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Abstract
The current study analyses the effect of root zone soil moisture in the calibration and validation of Soil and Water Assess-
ment Tool (SWAT) model. A multi-algorithm, genetically adaptive multi-objective method (AMALGAM) is used for the 
calibration of the model. The multi-variable calibration considering both streamflow and soil moisture is compared with a 
single-variable calibration considering streamflow and then analysed the effectiveness of root zone soil moisture in the cali-
bration of SWAT. The results of the analysis show that the root zone soil moisture significantly influences the simulation of 
evapotranspiration component in SWAT. The SOL_AWC and SOL_K are found to be the key parameters for the simulation 
of hydrological fluxes in SWAT. The multi-variable calibration at the watershed outlet ensures a better process representation 
and spatial prediction in SWAT compared to the single-variable calibration approach.

Keywords Multi-variable calibration · Soil and water assessment tool · AMALGAM · Spatial prediction · Process 
representation · Root zone soil moisture

Introduction

SWAT is a physics-based semi-distributed hydrologi-
cal model widely used for water resources planning and 
management on a watershed scale (Gassman et al. 2007; 
Gassman et al. 2014; Athira et al. 2016). The SWAT model 
is capable of simulating the streamflow, sediment and nutri-
ent transport in a watershed (Arnold et al. 2015). SWAT 
represents the complex hydrological systems through con-
servation laws and encompasses a multitude of parameters 
for process representation. Hence, the predictive power of 
SWAT depends on the calibration process. The streamflow 
information at the watershed outlet is used to calibrate the 
parameters. However, studies have reported that calibra-
tion with a single variable at the watershed outlet cannot 
ensure better process representation in the model (Ander-
ton et al. 2002; Cao et al. 2006; Wanders et al. 2014a,b). 
Researchers have used different optimization schemes for 
autocalibration of the SWAT model. The commonly used 
schemes are Generalized Likelihood Uncertainty Estimation 

(GLUE, Beven 1992), Shuffled Complex Evolutionary Algo-
rithms (Sharma et al. 2006a,b), Particle Swarm Optimiza-
tion (Zhang et al. 2008a,b), Genetic Algorithm (Zhang et al. 
2009), AMALGAM (Her et al. 2015), Sequential Uncer-
tainty Fitting (SUFI) (Abbaspour et al. 2015), etc. The auto-
calibration capabilities are incorporated in SWAT through 
the software SWAT-CUP (Abbaspour et al. 2009). Depend-
ing on the number of parameters involved, the calibration 
process becomes complex and the computational demand 
will increase.

The result of the calibration process also depends on 
the performance index that is used for comparison of the 
simulated and measured variables. Moriasi et al. (2015) 
have reported that the most commonly used statistical per-
formance indices for hydrological model evaluation are 
Nash Sutcliffe Efficiency (NSE), Root Mean Square Error 
(RMSE) and Coefficient of Determination (R2). These per-
formance indices are functions of squared deviations of 
observed and simulated calibration variable and they are 
always biased towards the high flow prediction (Moriasi 
et al. 2007). Muleta (2011) has analysed the effect of per-
formance indices on the automatic calibration of SWAT 
model. The study recommends the use of performance indi-
ces which are based on the absolute deviations since it can 
give better prediction in both high and low flow ranges. The 
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performance indices in this category are Mean Absolute 
Error (MAE), Modified Nash Sutcliffe Efficiency (MNSE), 
and Volumetric Efficiency (VE) etc. The limitations of the 
performance indices have resulted in the development of 
multi-objective calibration for hydrological models (Gupta 
et al. 1998). The prediction from multi-objective calibration 
can be improved by considering performance indices from 
different performance index categories.

A multi-objective calibration which considers more than 
one performance index for evaluating the same calibration 
variable leads to a better prediction in all the flow ranges 
(Bekele and Nicklow 2007). This calibration approach will 
improve the prediction at the watershed outlet, but this may 
not guarantee a better spatial prediction in a heterogeneous 
watershed. A multi-site calibration considering measured 
information from different gauging points in a watershed 
can overcome this issue (Nkiaka et al. 2018). The parameters 
estimated by optimizing the objective function at different 
subbasin outlets can produce better predictions than those 
obtained from a single site calibration (Zhang et al. 2008a,b). 
However, the use of multiple stream gauging stations for 
calibration may not ensure an improved simulation of other 
surface and sub-surface fluxes in the watershed (Wanders 
et al. 2014a,b). A multi-variable calibration considering an 
internal state variable such as soil moisture, evapotranspira-
tion, baseflow, etc. along with streamflow can improve the 
parameter estimation in process-based distributed models 
(Anderton et al. 2002; Cao et al. 2006; Rajib et al. 2016). A 
multi-variable calibration is ideal for highly heterogenous 
watersheds. There are studies which used remotely sensed 
Evapotranspiration (ET), baseflow and soil moisture for mul-
tivariable calibration in SWAT model (Zhang et al. 2011; 
Herman et al. 2018; Immerzeel and Droogers 2008; Tobin 
and Bennett 2017; Brocca et al. 2012; Chen et al. 2011; 
Rajib et al. 2016). It is observed that the inclusion of root 
zone soil moisture for calibration results in improved water 
budgeting of the watershed and it reduces the parametric 
uncertainty in SWAT as compared to other hydrological 
fluxes (Rajib et al. 2016; Wanders et al. 2014a,b).

Even though soil moisture is considered as an important 
physical variable for hydrological modelling, soil moisture 
data availability is limited. The common approaches for 
obtaining soil moisture data are in situ soil moisture meas-
urement, remote sensing, and modelled data (Brocca et al. 
2017). The hydrological/land surface models are widely 
used for the simulation of soil moisture flux on a watershed 
scale (Dirmeyer et al. 2000; Heathman et al. 2003; Parajka 
et al. 2006; Shi et al. 2015). Machine Learning techniques 
are also used for soil moisture estimation (Adeyemi et al. 
2016; Cai et al. 2019; Adab et al. 2020; Al-Mukhtar 2016). 
The soil moisture estimates are widely used for different 
applications such as rainfall-runoff modelling, irrigation, 
landslide modelling, flood and drought management, etc. 

(Chen et al. 2011; Wanders et al. 2014a,b; Cammalleri 
et al. 2016; Adeyemi et al. 2018). There are studies that 
reported the effect of soil moisture on surface runoff gen-
eration, streamflow and evapotranspiration in a watershed 
based on field measured experimental dataset (Vivoni et al. 
2008, Penna et al. 2011; Zhao et al. 2014, Grillakis et al. 
2016). However, the representation of these processes 
and process interactions will vary in different hydrologi-
cal models depending on the model structure. Rajib et al. 
(2016) have reported that the use of root zone soil moisture 
in SWAT model calibration can improve water and energy 
budget in a watershed. However, a detailed analysis on 
the impact of root zone soil moisture on the SWAT model 
simulation of other hydrological fluxes like streamflow, 
evapotranspiration and baseflow is missing in the litera-
ture. Hence, the objective of the current study is to analyse 
the effect of root zone soil moisture on the simulation of 
other hydrological fluxes in SWAT. The analysis is con-
ducted by comparing the process representation in SWAT 
model setups which are calibrated with and without the 
soil moisture data and it is demonstrated in the Little River 
Experiment Watershed (LREW), USA.

Materials and methods

SWAT model description

SWAT is a widely accepted process-based semi-distributed 
model, which is developed by the Agricultural Research Ser-
vice of United States Department of Agriculture (USDA). 
It is a watershed scale model developed for analysing the 
impact of agricultural management activities on streamflow, 
sediment, and nutrients. It is computationally very efficient 
for doing continuous daily simulations for a longer period. 
The number of parameters involved in SWAT are high, 
since it discretizes the watershed spatially to account for the 
watershed heterogeneity. SWAT divides the watershed into 
sub-basins based on the topographic features of the water-
shed. Furthermore, these sub-basin areas are divided into 
Hydrological Response Units (HRUs). HRU delineation is 
based on unique combination of land use, hydrologic soil 
group, and slope within each sub-basin. The SWAT model 
simulations are occurring in HRUs with the input informa-
tion of weather, soil properties, topography, landuse, and 
land management practices corresponding to the watershed. 
SWAT simulates the fluxes like streamflow, evapotranspi-
ration, soil water, and loadings like sediments and nutri-
ents for each HRU individually. These outputs from each 
HRU are summed up together to get the sub-basin outputs. 
Water balance equation is the governing equation for SWAT 
simulation
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where SWt is the final soil water content (mm  H2O), SW0 is 
the initial soil water content (mm  H2O), Rday is the amount 
of precipitation on day i (mm  H2O), Qsurf is the amount 
of surface runoff on day i (mm  H2O), Ea is the amount of 
evapotranspiration on day i (mm  H2O), wseep is the amount 
of percolation and bypass flow exiting the soil profile bottom 
on day i (mm  H2O), and Qgw is the amount of return flow on 
day i (mm  H2O).

In SWAT, Soil Conservation Services (SCS) Curve 
Number (CN) method (USDA-SCS, 1972) and Green-
Ampt infiltration method (1911) are the two approaches 
provided to simulate the surface runoff. The SCS curve 
number method estimates the surface runoff after account-
ing the initial abstraction. The runoff generation process in 
the SWAT model is directly related to the parameter Curve 
Number (CN2_f) which is the most significant parameter 
for streamflow prediction in SWAT. The watersheds with 
elongated shape will have time of concentration more than 
a day and that is accounted in SWAT through the param-
eter Surface Lag (SURLAG). The potential evapotranspi-
ration of a watershed can be estimated in three approaches 
in SWAT; Hargreaves method, Priestly Taylor method and 
Penman–Monteith method. The actual evapotranspiration 
is estimated in SWAT by accounting the canopy storage, 
transpiration and soil water evaporation. The parameters 
ESCO and EPCO are related to the evapotranspiration pro-
cess in SWAT. Soil moisture is one of the important vari-
ables which affect all the hydrological process. The param-
eters related to the soil moisture simulation in SWAT are 
SOL_AWC and Soil Hydraulic Conductivity, SOL_K. 
The parameter SOL_AWC indicates the plant available 
water content of the soil layer (mm  H2O/mm soil). The 
SOL_AWC values are taken from pedo-transfer functions 
based on the percentage sand, silt and clay. In principle, 
the value of SOL_AWC is obtained by subtracting the 
fraction of water present at the permanent wilting point 
from that present at field capacity. Field Capacity is the 
water content at a soil matric potential of − 0.033 MPa. 
Permanent Wilting Point is the soil water content at a soil 
matric potential of − 1.5 MPa. The calibrated SOL_AWC 
value is used for calculating the Field Capacity in SWAT 
since it is a critical moisture content for the estimation 
of hydrological processes like evapotranspiration and 
percolation.

The soil layer will become saturated when the soil 
moisture content exceeds the field capacity. The excess 
amount of water percolates to the lower layers if the soil 
moisture of the lower layer is less than the field capac-
ity. Once all the layers are saturated, the percolated water 

(1)SWt = SW0 +

t
∑

i=1

(

Rday − Qsurf − Ea − wseep − Qgw

)

,
will reaches the shallow aquifer. SWAT simulates both 
the unconfined (shallow aquifer) and confined aquifer 
(deep aquifer). The parameters GWQMN, GW_REVAP, 
ALPHA_BF, and GW_DELAY are related to the ground-
water component of the SWAT model. A detailed descrip-
tion of all the parameters is presented in Table 1 with 
its permissible range. The SWAT parameters are in two 
levels; basin-level parameters, and HRU level parameters. 
The range type (r—relative or a—absolute), units, and 
permissible range of these parameters are mentioned in 
Table 1. The permissible range is specified in such a way 
that the parameter value stays within the realistic range 
(Vema and Sudheer 2020). The default value of HRU level 
parameters are assigned based on the HRU characteristics. 
In the calibration process, the percentage deviation from 
the default value is fine-tuned in HRU level parameters, 
and the absolute value of the parameter are fine-tuned for 
basin level parameters.

Study area

Little River Experimental Watershed (LREW) is located 
near Tifton, Georgia in USA. The watershed is having a 
drainage area of 340  km2 with a slow moving stream system. 
LREW is situated in the coastal plain region of USA. The 
landscape area of LREW is having high vegetation cover 
with predominant land use as woodland (40%). The other 
land use patterns in the watershed are Agricultural land 
(36%), Pasture (18%) and Water (5%). The major agricul-
tural activity in the watershed is the cultivation of raw crops, 
primarily peanut and cotton (Sahoo et al. 2008). Soils having 
loamy sand texture are predominant in the watershed with an 
infiltration rate of approximately 5 cm/hr. Climatic condition 
in the watershed is humid subtropical. The annual mean pre-
cipitation over the watershed is estimated to be 1200 mm and 
mean annual temperature is 18.67 °C. January is the coldest 
month of the year with an average temperature of 10.6 °C 
and July is the warmest month with an average temperature 
of 26.8 °C. The geology of the watershed returns the infil-
trated water to the main channel as lateral flow. There is a 
high temporal variability in the rainfall throughout the year. 
Research studies on the water balance of LREW have shown 
that the streamflow generation in the watershed is around 
30% of the annual rainfall and 70% of the annual rainfall 
contributes to the evapotranspiration process (Feyereisen 
et al. 2007). Return flow from the shallow aquifer is 24% 
of annual rainfall and direct surface runoff is around 6% of 
annual rainfall in LREW. Deep seepage and recharge to the 
deep aquifers is less in LREW, as the surface soils are under-
lain by the Hawthorn geologic material, 0–6 m below the 
land surface which restrict the movement of water. It results 
in more groundwater flow contribution to the streamflow 
(Sheridan 1997). The current study considers three USGS 
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stream gauging station data for the analysis, the USGS site 
GALR6840 is the watershed outlet. There are 18 soil mois-
ture measuring stations present within the watershed and the 
measurements are in volumetric units.

Model setup and data used

SWAT 2012 is used in the current study and ArcSWAT 
GIS interface is used for setting up the SWAT model. Basic 
data requirement for model setup are elevation, land use, 
soil and meteorological information. The digital eleva-
tion model (DEM) of 30 m resolution is obtained from the 
United States Geological Survey-National Elevation Dataset 
(USGS-NED). The land cover data of 30 m resolution for 
the year 2011 is obtained from the National Land Cover 
Database (USGS-NLCD), and the State Soil Geographic 
Data (STATSGO) is obtained from the web soil survey 
(USDA-NRCS) (https:// webso ilsur vey. sc. egov. usda. gov/), 
for the watershed. As per the STATSGO database, soil data 
in LREW is at a depth of 250–300 mm. The streamflow, 
soil moisture and meteorological data are collected from 
Sustaining the Earth’s Watersheds–Agricultural Research 
Data System (STEWARDS), in the USDA website (https:// 
www. nrrig. mwa. ars. usda. gov/ stewa rds/ stewa rds. html). The 
SWAT model setup is done for 11 years from 2006 to 2016 
in the LREW. The first one year is considered as warm-up 
period to reduce the uncertainty associated with the initial 

assumptions. The period 2006–2013 is considered for cali-
bration of the model and 2014–2016 is used for validation 
of the model. There are five sub-basins present in the model 
setup. Total 386 HRUs are present in the watershed with 
a HRU threshold of zero percentage for landuse, soil and 
slope (Table 2). The major crops in the region are Cotton 
and Peanut with one year crop rotation. Timely management 
practices are also incorporated in the model (STEWARDS, 
USDA). The current study considers three stream gauging 
station data for the analysis (Fig. 1). The watershed outlet is 
located in the sub-basin 5. There are 18 soil moisture meas-
uring stations present within the watershed (Fig. 1).

The soil moisture estimates available from field sensors 
are in volumetric units  (cm3/  cm3 or  m3/m3), while SWAT 
simulates soil moisture in depth units (mm  H2O) at daily 
time step. To compare the observed and SWAT simulated 
soil moisture, they need to be in the same units. To overcome 
this issue, observed soil moisture data are converted into 
the same depth units. In LREW, field sensors are present at 
a depth of 50 mm, 200 mm, and 300 mm with soil moisture 
estimates for every 30 min interval. The volumetric measure-
ments are converted into depth units by multiplying it with 
soil moisture depth intervals. The wilting point of each soil 
layer is estimated using the bulk density and percentage clay 
of each soil layer. The wilting point component of the soil 
moisture storage is deducted from the soil moisture measure-
ment and calculates the plant available water for each layer. 

Table 1  The SWAT model parameters and their calibrated values from both single-variable and multi-variable calibration approaches

Depending on the type of the parameter, range is defined as relative (r) or absolute (a)

Parameters Description Unit Range type Min Max Little River

Single variable Multi variable

CN2_F Curve Number % r − 0.25 0.25 0.004 0.082
SOL_AWC Soil available water capacity % r − 0.3 1 0.895 0.451
SOL_K Soil saturated hydraulic conductivity % r − 0.25 0.5 − 0.249 − 0.243
SURLAG Surface runoff lag coefficient – a 0.1 10 0.103 0.106
ESCO Soil evaporation compensation factor – a 0.01 1 0.221 0.017
EPCO Plant uptake compensation factor - a 0 1 0.517 0.028
HRU_SLP Average slope steepness % r − 0.5 1 − 0.486 − 0.472
SLSUBBSN Average slope length % r − 0.5 0.5 0.462 0.293
OV_N Manning’s ‘n’ for overland flow % r − 0.1 0.3 0.046 0.186
SFTMP Snowfall temperature °C a − 5 5 4.996 − 4.098
SMTMP Snow melt base temperature °C a − 5 5 4.972 2.945
SMFMN Melt factor for snow on December 21 mm  H2O/°C-day a 1 10 2.414 4.828
SMFMX Melt factor for snow on June 21 mm  H2O/°C-day a 1 10 1.011 1
TIMP Snow pack temperature lag factor – a 0.01 1 0.648 0.641
GW_DELAY Delay time for aquifer recharge Days a 0 500 2.074 2.371
GW_REVAP Groundwater revap coefficient – a 0.02 0.2 0.184 0.199
GWQMN Threshold water level in shallow aqui-

fer for baseflow
mm  H2O a 0 2000 1072 989

ALPHA_BF Baseflow recession constant 1/days a 0 1 0.570 0.740

https://websoilsurvey.sc.egov.usda.gov/
https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
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The total available soil moisture is obtained by adding the 
plant available water of each layer.

Methodology

The conventional calibration approaches use streamflow 
data at the watershed outlet as a calibration variable, since 
the streamflow is considered as an integrated response of a 

watershed. In the calibration, the hydrological model param-
eters will get adjusted for a better prediction of the cali-
bration variable at the watershed outlet. The current study 
analyses the potential of soil moisture data for calibration of 
SWAT by comparing two different calibration approaches. 
The Case I is a conventional single site, single-variable 
calibration with streamflow as calibration variable. The 
Case II is a single site, multi-variable calibration with both 

Table 2  Description of SWAT model setup and calibration configuration for the Little River Experimental Watershed

SWAT setup configuration and characteristics of the setup for the basin

Basin HRU threshold 
(land use/soil/
slope)

Number of sub-
basins

Number of HRUs Number of land 
use classes

Number of soil 
classes

Model setup period

Little River 
Experimental 
Watershed

0/0/0% 5 386 15 5 2006–2016 (1 year 
warm-up period)

SWAT calibration configuration

Calibration approach Calibration variable Calibration period Validation period
Single variable Streamflow 2007–2013 2014–2016
Multi-variable Streamflow and Soil Moisture 2007–2013 2014–2016

Fig. 1  Study area
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streamflow and root zone soil moisture as calibration vari-
ables. Process representation in the SWAT model setup is 
analysed using the built in program SWAT Check. The soft 
data from literature is also used to evaluate the model setup. 
The study considers 18 SWAT model parameters which 
affect the streamflow generation process. The parameters 
and their permissible range for calibration are presented in 
Table 1, here 12 parameters are HRU level parameters and 
remaining are basin level parameters. The current study con-
siders all the parameters for calibration, since it focuses on 
analysing the impact of soil moisture on the simulation of all 
surface and sub-surface hydrological fluxes in the watershed.

The calibration of the SWAT model has done with 
AMALGAM optimizer. The AMALGAM optimizer con-
sists of four optimization algorithms, Genetic Algorithm, 
Particle Swarm Optimization, Adaptive Metropolis Search 
and Differential Evolution. The major advantage of AMAL-
GAM is that it can merge the strength of four different search 
strategies and increase the speed of convergence of solu-
tions to pareto set (Vrugt 2015). The model performance 
for streamflow prediction is analysed with the performance 
index Nash Sutcliffe Efficiency (NSE). The NSE is one of 
the most commonly used performance indices for SWAT 
model simulations and is calculated as (Moriasi et al. 2015; 
Arnold et al. 2012; Feyereisen et al. 2007; Muleta 2011)

where Oi and Pi are the observed and simulated values for 
the ith pair, O is the mean of the observed values and n is 
the total number of paired values. NSE value lies between 
− ∞ and 1, with 1 indicating a perfect fit. The soil moisture 
prediction of the model is quantified with the performance 
index Volumetric Efficiency (VE), which is a relative abso-
lute measure and it can quantify the frequent variations in 
the soil moisture flux.

The value of VE ranges between − ∞ and 1 and a value 
close to 1 indicates the best fit simulation. The current study 
also uses a performance index PBIAS to quantify the perfor-
mance of the calibrated parameter set. The PBIAS is capable 
of analysing the model performance in the medium flow 
ranges.

(2)NSE = 1 −

∑n

i=1

�

Oi − Pi

�2

∑n

i=1

�

Oi − O
�2

,

(3)VE = 1 −

∑n

i=1
abs

�

Pi − Oi

�

∑n

i=1
Oi

.

(4)PBIAS =

∑n

i=1

�

Oi − Pi

�

∗ (100)
∑n

i=1
Oi

.

The PBIAS value ranges from − ∞ to ∞. Model perfor-
mance is more accurate if the absolute PBIAS value is close 
to zero. A positive percent BIAS indicates underestimation 
bias and negative percent BIAS shows the overestimation 
bias (Gupta et al. 1998).

The Latin Hypercube sampling is employed in AMAL-
GAM to generate the initial population based on the range 
specified for each parameter. The single-variable calibra-
tion considers the streamflow measurement at the watershed 
outlet for adjusting the model parameters. The model per-
formance of each parameter set is evaluated in terms of the 
objective function considered in the calibration approach. 
The single-variable calibration optimizes the parameter set 
by minimizing the objective function − 1 × NSE. The multi-
variable calibration considers both streamflow and in situ 
root zone soil moisture measurements at the watershed 
outlet for optimizing the SWAT model parameters. In this 
approach, the optimization of parameter values are done by 
minimizing both − 1 × NSE and − 1 × VE. The convergence 
of objective function is considered as a criterion to stop the 
optimization algorithm. Flowchart of the methodology is 
presented in Fig. 2. In single-variable calibration approach, 
4000 iterations are conducted with a population size of 100 
in each generation. The number of iterations considered in 
multi-variable calibration is 12,000 with a population size 
of 100 in each generation. The calibrated parameter sets are 
validated in the period 2014–2016. The spatial prediction 
ability of both the calibration approaches are analysed in the 
study. Spatial prediction is analysed only for the upstream 
subbasins 1 and 2 due to the limited availability of data in 
other subbasins. The streamflow prediction at the calibration 
outlet is obtained from the output.rch file in SWAT. The 
soil moisture comparison is also conducted on a subbasin 
scale. The subbasin level soil moisture is the weighted aver-
age of soil moisture estimates from all the HRUs within 
that subbasin. The simulated soil moisture data is extracted 
from model standard outputs (output.hru and output.sub). 
In the analysis, the subbasin level soil moisture estimates 
from SWAT are compared with the weighted average of soil 
moisture measurements from that subbasin. There are five 
soil moisture measurement stations present in the subbasin 
5. The outlet of subbasin 5 is the watershed outlet and the 
streamflow and average soil moisture measurement at the 
outlet is considered for calibration of the model.

The effect of improved soil moisture simulation on the 
process representation of calibrated SWAT model is ana-
lysed by a diagnostic test based on vertical soil moisture 
profile (McMillan et al. 2011). The improved soil mois-
ture simulation can give a reliable vertical soil moisture 
profile in the watershed. The moisture content in soil 
layers fluctuates seasonally in a year. The seasonal vari-
ations in the soil moisture distribution will significantly 
affect the evapotranspiration process in a watershed. The 
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evapotranspiration demand of the watershed is met from 
the lower soil layers during summer and from upper soil 
layers during winter season. Hence, the vertical soil mois-
ture profile has a significant role on the ET process estima-
tion (Ferguson et al. 2016). The current study compares 
the evapotranspiration estimates from both the calibration 
approaches. The changes in the soil moisture storage and 
evapotranspiration will also affect the baseflow and lateral 
flow component since the hydrological models are based 
on the water balance equation.

The current study uses an automatic baseflow filter pro-
gram proposed by Arnold et al. (1995) for the baseflow sepa-
ration from streamflow. The recursive digital filter technique 
(Nathan and McMahon 1990) used in the baseflow filter 
program is originally used in signal analysis and process-
ing (Lyne and Hollick 1979). In this technique, the filter-
ing of surface runoff (high-frequency signal) from baseflow 
(low-frequency signal) is analogous to filtering the high-
frequency signals in signal processing. The equation for 
filtering is given by:

where qt is the filtered surface runoff (quick response) at the 
time step t,Qt is the original streamflow, bt is the base flow, 
and � is the filter parameter.

The streamflow generation in a watershed is an inte-
grated response of all the components of the hydrological 
cycle. The effect of root zone soil moisture on the stream-
flow prediction is analysed by comparing the flow dura-
tion curve from both the calibration approaches. McMillan 
et al. (2011) have analysed the hydrological field data of 
Mahurangi catchment, New Zealand and reported that the 
improvement in the root zone soil moisture can improve the 
medium and low flow ranges of the flow duration curve. 
The current study considers the flow duration curve in three 
segments; 0–0.2 flow exceedance probability is high flow 
segment, 0.2–0.7 flow exceedance probability is medium 

(5)qt = �qt−1 +
(1 + �)

2
×
(

Qt − Qt−1

)

(6)bt = Qt − qt,

SWAT model setup 

 Parameterization

Latin Hypercube Sampling 
of Parameters

Monte Carlo 
Simulation of SWAT 

model

Estimate the Likelihood 

 Satisfies the 
Convergence 

Criteria?

Observed 
Soil Moisture
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Streamflow 
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Generation of new 
Parameter sets For Multi-Variable

 Calibration
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Fig. 2  Flowchart for the proposed methodology
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flow range, and 0.7–1.0 flow exceedance probability is low 
flow segment (Yilmaz et al. 2008). The flow duration curve 
from both the calibration approaches are compared with that 
of the measured streamflow in the watershed outlet. Then, 
the effect of multivariable calibration is analysed.

Results and discussion

Calibration and validation of SWAT model

The SWAT model setup is done for LREW in the period 
2006–2016. The SWAT Check analysis shows that the major 
hydrological component of the watershed is groundwater 
component. The watershed has a flat terrain with very high 
hydraulic conductivity. Bosch et al. (2007) reported that 
around 55% of the streamflow is from groundwater con-
tribution in LREW. The calibration is conducted in two 
approaches, a single-variable calibration considering stream-
flow at the watershed outlet (Case I) and a multi-variable 
calibration considering both streamflow and soil moisture at 
the watershed outlet (Case II). The results show that objec-
tive function got converged after 2700 simulations in single-
variable calibration of LREW (Fig. 3a). The best performing 
parameter set is selected from final ensemble simulations. 
The parameter set from single-variable calibration is able to 
simulate the streamflow by NSE value of 0.62 (Fig. 4a). The 
streamflow simulations in physics-based distributed hydro-
logical models are considered acceptable, if the NSE value 
is greater than 0.50 or PBIAS value lies between ± 25% 
(Moriasi et al. 2015). However, the calibrated SWAT model 
overpredicts the soil moisture in single-variable calibration 
by VE value of 0.54 (Fig. 4b). The parameters are adjusted 
for better simulation of streamflow at the calibration outlet in 
single-variable calibration. The adjustment of the parameters 
SOL_AWC and SOL_K modifies the water holding capac-
ity of each soil layer and its hydraulic conductivity. These 
parameter values are adjusted for better prediction of stream-
flow in a single-variable calibration without considering the 
prediction of other hydrological fluxes. In most of the sin-
gle-variable calibration studies, the parameters SOL_AWC 
and SOL_K are converged to its minimum/maximum value 
specified in Table 1. The optimal value of the parameter 
SOL_AWC is 0.89 in the single-variable calibration with 
SOL_K value -0.25. The increase in water holding capac-
ity with reduced hydraulic conductivity can increase the 
soil moisture storage in each soil layer. Hence, the optimal 
parameter set from single-variable calibration has resulted 
in an overprediction of soil moisture.

The multi-variable calibration optimizes the parameters 
in such a way that it can predicts both streamflow and soil 
moisture well. The multi-variable calibration results in a 
pareto set of parameters due to the significant trade-off that 

exists in the calibration of SWAT for streamflow and soil 
moisture (Fig. 3b). The best parameter set for streamflow 
prediction (NSE = 0.62) has a soil moisture prediction by 
a VE value of 0.61. Similarly, the parameter set which 
simulates the soil moisture well (VE = 0.85) has a poor 
streamflow prediction by a NSE value of 0.45. The SWAT 
model structure has limitations in calibrating the model 
for multiple hydrological fluxes. Hence, the current study 
considers a compromising parameter set which can rea-
sonably simulate both streamflow and soil moisture at the 
calibration outlet (NSE = 0.59 and VE = 0.75). The opti-
mal parameter sets from both the calibration approaches 
are presented in Table 1. There is a significant difference 
in the parameter values related to groundwater compo-
nent, evapotranspiration and soil moisture storage. This 
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difference in parameter values indicates that the simula-
tion of these hydrological fluxes are different in both the 
calibration approaches.

The calibrated parameter sets from both the approaches 
are validated in the period 2014–2016. The parameter set 
of single-variable calibration can simulate the streamflow 
well in the validation period by a NSE value of 0.61 at the 
watershed outlet (Fig. 5a). The soil moisture prediction 
of single-variable calibration is an overprediction by VE 
value 0.51 in the validation period. The calibrated param-
eter set from the multivariable calibration simulates both 
the streamflow and soil moisture reasonably well in the 
validation period. The multivariable calibration simulates 
the streamflow at the watershed outlet by NSE value of 
0.58. The corresponding soil moisture prediction is also 
reasonably good (VE = 0.75) (Fig. 5b). This improved pre-
diction in the multivariable calibration may be because 
of the improvement in the process representation. Hence, 
multivariable calibration has the capability to improve the 
suitability of SWAT model for impact analysis studies.

Spatial prediction of streamflow and soil moisture

The better prediction of more surface and sub-surfaces 
hydrological fluxes indicates the improved process repre-
sentation in the model. The better process representation in 
the model can ensure an improved spatial prediction of the 
hydrological variables. The streamflow and soil moisture 
prediction at the upstream gauged subbasins are analysed 
with the calibrated parameter sets (Fig. 1). The parameter 
set from single-variable calibration simulates the stream-
flow at the upstream subbasins 1 and 2 by NSE values of 
0.59 and 0.62, respectively (Table 3). The corresponding 
soil moisture simulations are overprediction with VE values 
of − 0.24 and 0.14, respectively (Table 3). The parameter 
set from multi-variable calibration is able to give a better 
streamflow prediction at both the subbasins 1 and 2 by NSE 
values of 0.60 and 0.61, respectively. The soil moisture pre-
dictions in these subbasins are having VE value of 0.26 and 
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0.51, respectively. The spatial prediction of soil moisture 
and streamflow in the validation period are also better in 
the multivariable calibration compared to the single-varia-
ble parameter set (Table 3). This improved spatial predic-
tion of parameters can enhance the capability of SWAT for 
ungauged basin predictions.

Effect of root zone soil moisture on the process 
representation of calibrated SWAT model

The soil water–plant–atmosphere interaction is one of the 
complex system which affects the hydrological cycle, cli-
mate, plant growth, and nutrient cycle of a watershed (Geris 
et al. 2017; Brocca et al. 2017; Corradini 2014; Wang et al. 
2019). The soil moisture dynamics influences all the com-
ponents of the hydrological cycle in a physics-based system 
(Wang et al. 2019; Corradini 2014); hence, an improved pre-
diction of soil moisture may result in a better process repre-
sentation in the hydrological models according to the model 
structure. Ajmal et al. (2016) have statistically analysed the 
effect of soil moisture at different depth on different hydro-
climatic factors and reported a significant correlation with 
ET process. The effect of soil moisture on the process rep-
resentation in the calibrated SWAT model is analysed in the 
study and presented below.

Vertical soil moisture distribution

The calibrated parameter set from the multi-variable cali-
bration is able to make a better spatial prediction of soil 
moisture. The soil moisture estimate is the average soil mois-
ture of the entire soil thickness for that particular subbasin. 
The soil moisture measurements at different locations in the 
subbasin are averaged to obtain the corresponding observed 
soil moisture time series. The comparison of soil moisture 
simulation has done on subbasin level. Previous studies 
reported that the improvement in the root zone soil moisture 

prediction can improve the simulation of other surface and 
subsurface hydrological fluxes in the watershed (Rajib et al. 
2016; Kundu et al. 2017; Brocca et al. 2012). As per the 
STATSGO soil data, the soil thickness in most of the HRUs 
are in the range of 300 mm in LREW and the soil moisture 
measurements are available at 50 mm, 200 mm and 300 mm 
depth. The vertical soil moisture distribution will be differ-
ent in different seasons. The soil moisture distribution will 
be uniform for all the layers in the winter season. The soil 
moisture in the upper layers will be less during the summer 
season and hence the evaporative demand of the watershed 
has to be obtained from lower layers (McMillan et al. 2011). 
The current study considers the soil moisture only up to 
300 mm depth, hence fluctuations in the soil moisture with 
respect to the seasons are not much visible. The soil mois-
ture distribution of two HRUs in different seasons is plotted 
in Fig. 6. It is observed that the soil moisture simulation 
from multi-variable calibration is close to the observed soil 
moisture values at different depths. Soil moisture prediction 
from the single-variable calibration results in an overpredic-
tion of soil moisture for the entire depth and the soil mois-
ture at the lower layer of soil shows much variability from 
the measured values. Soil moisture at the root zone depth has 
significant impact on the ET process and percolation. The 
value of the parameters ESCO and EPCO will get adjusted 
according to the soil moisture storage at different layers. 
Each soil layer will store the water up to field capacity limit 
and the excess amount of water percolates to the lower layer 
or go as surface runoff in SWAT. Hence, the variations in 
the soil moisture prediction will affect the ET, percolation 
and groundwater component of the water balance equation 
in each HRU. The annual soil water storage for the water-
shed is presented in Fig. 7a. The annual soil water storage in 
the multi-variable calibration is much close to the measured 
soil water storage. The single-variable calibration optimizes 
the parameters for better prediction of streamflow at the 

Table 3  Comparison of 
goodness of fit statistics of 
single-variable and multi-
variable calibration in terms 
of streamflow and soil water 
storage

Goodness of fit indicators: Nash Sutcliffe Efficiency (NSE), Volumetric Efficiency (VE), and Percent Bias 
(PBIAS)

Subbasin Single-variable Multi-variable

Streamflow Soil water Storage Streamflow Soil water Storage

NSE PBIAS VE PBIAS NSE PBIAS VE PBIAS

Calibration Period (2007–2013)
 1 0.59 0.21 − 0.24 − 1.17 0.60 0.12 0.26 − 0.5
 2 0.62 − 0.05 0.14 − 0.8 0.61 − 0.19 0.51 − 0.3
 5 0.62 − 0.185 0.54 − 0.41 0.59 − 0.3 0.75 − 0.04

Validation period (2014–2016)
 1 0.53 0.20 0.26 − 0.694 0.58 0.17 0.61 − 0.2
 2 0.58 − 0.013 0.26 − 0.655 0.61 − 0.06 0.61 − 0.2
 5 0.61 − 0.11 0.51 − 0.45 0.58 − 0.17 0.75 − 0.08
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watershed outlet and it is resulted in significant overpredic-
tion of the soil moisture.

Evapotranspiration

The actual evapotranspiration of the watershed is depend-
ent on the soil moisture, wind and different climatic fac-
tors. 50% of the evaporative demand in SWAT is met from 
water stored in the first 10 mm of the soil profile. The 
ET is modelled in such a way that the non-availability of 
water in the upper layer is not compensated with the water 
from lower layers. The non-availability of water in the 
upper layers will results in reduced actual evapotranspira-
tion estimates. The parameter ESCO helps to redistribute 
the soil depth according to the soil water availability. The 
parameter set from single-variable calibration overpre-
dicts the soil water storage. This overprediction of soil 
water leads to a higher estimate of actual evapotranspira-
tion in the watershed (Fig. 7b). In multi-variable calibra-
tion, the soil water storage is less compared to the single-
variable calibration. Hence, the actual evapotranspiration 
estimate is less in magnitude compared to single-variable 
calibration. The ET estimates from both the calibration 
approaches are different in magnitude by 160  mm in 
annual scale. The evapotranspiration estimate in SWAT 
is not only depends on the parameters ESCO and EPCO, 
but the parameters SOL_AWC and SOL_K are also sig-
nificant for the evapotranspiration process. The measured 
actual evapotranspiration values are not available in the 
watershed; hence, an accuracy analysis of the simulated 
ET estimates are not possible. The actual evapotranspi-
ration estimate from both the calibration approaches are 
presented in Fig. 7b.

Streamflow

The streamflow of a watershed has three components which 
are overland flow, surface runoff and baseflow. The major 
component of streamflow in LREW is baseflow (Bosch et al. 
2017). The baseflow component is a slow and consistent 
contribution to the streamflow and hence, the improvement 
in the baseflow prediction will reflects in the low flow seg-
ment of flow duration curve (Yilmaz et al. 2008). It also 
has a significant impact on the chemical transport of nutri-
ents through water. The baseflow separated from measured 
streamflow using the baseflow filter program follows the 
same pattern as that is observed from the field experiments 
in LREW. The baseflow contribution is significant during 
the period December to May (Bosch et al. 2017). The base-
flow contribution from both the calibration approaches are 
under-predictions as compared to the separated baseflow 
from measured streamflow data for the period 2007–2010 
(Fig. 8a). Thereafter, the baseflow simulations are over-pre-
dictions in both the cases. The baseflow prediction in multi-
variable calibration is slightly better than the single-variable 
calibration in the year 2013. The calibrated groundwater 
parameter values are different in the multi-variable calibra-
tion compared to the single-variable calibration. However, 
it could not significantly improve the baseflow simulation in 
the current model structure of SWAT.

The surface runoff generation from both the calibration 
approaches are analysed in the watershed. The calibrated 
value of the parameter CN2_f from both the calibration 
approaches are similar (Table 1). The major difference is 
in the SOL_AWC value; the water holding capacity of the 
soil is higher in single-variable calibration. The hydrau-
lic conductivity of the soil layers remains the same in 
both the approaches. Hence, it can be concluded that the 
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multivariable calibration over-predicts the surface runoff 
compared to that of single-variable calibration in SWAT. 
The surface runoff generation from both the calibration 
approaches are compared with the observed runoff genera-
tion (Fig. 8b). The baseflow separated streamflow is consid-
ered as the surface runoff in the current study. The surface 
runoff generation is better in single-variable calibration as 
compared to the multi-variable calibration. Flow duration 
curve of the streamflow from both the calibration approaches 
are presented in Fig. 9. The streamflow predictions from 
both the calibration approaches are underprediction in high 
flow range and a slight overprediction in low- and medium-
flow ranges. The flow duration curve from single-variable 
calibration is slightly better than the multi-variable calibra-
tion. The SWAT model structure has limitations in simulat-
ing both the surface runoff and soil moisture better with the 
same parameter set. Similarly, improvement in the simula-
tion of both surface runoff and baseflow together is difficult 
in the current SWAT model structure. In a single-variable 
calibration, the SWAT model can simulate the streamflow 
better only if the surface runoff is the predominant compo-
nent of streamflow. If the baseflow contribution is significant 

in the streamflow, a multi-variable calibration will be ideal 
and it can improve the simulation in the low- and medium-
flow ranges.

Correspondence between the physically 
interpretable SWAT model parameters

The current analysis on different water balance components 
shows that root zone soil moisture has a significant role to 
play in simulating the different components of the hydro-
logical cycle in SWAT model. The parameters SOL_AWC 
and SOL_ K are key parameters that can influence all the 
surface and sub-surface hydrological processes. The param-
eters SOL_AWC and SOL_K are HRU level parameters and 
hence, the percentage deviations from the default values are 
optimized in a calibration process. These parameter varia-
tions are treated as independent while calibrating the SWAT 
model. However, the water holding capacity and hydraulic 
conductivity are two characteristics of the soil layer based 
on its texture. The current study observed a relation between 
the variations of the parameters CN2_f, SOL_AWC, and 
SOL_K in the ensemble parameter sets from multi-variable 
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calibration. A positive correlation is observed between the 
parameter variations of CN2_f and SOL_AWC (Fig. 10). 
Similarly, the variations of the parameter SOL_K is nega-
tively correlated to the parameter variations SOL_AWC and 
CN2_f. A positive deviation for CN2_f indicates an increase 
in runoff generation from each HRU. The increase in runoff 
results in a decrease in infiltration and percolation losses. 
The decrease in these variables is accounted for in the model 
by the parameter SOL_K. Hence, the positive deviation of 
CN2_f logically matches with the negative deviation for 
the parameter SOL_K. Similarly, a negative variation for 
SOL_K indicates an increase in the water holding capacity 
of the soil and that corresponds to a positive variation for 
parameter SOL_AWC. Even though these parameters are 
independent physical variables, a calibration process that 
can preserve these correlations will be able to represent the 
hydrological processes of a watershed better. This may help 
reduce the trade-off that exists in the SWAT model structure 
to calibrate both surface runoff and soil moisture together.

Conclusion

The physics-based distributed hydrological models are 
widely used for solving environmental issues. The cali-
bration process is a vital task in the application of phys-
ics-based distributed hydrological models. The streamflow 
measurement at the watershed outlet is considered as an 
integrated response of the watershed; hence, it is com-
monly used for calibration of the hydrological models. 
The soil moisture is an important variable which affect 
other hydrological processes since most of the physics-
based distributed hydrological models work on water 
balance equation. The current study analyses the poten-
tial of root zone soil moisture for improving the process 

representation in SWAT model through the calibration 
process. The analysis is done by comparing the single-
variable calibration in SWAT using streamflow at the 
watershed outlet and the multi-variable calibration using 
both streamflow and soil moisture in the watershed outlet. 
It is observed that the single-variable calibration is able 
to simulate the streamflow well at the calibration outlet by 
NSE value of 0.62. The trade-off exist in the calibration 
of SWAT is resulted in poor prediction of soil moisture by 
VE value of 0.54. The parameters SOL_AWC and SOL_K 
are the key parameters which affect both the processes. 
The compromising parameter set of multi-variable calibra-
tion simulates both the fluxes reasonably well (NSE = 0.59 
and VE = 0.75). There is an improved spatial prediction of 
streamflow and soil moisture in multi-variable calibration 
compared to the single-variable calibration.

The vertical soil moisture distribution from the multi-
variable calibration is close to the observed soil moisture 
measurements at different depths. The soil moisture predic-
tion from single-variable calibration is an overprediction. 
The improvement in the root zone moisture prediction in 
multivariable calibration influences the prediction of other 
hydrological fluxes. The change in the soil moisture stor-
age has influenced the ET estimate from both the calibra-
tion approaches. The watershed considered in this study has 
significant groundwater contribution to the streamflow. The 
multi-variable calibration simulates the groundwater con-
tribution slightly better than the single-variable calibration. 
However, the improved root zone soil moisture simulation 
in SWAT is not capable to bring significant improvement 
in the baseflow simulation in the current model structure. 
The trade-off in the calibration of SWAT for surface run-
off and soil moisture has resulted in an overestimation of 
surface runoff in multi-variable calibration. Hence, the 
multi-variable calibration cannot bring improvement in 
the simulation of streamflow. The ensemble parameter sets 
from the multi-variable calibration has shown some depend-
ence between the variations of the parameters SOL_AWC, 
SOL_K and CN2_f. The dependence/correlation observed 
in the parameter variations satisfies the physics of surface 
runoff generation. A single-variable calibration approach 
which considers this parameter dependence will be able 
to simulate the hydrological fluxes similar to that in multi-
variable calibration.
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