ecological flow 
requirement.

Scenario 3: Cascade reservoirs are focused on the 
power generation and suitable downstream ecological flow 
requirement.

Scenario 4: Cascade reservoirs are focused on the 
power generation and ideal downstream ecological flow 
requirement.

Basic data and parameter setting

According to the runoff data of the Qingjiang River basin 
from 1971 to 2005  year, the typical representatives of 
1996 year, 2005 year, 1986 year and 2001 year are selected 
as the wet, normal, dry and extreme dry years, respectively. 
Using algorithms to solve scheduling model, water level of 
each reservoir is encoded, and the jth individual in the popu-
lation can be expressed as Zj = {z1

j,1,…, z1
j,K; z2

j,1,…, z2
j,K; 

z3
j,1,…, z3

j,K}. Where z1
j,k(k = 1,2,…,K) is water level of the 

Shuibuya Reservoir; z2
j,k(k = 1,2,…,K) is water level of the 

Fig. 2  Comparison of the loudness between ICBA and BA
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Geheyan Reservoir; z3
j,k(k = 1,2,…,K) is water level of the 

Gaobazhou Reservoir.
To verify the effectiveness of ICBA in the application of 

multi-objective scheduling, ICBA is compared with other 
algorithms, including chaotic genetic algorithm (CGA), 
chaotic particle swarm optimization (CPSO), chaotic dif-
ferential evolution (CDE) and standard bat algorithm (BA). 
CGA mimics the process of natural evolution and generates 
new generations by selection, crossover, and mutation. CDE 
also produces new generations by selection, crossover, and 
mutation. However, the mutation of CDE is carried out on 
the basis of two paternal individuals, while the mutation in 
CGA is generated randomly. CPSO is based on the migra-
tion and clustering behavior of birds. In the optimization 

process, particles calculate their next flight direction and 
speed according to the optimal position of the whole particle 
swarm, its own optimal position in previous generations and 
the current position. BA is a heuristic algorithm based on the 
echolocation behavior of microbats. Bats search for global 
optimal solution by varying frequency and adjust pulse 
emission rate. In ICBA, the updating of pulse emission rate 
is based on chaos theory. The self-adaptive loudness update 
mechanism is designed to control the convergence speed 
according to the iterations process.

The initial population is generated based on chaos prin-
ciple (Eq. 21) in the ICBA, CGA, CPSO and CDE. The 
population size NP = 200 and the maximum iteration of 
algorithm gmax = 100 are set for each algorithm. For ICBA, 
the maximum iteration of chaos operator qmax = 200 in the 
population initialization; the frequency F is varied from 0 to 
1; the loudness A is decreased from 1 to 0; the � = � = 0.9

(Yang 2010). For CGA, the maximum iteration of chaos 
operator qmax = 200 in the population initialization; the 
crossover and mutation operators are 1 and 0.01, respec-
tively (Wang and Guo 2013). For CPSO, the maximum itera-
tion of chaos operator qmax = 200 in the population initiali-
zation; the inertial constant is 0.3; the cognitive constant is 
1; the social constant is 1 (Wang and Guo 2013). For CDE, 
the maximum iteration of chaos operator qmax = 200 in the 
population initialization; the crossover and mutation opera-
tors are 0.5 and 0.5, respectively (Wang and Guo 2013). For 
BA, the frequency F is varied from 0 to 1; the loudness A 
is decreased from 1 to 0; the � = � = 0.9 (Yang 2010). We 
defined the scheduling period is one year, and the period 
length is one month. During flood season from June to July 
every year, the reservoir water level should be controlled 
below the flood control level.

Average annual operation results

Runoff datum from 1971 to 2005 year is selected to calcu-
late average annual operation results. Table 4 shows aver-
age annual power generation results of cascade reservoirs in 
Qingjiang River under different scenarios calculated by the 
proposed ICBA algorithm. The downstream ecological flow 
satisfaction rate results of Shuibuya Reservoir, Geheyan Res-
ervoir and Gaobazhou Reservoir are presented in Table 5. To 
verify the effectiveness of ICBA in the application of MOO 

Fig. 3  The flowchart of ICBA for MOO problem

Table 2  Characteristic water 
level of cascade reservoirs 
and main parameters of power 
stations

Cascade reservoir Normal storage 
water level (m)

Flood con-
trol level(m)

Dead water 
level (m)

Installed 
capacity 
(MW)

Guaranteed 
output (MW)

Output 
coeffi-
cient

Shuibuya 400 391.8 350 1840 310 8.5
Geheyan 200 193.6 160 1212 241 8.5
Gaobazhou 80 78.5 78 270 77 8.4
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problem, ICBA is compared with several other algorithms, 
including CGA, CPSO, CDE and BA. Average annual power 
generation and the satisfaction rate of downstream ecologi-
cal flow under scenarios 2, 3 and 4 are analyzed. The specific 
results are shown in Table 6.

From Table 5, when considering requirements of mini-
mum and suitable downstream ecological flow, the down-
stream ecological flow satisfaction rate of scenario 1, 2 
and 3 are 100%, which can completely meet the minimum 
and suitable downstream ecological flow requirements. In 
Table 4, average annual power generation under these three 
scheduling scenarios is the same, among which Shuibuya 
reservoir has the largest average annual power generation 
(37.356 ×  108 kWh).

As can be seen from Tables 4 and 5, when considering 
ideal downstream ecological flow requirement, the scenario 
4 can increase the overall satisfaction rate of ecological flow 
by 1.772% compared to the scenario 1, while decreasing the 
average annual power generation by about 0.1 ×  108 kWh. 
The ecological flow satisfaction rate of Geheyan increases 
the largest, from 97.496 to 99.743%. Compared to the sce-
nario 1, the scenario 4 proposed in this paper can improve 
the satisfaction rate of ideal downstream ecological flow 
requirement, and has little influence on the average annual 
power generation.

As showed in Table 6, when using the average annual 
flow as the reservoir inflow, the overall satisfaction rate of 
downstream ecological flow are higher than 96%. Moreover, 

Fig. 4  Location of cascade reservoirs in the Qingjiang River
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in Table 6, CPSO, CDE, BA and ICBA can fully meet the 
minimum (scenario 1) and suitable (scenario 2) downstream 
ecological flow requirement of three reservoirs. The total 
average annual power generation generated by BA is greater 
than that of CGA, CPSO and CDE. When considering the 
minimum and suitable downstream ecological flow require-
ments, the total average annual power generation of ICBA 
is 0.623 ×  108 kWh and 0.644 ×  108 kWh higher than that 
of BA, respectively. When considering the ideal ecological 
flow requirement, the overall ecological flow satisfaction 
rate obtained by ICBA is the highest (98.860%) and slightly 
higher than that of BA (98.851%).

Therefore, the above results fully prove that the MOO 
problem can be solved by the ICBA. Compared to other 
algorithms, the ICBA method proposed in this paper can 
get better results.

Typical hydrological year operation results

It can be seen from foregoing analysis that average annual 
operation schemes of cascade reservoirs in Qingjiang River 
can meet the minimum and suitable downstream ecological 
flow requirements. Therefore, reservoir scheduling schemes 
in different typical hydrological years are designed in terms 
of meeting the ideal downstream ecological flow require-
ment (scenario 4). Meanwhile the ecological conditions of 
dry year and extreme dry year are analyzed in this section.

Analysis of power generation and ecological satisfaction 
rate in typical hydrological year

The operation results of scenario 1 and scenario 4 are com-
pared and analyzed in Table 7. Due to limited space, taking 
Shuibuya Reservoir and Geheyan Reservoir as examples, 
reservoir operation processes are shown in Fig. 5.

In Table 7, when considering the ideal downstream eco-
logical flow requirement, the overall satisfaction rate of 
downstream ecological flow of scenario 4 in wet year are 
100%, which can completely meet the requirement of ideal 
downstream ecological flow. The overall satisfaction rates of 
downstream ecological flow in two scenarios can reach more 
than 93% and 83% in normal year and dry year, respectively. 
Moreover, as can be seen from Table 7, the annual power 

Table 3  Downstream ecological flow of cascade reservoirs  m3/s

Period Month Shuibuya Geheyan Gaobazhou

Minimum Suitable Ideal Minimum Suitable Ideal Minimum Suitable Ideal

Spawning season (Apr. ~ Sept.) 4 78.86 133.53 203.44 90.84 166.80 273.32 93.42 173.97 288.37
5 89.73 163.73 266.86 109.72 219.27 383.49 112.79 227.78 401.38
6 97.22 184.54 310.57 117.25 240.18 427.41 120.51 249.23 446.42
7 107.46 212.99 370.31 134.07 286.90 525.51 137.76 297.15 547.05
8 81.68 141.38 219.93 99.70 191.43 325.02 102.51 199.23 341.41
9 78.48 132.48 201.24 93.40 173.93 288.28 96.05 181.28 303.72

Ordinary times (Oct. ~ Mar.) 10 25.21 74.71 159.92 28.43 90.86 208.89 29.25 94.92 221.22
11 22.53 61.36 119.42 24.87 73.03 154.82 25.59 76.64 165.76
12 20.04 48.91 81.65 21.22 54.76 99.41 21.84 57.90 108.92
1 19.57 46.53 74.42 20.39 50.63 86.86 20.99 53.66 96.05
2 20.27 50.05 85.12 21.48 56.07 103.37 22.11 59.24 112.99
3 22.07 59.05 112.40 24.66 71.99 151.67 25.38 75.57 162.53

Table 4  Average annual power generation under different scenar-
ios ×  108 kWh

Reservoirs Scenario 1 Scenario 2 Scenario 3 Scenario 4

Shuibuya 37.356 37.356 37.356 37.306
Geheyan 29.636 29.636 29.636 29.582
Gaobazhou 9.600 9.600 9.600 9.603
Total 76.592 76.592 76.592 76.492

Table 5  Satisfaction rate of 
different downstream ecological 
flow requirements

Reservoirs Scenario 1 Scenario 2 Scenario 3 Scenario 4

Minimum (%) Suitable (%) Ideal (%) Minimum (%) Suitable (%) Ideal (%)

Shuibuya 100 100 95.643 100 100 96.837
Geheyan 100 100 97.496 100 100 99.743
Gaobazhou 100 100 98.125 100 100 100.000
Average 100 100 97.088 100 100 98.860
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generation in extreme dry year is the least. Compared to the 
scenario 1, the scenario 4 can increase the overall satisfac-
tion rate of downstream ecological flow by about 2.903% 
while decreasing the annual power generation by about 
0.515 ×  108 kWh in extreme dry year.

With detailed operation results of two reservoirs dis-
played in Fig. 5, the feasibility of the proposed ICBA is veri-
fied by testing the constraint violation conditions of the two 
schemes selected. It can be seen that inflows of Shuibuya 
Reservoir are the same, while inflows of Geheyan Reservoir 
are different under two schemes in Fig. 5. That is because 
Shuibuya Reservoir is the first reservoir of Qingjiang cas-
cade reservoirs, which is located in the upper reaches of 
Geheyan Reservoir. The release of Shuibuya Reservoir will 
affect inflow of Geheyan Reservoir. Moreover, the inflow 
of reservoirs during the flood season (from June to July) is 
the largest in the whole year in Fig. 5. Therefore, the water 

level of reservoirs needs to be controlled below the flood 
control level.

Analysis of ecological status in downstream control 
sections in dry year and extreme dry year

Based on results of reservoir discharge simulated in “Analy-
sis of power generation and ecological satisfaction rate in 
typical hydrological year” under dry and extreme dry years, 
we analyzed downstream ecological status according to the 
grading standard of river ecosystem condition obtained by 
Montana Method in Table 1. The specific analysis results are 
shown in Tables 8, 9 and 10.

It can be seen that the ecological status in dry year are 
generally better than those in extreme dry year in Tables 8, 
9 and 10. Meanwhile, the satisfaction rate of downstream 
ecological flow can basically reach more than 20% of 

Table 6  Comparison results of ICBA and other algorithms

Scenarios Algorithm Power generation  (108kwh) Satisfaction rate of downstream ecological flow

Shuibuya Geheyan Gaobazhou Total Shuibuya (%) Geheyan (%) Gaobazhou (%) Overall (%)

Scenario 2 CGA 36.848 29.092 9.233 75.173 99.997 100 100 99.999
CPSO 36.957 28.735 9.099 74.791 100 100 100 100
CDE 37.127 29.181 9.237 75.545 100 100 100 100
BA 37.056 29.335 9.578 75.969 100 100 100 100
ICBA 37.356 29.636 9.600 76.592 100 100 100 100

Scenario 3 CGA 36.764 29.079 9.167 75.010 99.994 99.993 100 99.996
CPSO 36.919 28.694 8.949 74.562 100 100 100 100
CDE 37.027 29.203 9.271 75.501 100 100 100 100
BA 37.032 29.330 9.586 75.948 100 100 100 100
ICBA 37.356 29.636 9.600 76.592 100 100 100 100

Scenario 4 CGA 36.683 29.046 8.888 74.617 95.236 96.794 98.483 96.838
CPSO 36.325 28.898 8.993 74.216 96.264 97.885 97.835 97.328
CDE 36.815 29.094 9.247 75.156 96.418 98.179 98.549 97.715
BA 37.004 29.281 9.502 75.787 96.845 99.718 99.991 98.851
ICBA 37.306 29.582 9.603 76.492 96.837 99.743 100 98.860

Table 7  Operation results under scenario 1 and scenario 4 in different hydrological years

Scenarios Algorithm Power generation  (108kwh) Satisfaction rate of downstream ecological flow

Shuibuya Geheyan Gaobazhou Total Shuibuya (%) Geheyan (%) Gaobazhou (%) Overall (%)

Wet year Scenario 1 57.262 44.749 13.136 115.147 98.394 96.846 97.863 97.701
Scenario 4 56.685 44.073 13.114 113.872 100 100 100 100

Normal year Scenario 1 35.352 28.183 9.181 72.716 92.717 92.658 94.391 93.255
Scenario 4 35.217 27.819 9.136 72.171 96.325 95.156 96.219 95.900

Dry year Scenario 1 26.952 21.815 7.269 56.036 78.663 83.715 88.145 83.508
Scenario 4 26.872 21.689 7.285 55.846 84.271 84.573 87.583 85.476

Extreme dry year Scenario 1 21.999 17.936 6.069 46.004 68.174 65.774 69.938 67.962
Scenario 4 21.854 17.562 6.072 45.489 68.080 70.634 73.882 70.865
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Fig. 5  Reservoirs operation processes under scenario 1 and scenario 4 in different hydrological year



Environmental Earth Sciences (2021) 80:709 

1 3

Page 13 of 15 709

average annual flow in dry year, which is a good ecological 
condition.

The less inflow of Shuibuya Reservoir in January leads to 
fair or degrading ecological condition in extreme dry year. 
When entering flood control period in June and July, the 
reservoir water level should be controlled below the flood 

control level. Moreover, the inflow is relatively large at this 
time, and the satisfaction rate of downstream ecological flow 
can reach more than 70% of average annual flow, which are 
in the optimal range. From August to October is the storage 
period of reservoirs, and discharge decreases lead to gradual 
deterioration of downstream ecological condition. November 

Table 8  Downstream ecological status of Shuibuya Reservoir in dry year and extreme dry year

Month Dry year Extreme dry year

Inflow of 
reservoir

Outflow of 
reservoir

Percent of 
average annual 
flow (%)

Description of 
flows

Inflow of 
reservoir

Outflow of 
reservoir

Percent of 
average annual 
flow (%)

Description of 
flows

January 48.200 87.423 34.074 Excellent 24.000 30.921 12.052 Fair or degrad-
ing

February 52.400 96.237 37.510 Excellent 55.000 65.498 25.529 Good
March 108.200 179.723 70.050 Optimal range 93.000 108.382 42.243 Outstanding
April 164.000 187.072 72.914 Optimal range 314.000 369.200 143.902 Maximum
May 227.500 227.500 88.672 Optimal range 198.000 257.138 100.224 Maximum
June 368.400 368.400 143.590 Maximum 312.000 330.979 129.004 Maximum
July 620.400 481.968 187.855 Maximum 227.000 227.000 88.477 Optimal range
August 149.300 149.300 58.192 Excellent 114.000 114.000 44.433 Good
September 263.100 253.871 98.950 Optimal range 33.000 33.000 12.862 Poor or mini-

mum
October 71.200 41.207 16.061 Fair or degrad-

ing
242.000 188.173 73.343 Optimal range

November 80.200 80.200 31.259 Excellent 118.000 58.612 22.845 Good
December 59.800 59.800 23.308 Good 75.000 22.096 8.612 Severe degra-

dation

Table 9  Downstream ecological status of Geheyan Reservoir in dry year and extreme dry year

Month Dry year Extreme dry year

Inflow of 
reservoir

Outflow of 
reservoir

Percent of 
average 
annual flow

Description of 
flows

Inflow of 
reservoir

Outflow of 
reservoir

Percent of 
average 
annual flow

Description of 
flows

January 97.306 141.160 36.022 Excellent 55.306 96.238 24.559 Good
February 114.177 157.190 40.113 Outstanding 98.748 160.558 40.973 Outstanding
March 156.979 267.038 68.145 Optimal range 152.627 198.388 50.626 Outstanding
April 288.627 285.538 72.866 Optimal range 480.319 525.575 134.120 Maximum
May 402.613 344.802 87.989 Optimal range 339.525 350.272 89.385 Optimal range
June 479.314 479.314 122.315 Maximum 432.298 363.817 92.842 Optimal range
July 687.223 539.371 137.641 Maximum 301.659 301.659 76.980 Optimal range
August 216.350 202.674 51.720 Excellent 159.686 150.554 38.420 Fair or degrad-

ing
September 257.884 330.464 84.330 Optimal range 57.917 57.917 14.780 Poor or mini-

mum
October 68.228 75.661 19.308 Fair or degrad-

ing
252.877 176.900 45.143 Outstanding

November 117.219 80.053 20.429 Good 90.097 59.001 15.056 Fair or degrad-
ing

December 91.589 74.244 18.946 Fair or degrad-
ing

44.217 24.395 6.225 Severe degra-
dation
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and December are low water period of reservoirs, and the 
ecological condition is worse. In extreme dry year, inflow of 
reservoirs is the lowest in December. The satisfaction rate of 
downstream ecological flow of three reservoirs is less than 
10% of average annual flow, resulting in serious ecological 
degradation.

Conclusions

In this paper, an improved chaotic bat algorithm (ICBA) has 
been established to handle the MOO problem. The ICBA is 
applied to the MOO problem of the Qingjiang cascade reser-
voirs in southern China. The results show that the minimum 
(scenario 2) and suitable (scenario 3) downstream ecological 
flow requirements can be satisfied, when the average annual 
flow is used as the reservoir inflow. When considering the 
ideal downstream ecological flow requirement, the overall 
satisfaction rate of downstream ecological flow can reach 
more than 90% in wet year and normal year. Compared to 
the scenario 1, the scenario 4 proposed in this paper can 
improve the satisfaction rate of ideal downstream ecologi-
cal flow requirement, and has little influence on the annual 
power generation. In December of extreme dry year, the 
satisfaction rate of downstream ecological flow of cascade 
reservoirs is lower than 10% of average annual flow, result-
ing in serious ecological degradation.

The case study is implemented to verify the validity and 
feasibility of the ICBA method. The results indicate that 
compared to other several algorithms, the ICBA method pro-
posed in this paper can significantly improve both power 

generation and satisfaction rate of downstream ecological 
flow, which provides a new approach for solving the MOO 
problem. However, the MOO of cascade reservoirs is very 
complex. The more ecological issues, such as sediment dep-
osition and water quality of cascade reservoirs, need to be 
considered in detailed in the further.
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