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Abstract
The use of generalised extreme value (GEV) distribution to model extreme climatic events and their return periods is widely 
popular. However, it is important to calculate the three parameters (location, scale and shape) of the GEV distribution before 
its application. To estimate the parameters of the GEV distribution, different parameters estimation techniques are available 
in literature. Nevertheless, there are no set guidelines with a view of adopting a specific parameters estimation technique for 
the application of the GEV distribution. The sensitivity analysis of different parameters estimation techniques, which are 
commonly available in the application of the GEV distribution is the main objective of this study. Extreme rainfall modelling 
in Tasmania, Australia was carried out using four different parameters estimation techniques of the GEV distribution. The 
homogeneity of the extreme data sets were tested using the Buishand Range Test. Based on the estimated errors (MSE and 
MAE), the L-moments parameter estimation technique is appropriate for the data series, where there is a possibility to have 
outliers. The GEV distribution parameters can vary considerably due to variation in the length of the data series. Finally, 
Fréchet (type II) GEV distribution is the most appropriate distribution for most of the rainfall stations analysed in Tasmania.
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Introduction

During the late 20th Century, due to augmentation of anthro-
pogenic activities, there is a gradual surge of greenhouse 
gas emission (Sachindra et al. 2016). It is a common under-
standing that global warming and greenhouse gas emis-
sion will act as a catalyst to facilitate frequent occurrence 
of extreme climatic events (Crowley 2000; Sachindra et al. 
2016). Intergovernmental Panel on Climate Change (IPCC) 
(IPCC 2012) reported that increased greenhouse gases in the 
atmosphere has contributed to change the patterns of rain-
fall. Large scale-climate drivers, initial weather conditions, 
regional effects and stochastic process further aggravate the 
processes of extreme events (Sillmann et al. 2017). Conse-
quently, several studies (Mekanik et al. 2013; Yilmaz et al. 

2014; Hossain et al. 2018a, b, 2020a) carried out analysis 
to identify climate change effects on rainfall using linear 
(multiple linear regression) and non-linear (artificial neural 
network, non-linear regression) models. Seasonal rainfall 
forecasting techniques using the influential climatic vari-
ables, e.g. ENSO, IOD were the focus of the above stated 
studies. Nevertheless, it was identified that linear and non-
linear modelling approaches are not effectual to forecast 
the actual behaviour of the extreme rainfall (Hossain et al. 
2020a, b). On the other hand, it is well established that the 
frequency and occurrence of extreme climatic events are 
changing globally (Fischer and Knutti 2015; Pereira et al. 
2018).

Due to widespread global warming scenarios through-
out the world in recent years, the changes in the extreme 
climatic events are evident in different parts of Australia 
followed by their changed frequency and occurrence. For 
example, Melbourne observed an incessant eleven-year 
drought period with cumulative rainfall continuing to be 
significantly below average (Khastagir and Jayasuriya 
2010). Due to the continuous accumulation of carbon di-
oxide in the environment, the pace of climate change is 
aggravated (Cox et al. 2000). As a result, considerable 
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changes in the frequency and occurrence of extreme rain-
fall are expected to increase in near future (Bryson Bates 
2015).

In Australian context, extreme rainfall is more common 
in the island state Tasmania. Although the average rainfall 
in some cities of Tasmania is 775 mm, the minimum rain-
fall could be only 31 mm per month in the summer months. 
Increased flood risk associated with extreme rainfall event 
is causing substantial losses in properties and human lives 
in different parts of Tasmania. Therefore, it is intrinsic to 
accurately predict the frequency and magnitude of extreme 
rainfall to prepare our future society.

The climatic system in the earth is made up of regions 
where the response to energy balance is different. The 
dynamics of each region are controlled by the local physi-
cal–chemical boundary conditions. Therefore, regional phys-
ical–chemical-biological process dictate the intrinsic pat-
terns of climatic variability (Loubere 2012). Consequently, 
several climatic modes have significant influence on the 
variability of extreme climatic events, e.g., extreme rainfall. 
Nevertheless, the uneven distribution of worldwide rainfall 
has already been observed in many parts of the world. For 
example, Kumar et al. (2020) noted that there will be signifi-
cant variation in the distribution of projected extreme rainfall 
in Bihar, India. As a result, the productivity of crops in the 
arid and semi-arid regions have declined inferring increased 
uncertainty. Ghorbani et al. (2021) observed declining rain-
fall trend in the central part and increasing rainfall trend in 
northern and southern part of Algeria. Lai and Dzombak 
(2019) observed significantly different extreme rainfall in the 
US cities. They further noted investigated that cities within 
the same climatic region has the potential to encounter sub-
stantially different extreme rainfall. Therefore, the impor-
tance of regional analysis is underlined by many research 
studies around the world in extreme climatic event study.

Extreme rainfall is generally analysed to determine 
flood magnitude of specified return periods for the scarce 
record of gauged streamflow data regions (Cannon and 
Innocenti 2019). Although, it is intricate to predict the his-
torical increase in extreme rainfall due to natural variabil-
ity, uncertainties in the measurement and long-term records, 
the observation from the large regions and climatic model’s 
simulation are consistent with thermodynamically driven 
increased extreme rainfall in near future (Min et al. 2011; 
Westra et al. 2012; Pfahl et al. 2017). Therefore, study on 
the extreme rainfall analysis and forecasting is a matter of 
great concern throughout the world (Ávila et al. 2019). For 
the prediction of flood values from extreme rainfall, extreme 
value statistics are generally interest to the hydrologists and 
water resources engineers (Towler et al. 2010). The extreme 
value statistics projects the occurrence of future extreme 
rainfall through frequency analysis of the previous data (El 
Adlouni et al. 2007).

Frequency analysis is carried out for a series of previ-
ous observations to fit statistical probability distributions 
(Khaliq and Ouarda 2007). As for example, Log Pearson 
Type III (LPIII) distribution is recommended as a suitable 
general distribution for extreme value analysis as detailed in 
flood (McMahon and Srikanthan 1981) and fire (Khastagir 
2018) frequency analyses in Australia. Although, several 
probability distribution functions can be used for the fre-
quency analysis of extreme rainfall, the generalised extreme 
value (GEV) distribution is commonly used in extreme 
rainfall analysis. The GEV is statistical distribution of three 
parameters (location, scale, and shape). Although different 
methods of the GEV parameters estimation techniques are 
available in literature, no specific guideline was found to 
adopt suitable technique. However, selection of parameters 
estimation technique can significantly influence the return 
levels estimation of extreme rainfall (Lazoglou et al. 2019; 
Hossain et al. 2021a; Khastagir et al. 2021).

In this study, evaluation of different parameters estima-
tion techniques of the GEV distribution was performed. 
Frequency analysis of Tasmanian extreme rainfall (monthly 
maximum from daily rainfall) were used to estimate the 
parameters of the GEV distribution. As higher number of 
GEV models that may arise from non-stationary considera-
tion has the potential to decrease the performance of GEV 
selection criteria (Xavier et al. 2019), the analysis of this 
paper was performed considering that the rainfall pattern 
is stationary. The main objective of this study was to iden-
tify the most appropriate parameter estimation technique for 
GEV statistics. The results obtained from this study will sig-
nificantly contribute to identify the most appropriate param-
eter estimation technique of the GEV distribution, which is 
commonly used for extreme rainfall analysis.

Data collection and study area

Tasmania is the island state of Australia, which is located 
around 240 km south from the mainland state Victoria. Aver-
age elevation of the state 104 m above the mean sea level. 
The climate of the state varies greatly comparing with the 
other parts of Australia. There is rainfall in all season in Tas-
mania with mild to warm summer and mild winter because 
of southerly marine air masses. The annual rainfall around 
the state is highly variable ranges from 510 to 2500 mm. 
There is also remarkable variation in the summer rainfall 
from year to year.

Wide geographic and terrestrial variation in biodiversity 
make Tasmania a unique heritage region in the world. How-
ever, the climate change trends of the state are coherent with 
the worldwide trend leading to extreme climatic events (such 
as extreme rainfall, drought, bushfire) (DPI 2010). Like 
other parts of the world, several large-scale climatic modes 
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are significantly affecting the Tasmanian extreme rainfall 
(Hill et al. 2009). Therefore, study on Tasmanian extreme 
rainfall has the potential to reflect the global context.

From 1996 to 2009, much of the south Australian region 
including Tasmania experienced a persistent dry period. The 
long-term average rainfall declined significantly with more 
severity in the densely populated area, especially in all the 
southern cropping zone of Australia. However, significant 
amount of rainwater is required to maintain balance growth 
of Australian crops (Hossain et al. 2021b). The periodic 
dry episode is considered as the millennium drought in 
Australia.

In this study, daily rainfall data from selected 20 rainfall 
stations spearing all around Tasmania were collected and 
analysed. Figure 1 delineates the locations of the rainguage 
stations considered in this study. The daily rainfall data for 
the selected 20 rainfall stations from 1965 to 2018 was col-
lected using SILO database, which is the Queensland Gov-
ernment database. Missing data filling was carried out using 
the data from Bureau of Meteorology (BoM) and incorpo-
rated in the SILO database.

Detailed information of the rainfall stations is shown in 
Table 1. The selection of rainguage stations is based on the 
following criteria:

•	 Adequate distribution of stations across Tasmania to rep-
resent all climatic conditions.

•	 Availability of rainfall data at a station.
•	 Number of years of data available.

Methodology

As mentioned earlier, historical daily rainfall data from 
SILO database were analysed using the extreme value 
theory. Monthly maximum rainfall was extracted from 
the collected daily data. As the removal of outliers have 
the potential to change the variance and the analysis may 
produce biased result, it is important to note that outli-
ers of the rainfall data were not removed in this analysis. 

Fig. 1   Location of rainguage stations considered in this study
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However, assessment of the variation in the extreme data 
sets, homogeneity was performed using the Buishand’s 
range test. The adjusted partial sum in the Buishand 
range test can be represented according to Eq. 1 (Buis-
hand 1982).

where Yi is the extremely rainfall for the ith time step, Y  is 
the average of extreme rainfall data series and is the number 
of observations. The re-scaled adjusted range (R) factor is 
then measured to estimate R∕

√

n to compare with critical 
values Of Buishand (Buishand 1982). The magnitude of R 
is estimated from the difference between the maximum and 
minimum value of S∗

k
.

Asymptotic extreme value models are generally fitted 
to identify the extremal behaviour of the climatic events 
especially for short series of data. It was evidenced from 
the observations that the daily extreme rainfall follows 
extreme value distribution with heavy upper tail (Papalex-
iou and Koutsoyiannis 2013). Therefore, three parameters 
GEV distribution has been widely applied to describe the 
characteristics of extreme climatic events, e.g. rainfall, 
floods, wind speed, snow depth, wave heights and other 
maxima. The mathematical application of the GEV dis-
tribution is also very attractive in extreme events charac-
terisation (Hosking 1990).

(1)S∗
k
=

n
∑

i=1

(

Yi − Y
)

Extreme value distribution

In this study, the GEV distribution was used for the fre-
quency analysis of Tasmanian extreme rainfall. The GEV 
distribution is suggested for the extreme data generated 
using the block-maxima approach (Park et al. 2011). Since 
our extreme rainfall data were generated using block-max-
ima approach (monthly maximum from daily record), the 
GEV distribution was used in this study. The cumulative 
distribution function of the GEV distribution can be found 
in most of the recently conducted extreme data analysis 
research. The function has been re-written here according 
to Eq. 2:

where Y represents the extreme rainfall data (in this case 
monthly maximum daily rainfall) and �(�, �, �) represents 
the parameters of the GEV distribution.

The physical origin of the extreme events suggests that 
their distribution follow in any of the three extreme value 
types (types I, II and III) (Martins and Stedinger 2000). The 
GEV distribution has three types of parameters: location 
(�) , scale (�) and shape (�) . Depending on the values of 
the parameters, the distribution can follow either Gumbel, 
or Fréchet or Weibull type GEV (Park et al. 2011). For the 

(2)G(Y;�) = exp

{

−

[

1 + �

(

Y − �

�

)]−1∕�
}

Table 1   Details of the 
meteorological stations used to 
estimation the GEV parameters

Station number Station name Latitude Longitude Elevation

91011 Cape Grim (Woolnorth) − 40.6842 144.7181 15
91022 Cressy Research Station (Main Office) − 41.7219 147.0811 148
91072 Launceston (Kings Meadows) − 41.4664 147.1644 67
91126 Devonport Airport − 41.1701 146.4289 8
91223 Marrawah − 40.9089 144.7094 107
92006 Buckland (Brockley) − 42.5847 147.7908 58
92008 Cranbrook (Cranbrook House) − 42.0117 148.0747 17
92012 Fingal (Legge Street) − 41.6428 147.9664 237
92030 Pioneer (Main Road) − 41.0825 147.9353 120
92047 Stonehouse − 42.2683 147.6936 375
94008 Hobart Airport − 42.8339 147.5033 4
94020 Dover − 43.333 146.998 20
94030 Hobart Botanical Gardens − 42.8667 147.3322 27
95003 Bushy Park (Bushy Park Estates) − 42.7097 146.8983 27
96002 Bronte Heights − 42.1423 146.4932 710
97000 Cape Sorell − 42.1986 145.17 19
97047 Savage River Mine − 41.4892 145.2083 352
97054 Zeehan (West Coast Pioneers Museum) − 41.8822 145.3358 175
98004 Naracoopa − 39.9078 144.0998 20
99005 Flinders Island Airport − 40.0911 148.0024 9
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shape parameter ξ = 0, the distribution becomes Gumbel 
(type I) class of normal, log-normal, gamma or exponential 
distribution. The positive shape parameter (𝜉 > 0) produces 
Fréchet (type II) distribution and negative shape parameter 
(𝜉 < 0) produce Weibull (type III) distribution.

Parameters estimation

The common problem in the application of statistical distri-
bution is the estimation of the unknown parameters (Hosk-
ing 1990). The support of the GEV distribution shown in 
Eq. 1 depends on the appropriate estimation of its param-
eters. There are different techniques available to estimate of 
the parameters of the GEV distribution. Stationary vs non-
stationary rainfall is still debatable. For example, Yilmaz 
et al. (2014), Yilmaz and Perera (2014) could not detect the 
presence of non-stationarity in the extreme rainfall analysis 
in Melbourne. Therefore, this study was performed consider-
ing the stationary behaviour of extreme rainfall data. How-
ever, the parameters of the GEV statistics can be modified 
to incorporate the non-stationarity of rainfall data (Coles 
2001; Towler et al. 2010). In this research, the parameters 
of the GEV distribution were estimated using four different 
methods: MLE, GMLE, Bayesian and L-moments.

The maximum likelihood estimation (MLE) method

The maximum likelihood estimation (MLE) is a powerful 
approach to estimate the parameters of the GEV distribu-
tion where data length are relatively short (Coles and Dixon 
1999). Therefore, the method has been used in several stud-
ies (Towler et al. 2010) in estimating the parameters of the 
non-stationary GEV models. The values of the parameters 
(�, �, �) that maximises the likelihood function are the esti-
mated parameters. In practice, the MLE is expressed as the 
log likelihood (L) function of the GEV distribution as shown 
in Eq. 3.

The log likelihood function of the Eq. 2 can be expanded 
according to Eq. 4 as follows (Yoon et al. 2010).

where � = (�, �, �) and xi =
[

1 + �

(

yi−�

�

)]

.
The partial derivatives of the log-likelihood functions can 

be solved to estimate the parameters of the GEV distribution. 
The negative log likelihood function also can be minimised to 

(3)L
(

�;yi
)

=

N
∑

i=1

log
{

G
(

�;yi
)}

(4)

log
[

L
(

�;yi
)]

= −N × log(�) −

(

1 +
1

�

) N
∑

i=1

log
(

xi
)

−

N
∑

i=1

(

xi
)−1∕�

find out the parameters using MLE method (Katz 2013). The 
negative log likelihood functions are minimised with respect 
to three parameters: location, scale, and shape parameters. 
However, the method is computationally intensive (Nakajima 
et al. 2012). Moreover, the method underestimates the nega-
tive value of the shape parameter for small or moderate sample 
size (Park 2005).

The generalised maximum likelihood estimation 
(GMLE) method

To overcome the limitation of the MLE method for small or 
moderate sample size, the generalised maximum likelihood 
(GMLE) method was developed (Park 2005). The method 
has been developed based on the MLE method. The method 
included an additional constraint of the shape parameters to 
eliminate the invalid results that may be produced in MLE 
method. The method uses a prior distribution of the shape 
parameter to avoid the value of the parameters being large 
negative (Park 2005; Yoon et al. 2010).

Consequently, the generalised log-likelihood of Eq. 4 can 
be expanded as Eq. 6.

To maximize this function for the estimation of the GEV 
parameters, Newton Raphson can be used (Yoon et al. 2010).

The Bayesian method

Like the GMLE method, the Bayesian method was also 
developed to overcome the limitation of small sample size of 
the extreme time-series data. The fundamental of Bayesian 
method require the prior distribution of the GEV parameters 
� = (�, �, �) . Therefore, the essential of Bayesian method 
is a prior distribution f (�) and a likelihood f (YI�) (Coles 
and Tawn 2005). Bayes theorem balances these two sources 
produces the posterior distribution f (�IY) , such that:

where Y is the historical data set and � = (�, �, �) is the loca-
tion, scale and shape parameter of the GEV distribution.

The posterior probability density of the GEV parameters 
p(�IY) can be obtained by the well-known Bayes theorem 
as follows:

(5)GL
(

yi;�, �, �
)

= L
(

yi;�, �, �
)

�(�)

(6)

log
[

L
(

�;yi
)]

= − N × log(�) −

(

1 +
1

�

) N
∑

i=1

log
(

xi
)

−

N
∑

i=1

(

xi
)−1∕�

+ +ln{�(�)}

(7)f (�IY)�f (�)f (YI�)
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where p(�IY) is the posterior probability density of the GEV 
parameters, Y is the observations, f (YI�) is the likelihood 
of the observations and �(�) is prior probability density of 
the GEV parameters.

Since analytical determination of the posterior distri-
bution is difficult, Markov Chain Monte Carlo algorithm 
can be used to derive the parameters �(�) . Details of the 
method can be found in Gilks et al. (1995).

L‑moments method

The L-moments is based on the probability weighted 
moments which describe the shape of probability distri-
butions. The method can be defined as the linear combi-
nation of probability weighted moments (Hosking 1990). 
The method estimates the parameters of the statistical dis-
tribution by equating the first p-sample L-moments to the 
corresponding population sample. The L-moment method 
is less affected from data variability and outliers. Moreo-
ver, the method is comparatively unbiased for the small 
number of samples. Details of the L-moment method can 
be found in Hosking (1990).

(8)p(�IY) =
f (YI�)�(�)

∫ f (YI�)�(�)d�

The GEV distribution parameters according to the 
L-moments method can be described as follows (Hosking 
and Wallis 1993; Huard et al. 2010).

where �, � and � are the location, scale and shape parameters 
respectively; l1, l2 and l3 are the L-moments and

Results and discussions

This section presents the outcomes of analysis performed in 
this research, including subsequent discussions. The applica-
tion of homogeneity test, three parameters (location, scale 
and shape) of the GEV technique were obtained using the 
computer programming language R and RStudio.

(9)� = l1 +
�[Γ(1 + �) − 1]

k

(10)� =
�l2

Γ(1 + �)
(

1 − 2−�
)

(11)� = 7.8590z + 2.9554z2

(12)z =
2l2

l3 + 3l2
−

ln(2)

ln(3)

Table 2   Buishand range homogeneity test result for the selected rainfall station in Tasmania from 1965 to 2018

Station number Station name Skewness Coefficient of 
variation

Test Statistics p value

91011 Cape Grim (Woolnorth) 1.98 0.62 1.421 0.203
91022 Cressy Research Station (Main Office) 2.29 0.67 0.912 0.874
91072 Launceston (Kings Meadows) 1.46 0.60 1.394 0.228
91126 Devonport Airport 1.68 0.65 1.218 0.442
91223 Marrawah 2.16 0.60 1.393 0.242
92006 Buckland (Brockley) 2.49 0.98 1.205 0.459
92008 Cranbrook (Cranbrook House) 2.37 0.99 0.970 0.804
92012 Fingal (Legge Street) 2.28 0.90 1.124 0.583
92030 Pioneer (Main Road) 2.10 0.69 0.884 0.903
92047 Stonehouse 1.76 0.82 1.232 0.422
94008 Hobart Airport 1.66 0.77 1.508 0.141
94020 Dover 2.26 0.69 1.152 0.541
94030 Hobart Botanical Gardens 2.31 0.82 1.573 0.096
95003 Bushy Park (Bushy Park Estates) 1.40 0.61 2.102 0.003
96002 Bronte Heights 1.47 0.53 1.107 0.609
97000 Cape Sorell 1.45 0.48 2.227 0.001
97047 Savage River Mine 1.29 0.43 1.304 0.330
97054 Zeehan (West Coast Pioneers Museum) 1.48 0.43 1.558 0.107
98004 Naracoopa 1.83 0.61 1.224 0.434
99005 Flinders Island Airport 2.17 0.76 1.266 0.375
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The extent of the variability amongst the time-series 
extreme rainfall were determined using the statistical tests 
skewness and coefficient of variation. Estimated values 
of the skewness and coefficient of variance are shown 
in Table 2. From Table 2, it was observed that estimated 
values of the skewness were positive for all the rainfall 
stations implying that the right tail of the distribution is 
longer. It was also detected that estimated coefficient of 
variance was less than one for all the selected meteoro-
logical stations indicating that the variation of monthly 
maximum rainfall is considerably low.

Homogeneity of time series observations reflects the 
variability of data sets. Location, instruments or record-
ing time may cause non-homogeneity of observed data 
sets (Wijngaard et al. 2003). Nevertheless, assumption 
of homogeneity is essential for the statistical hypothesis 
testing on meteorological observation. In this research, 
Buishand Range homogeneity test was performed to 
identify whether the time series is homogeneous. The test 
was applied for 5% significant level. The outcomes of the 
homogeneity analysis for the selected 20 rainfall stations 
are shown in Table 2. The critical value of the test statis-
tics was determined as 1.75 from Buishand (1982). The 
result of the Buishand Range homogeneity test indicated 
that the test statistic is lower than the critical value for all 
the rainfall stations except two as shown in Table 2. The 
possible reason for the non-homogeneity of two stations 

may be due to the changes in the surrounding environ-
ment or instrumentation inaccuracy or changes in the cal-
culation procedure for the missing value (Wijngaard et al. 
2003; Domonkos 2015). Since extreme rainfall data for 
90% of the selected meteorological stations are homogene-
ous, statistical hypothesis can be applied with confidence.

After determining the homogeneity of the extreme rain-
fall data, the GEV distribution was fitted using the four dif-
ferent parameters estimation techniques. The parameters of 
the GEV distribution were estimated for four different time-
series using four different parameters estimation techniques. 
Due to the page limitation, only the one time-series analysis 
(whole study period) has been provided in this article. The 
estimated GEV parameters of the analysis for the whole 
analysis period (1965–2018) are shown in Tables 3, 4, 5, 6 
for the MLE, GMLE, Bayesian and L-moments techniques.

It has been noted that the shape parameter (�) of the GEV 
distribution is positive for all the considered rainfall sta-
tions except station 97047. The statement is true for any 
of the methods considered in this study as evidenced from 
Tables 3, 4, 5, 6 for the whole study period. This implies 
that the GEV is Fréchet (type II) distribution (except station 
#97047) for the data series from 1965 to 2018. The out-
comes of Table 3 suggest that the type of the GEV distribu-
tion to be used in extreme climatic modelling did not depend 
on the parameter estimation technique. The observed nega-
tive shape parameter can be attributed by the influence of 

Table 3   Estimated GEV parameters using MLE technique rainfall data from 1965 to 2018

Station # Location Scale Shape

95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI

91001 16.35 17.265 18.18 9.828 10.51 11.192 0.006 0.066 0.125
91022 11.652 12.326 13 7.334 7.835 8.335 0.028 0.081 0.134
91072 13.392 14.125 14.859 8.049 8.579 9.11 − 0.026 0.025 0.075
91126 13.732 14.549 15.366 8.776 9.389 10.001 0.023 0.082 0.14
91223 14.084 14.75 15.416 7.179 7.686 8.193 0.068 0.126 0.183
92006 9.554 10.267 10.98 7.314 7.98 8.646 0.379 0.459 0.54
92008 9.685 10.444 11.204 7.786 8.5 9.215 0.388 0.468 0.549
92012 10.141 10.859 11.578 7.524 8.144 8.765 0.266 0.338 0.409
92030 16.092 17.01 17.929 9.747 10.468 11.19 0.112 0.176 0.24
92047 10.771 11.484 12.197 7.365 7.991 8.618 0.286 0.362 0.438
94008 8.894 9.487 10.079 6.126 6.623 7.119 0.207 0.282 0.357
94020 12.738 13.38 14.022 6.899 7.409 7.918 0.145 0.206 0.266
94030 9.45 10.065 10.68 6.44 6.952 7.464 0.208 0.278 0.348
95003 9.649 10.183 10.718 5.665 6.07 6.475 0.028 0.092 0.156
96002 13.572 14.204 14.836 6.851 7.316 7.781 − 0.012 0.043 0.098
97000 16.454 17.111 17.769 7.163 7.642 8.121 − 0.018 0.035 0.088
97047 21.857 22.685 23.512 9.173 9.757 10.342 − 0.072 − 0.027 0.017
97054 27.085 28.056 29.026 10.694 11.391 12.087 − 0.038 0.01 0.058
98004 13.641 14.334 15.027 7.428 7.957 8.485 0.058 0.118 0.179
99005 11.889 12.623 13.356 7.797 8.381 8.965 0.141 0.205 0.269
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Table 4   Estimated GEV parameters using GMLE technique rainfall data from 1965 to 2018

Station # Location Scale Shape

95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI

91011 16.158 17.07 17.982 9.763 10.437 11.111 0.04 0.104 0.168
91022 11.543 12.217 12.892 7.306 7.806 8.305 0.052 0.11 0.168
91072 13.196 13.93 14.663 8.001 8.526 9.05 0.014 0.071 0.128
91126 13.58 14.397 15.214 8.726 9.334 9.943 0.051 0.115 0.179
91223 14.008 14.673 15.338 7.163 7.669 8.175 0.087 0.148 0.209
92006 9.57 10.283 10.996 7.313 7.978 8.642 0.374 0.453 0.533
92008 9.703 10.463 11.223 7.785 8.498 9.211 0.381 0.462 0.542
92012 10.131 10.849 11.568 7.524 8.145 8.766 0.269 0.341 0.413
92030 16.012 16.929 17.847 9.727 10.448 11.17 0.127 0.194 0.26
92047 10.766 11.479 12.192 7.364 7.991 8.618 0.287 0.364 0.44
94008 8.871 9.463 10.055 6.121 6.617 7.114 0.215 0.291 0.367
94020 12.701 13.343 13.985 6.897 7.407 7.918 0.156 0.218 0.28
94030 9.428 10.043 10.657 6.437 6.949 7.462 0.215 0.286 0.357
95003 9.549 10.082 10.615 5.627 6.029 6.43 0.058 0.127 0.195
96002 13.416 14.048 14.679 6.802 7.261 7.721 0.025 0.087 0.149
97000 16.288 16.944 17.601 7.115 7.589 8.063 0.02 0.08 0.14
97047 21.999 22.823 23.646 9.173 9.757 10.341 − 0.089 − 0.05 − 0.012
97054 26.792 27.763 28.734 10.624 11.312 12.001 0.005 0.062 0.118
98004 13.548 14.241 14.933 7.402 7.929 8.455 0.08 0.144 0.207
99005 11.841 12.574 13.307 7.788 8.373 8.957 0.153 0.219 0.285

Table 5   Estimated GEV parameters using Bayesian technique rainfall data from 1965 to 2018

Station # Location Scale Shape

95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI

91011 16.276 17.238 18.238 9.826 10.542 11.346 0.006 0.068 0.135
91022 11.534 12.303 13.051 7.323 7.87 8.445 0.028 0.084 0.147
91072 13.496 14.231 15.218 8.079 8.636 9.232 − 0.029 0.025 0.084
91126 13.629 14.531 15.388 8.762 9.409 10.103 0.022 0.085 0.153
91223 13.948 14.695 15.435 7.133 7.694 8.307 0.067 0.129 0.193
92006 9.505 10.268 11.082 7.323 8.028 8.791 0.376 0.463 0.558
92008 9.631 10.384 11.307 7.76 8.501 9.295 0.383 0.472 0.564
92012 10.017 10.973 11.742 7.525 8.255 8.987 0.259 0.336 0.419
92030 15.966 17.012 18.115 9.711 10.522 11.379 0.112 0.18 0.256
92047 10.616 11.451 12.321 7.305 7.999 8.719 0.279 0.363 0.451
94008 8.859 9.491 10.178 6.124 6.665 7.288 0.206 0.285 0.366
94020 12.684 13.328 14.056 6.852 7.414 8.022 0.142 0.209 0.276
94030 9.382 10.071 10.764 6.417 6.985 7.569 0.206 0.28 0.358
95003 9.609 10.186 10.859 5.643 6.094 6.58 0.024 0.094 0.17
96002 13.433 14.257 15.094 6.845 7.366 7.912 − 0.014 0.045 0.112
97000 16.185 17.015 17.848 7.142 7.634 8.157 − 0.016 0.04 0.098
97047 21.91 22.691 23.549 9.181 9.79 10.479 − 0.068 − 0.024 0.024
97054 26.885 28.204 29.661 10.683 11.472 12.314 − 0.043 0.01 0.069
98004 13.483 14.254 15.421 7.343 7.972 8.651 0.053 0.122 0.19
99005 11.969 12.688 13.449 7.828 8.445 9.132 0.14 0.207 0.279
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climate indices or elevation above mean sea level (Ragulina 
and Reitan 2017; Tyralis et al. 2019). However, all the sta-
tions located in the high altitude did not produce negative 
shape parameter due to the non-linear dependency of the 
shape parameter on elevation. In addition, influence of cli-
mate indices on shape parameter was not considered in this 
research as the analysis was performed considered the rain-
fall as stationary.

The parameters of the GEV distribution were also esti-
mated for three other time-series: before millennium drought 
(1965–1996), during millennium drought (1997–2009) and 
after millennium drought (2010–2018). Due to the space 
limitation, they were not shown in this paper. Like the whole 
study period time-series analysis, positive shape parameter 
was observed for all the selected rainfall stations except two 
(stations 91072 and 97047) before millennium drought, 
two stations (stations 97047 and 97054) during millennium 
drought and two stations (stations 97047 and 91011) after 
millennium drought. Therefore, the Fréchet (type II) distri-
bution GEV distribution is suitable for modelling monthly 
maximum of daily rainfall in Tasmania.

All the parameter estimation techniques adopted in 
this research are showing the same outcomes. Therefore, 
the GEV parameters estimation technique has negligi-
ble impact on the extreme rainfall modelling. Any of the 
methods can be applied in modelling daily extreme rainfall. 
However, the length of the data series used for the analysis 

has some impacts on the parameters values as evidenced 
from Tables 3, 4, 5, 6. Nevertheless, large samples should 
be adopted to identify the true behaviour of extreme rain-
fall (Papalexiou and Koutsoyiannis 2013). Therefore, the 
distribution that was identified considering the whole study 
period (1965–2018) is the appropriate distribution for a par-
ticular meteorological station.

The analysis of the study was further extended by estimat-
ing the return levels of the monthly maximum of the daily 
rainfall. The return levels were estimated for 2, 5, 10, 20, 
50 and 100 years average recurrence interval (ARI). The 
estimated return levels are shown in Tables 7, 8, 9, 10 for 
MLE, GMLE, Bayesian and L-moments parameter estima-
tion techniques for the whole study period, i.e. 1965–2018.

Similar to the estimated parameters, there is not much 
variation of the return levels of the monthly maximum of the 
daily rainfall for different ARI events. Using different GEV 
parameters estimation technique, similar return level was 
observed for the same ARI events for a particular station. 
The outcomes of the return levels estimation are evidenced 
from Tables 7, 8, 9, 10 for the whole study period. The same 
outcomes were observed for the other time-series data before 
millennium drought, during millennium drought and after 
millennium drought. To keep the length of the paper mini-
mum, they are not shown here. Therefore, any of the GEV 
parameters estimation technique could be used to estimate 
the future daily extreme rainfall.

Table 6   Estimated GEV parameters using L-moments technique rainfall data from 1965 to 2018

Station # Location Scale Shape

95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI 95% lower CI Estimate 95% upper CI

91011 16.318 17.254 18.141 9.855 10.536 11.258 0.007 0.066 0.124
91022 11.682 12.334 13.032 7.259 7.789 8.352 0.02 0.083 0.138
91072 13.331 14.048 14.865 7.73 8.359 8.935 − 0.021 0.047 0.104
91126 13.813 14.628 15.511 8.896 9.525 10.211 0 0.065 0.131
91223 14.088 14.742 15.321 7.127 7.664 8.236 0.068 0.129 0.187
92006 10.021 10.744 11.576 7.996 8.75 9.48 0.246 0.333 0.425
92008 10.231 11.013 11.955 8.6 9.415 10.235 0.238 0.329 0.433
92012 10.271 11.018 11.792 7.654 8.375 9.183 0.213 0.291 0.38
92030 16.131 17.07 18.146 9.835 10.598 11.413 0.092 0.162 0.227
92047 11.05 11.848 12.657 7.912 8.577 9.259 0.192 0.264 0.348
94008 9.103 9.714 10.293 6.462 7.006 7.507 0.132 0.207 0.279
94020 12.666 13.298 13.943 6.613 7.193 7.83 0.161 0.229 0.307
94030 9.533 10.162 10.785 6.504 7.095 7.635 0.168 0.246 0.333
95003 9.731 10.249 10.737 5.828 6.23 6.641 0.003 0.067 0.126
96002 13.598 14.22 14.91 6.91 7.352 7.887 − 0.025 0.038 0.094
97000 16.488 17.092 17.749 7.039 7.565 8.008 − 0.015 0.043 0.097
97047 21.999 22.823 23.659 9.18 9.757 10.417 − 0.106 -0.05 0.005
97054 27.108 28.02 29.021 10.435 11.193 11.972 − 0.037 0.02 0.076
98004 13.67 14.368 15.094 7.493 8.028 8.661 0.05 0.109 0.172
99005 11.91 12.641 13.304 7.741 8.38 9.032 0.123 0.2 0.272
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The visual comparison of the return levels estimation on 
the adopted parameters estimation techniques are also pro-
vided in this research. The plotted results of the return levels 
are shown from Figs. 2, 3, 4, 5 for the whole study period, 
before millennium drought, during millennium drought and 

after millennium drought respectively. The outcomes of four 
selected rainfall stations (stations 91011, 92012, 96002 and 
99005) for different parameter estimation techniques (MLE, 
GMLE, Bayesian and L-moments) are shown in this paper. 
All of the figures clearly indicated that the influence of 

Table 7   Estimated return level 
of the monthly maximum daily 
rainfall (in mm) for difference 
ARI using the MLE parameter 
estimation technique

Station # 2 years 5 years 10 years 20 years 50 years 100 years

91011 16.647 26.37 33.594 41.176 52.041 61.036
91022 15.241 24.821 31.665 38.632 48.276 55.994
91072 17.284 27.235 33.978 40.565 49.266 55.919
91126 18.042 29.53 37.742 46.106 57.689 66.964
91223 17.633 27.44 34.748 42.437 53.484 62.654
92006 13.452 27.497 41.74 60.885 97.212 136.665
92008 13.843 28.935 44.365 65.241 105.148 148.799
92012 14.037 26.764 38.305 52.492 76.799 100.739
92030 20.974 34.983 45.922 57.865 75.754 91.222
92047 14.616 27.402 39.26 54.097 80.043 106.101
94008 12.044 21.852 30.301 40.272 56.581 71.941
94020 16.2 26.397 34.582 43.714 57.731 70.143
94030 12.747 23.001 31.8 42.152 59.024 74.861
95003 12.446 19.946 25.359 30.915 38.674 44.94
96002 16.906 25.541 31.495 37.391 45.3 51.44
97000 19.931 28.884 35.013 41.047 49.089 55.291
97047 26.243 37.024 43.979 50.519 58.794 64.858
97054 32.238 45.268 53.975 62.388 73.366 81.658
98004 17.314 27.394 34.852 42.656 53.798 62.991
99005 15.813 27.343 36.593 46.911 62.742 76.755

Table 8   Estimated return level 
of the monthly maximum of 
daily rainfall for difference ARI 
using the GMLE parameter 
estimation technique

Station # 2 years 5 years 10 years 20 years 50 years 100 years

91011 16.575 26.487 34.008 42.035 53.754 63.636
91022 15.137 24.949 32.154 39.648 50.274 58.984
91072 17.096 27.424 34.735 42.123 52.266 60.318
91126 17.891 29.681 38.379 47.459 60.389 71.031
91223 17.561 27.553 35.154 43.283 55.178 65.232
92006 13.464 27.422 41.501 60.342 95.912 134.359
92008 13.857 28.844 44.072 64.573 103.541 145.934
92012 14.029 26.799 38.414 52.727 77.321 101.609
92030 20.898 35.117 46.405 58.889 77.863 94.506
92047 14.612 27.42 39.317 54.224 80.33 106.587
94008 12.022 21.905 30.489 40.683 57.479 73.411
94020 16.169 26.485 34.86 44.289 58.913 71.991
94030 12.728 23.059 31.991 42.562 59.91 76.301
95003 12.344 20.041 25.78 31.823 40.508 47.723
96002 16.752 25.679 32.092 38.648 47.765 55.096
97000 19.767 29.038 35.654 42.385 51.692 59.135
97047 26.366 36.919 43.581 49.739 57.385 62.884
97054 31.956 45.539 55.067 64.63 77.654 87.915
98004 17.225 27.513 35.307 43.617 55.733 65.937
99005 15.769 27.441 36.927 47.614 64.202 79.051
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parameter estimation techniques on the return levels for dif-
ferent ARI events are minor.

To identify the discrepancy between the observations 
and the predicted values, goodness of fit test was per-
formed. The example plots of the goodness of fit test for 

Cape Grim (91011) station is shown in Fig. 6 in terms 
of probability plot (PP), quantile plot (QQ), density and 
return level plot. The graphical plot (Fig. 6) of the good-
ness of fit test suggested that the daily extreme rainfall 

Table 9   Estimated return level 
of the monthly maximum of 
daily rainfall for difference ARI 
using the Bayesian parameter 
estimation technique

Station # 2 years 5 years 10 years 20 years 50 years 100 years

91011 16.639 26.418 33.699 41.358 52.355 61.479
91022 15.289 24.943 31.855 38.902 48.674 56.509
91072 17.235 27.233 34.031 40.688 49.509 56.274
91126 18.076 29.637 37.916 46.362 58.077 67.474
91223 17.747 27.639 35.015 42.779 53.938 63.207
92006 13.453 27.587 41.96 61.321 98.149 138.241
92008 13.964 29.205 44.77 65.807 105.98 149.877
92012 14.119 26.955 38.6 52.919 77.46 101.639
92030 20.962 35.06 46.095 58.165 76.283 91.981
92047 14.82 27.772 39.742 54.677 80.71 106.777
94008 12.045 21.91 30.429 40.501 57.012 72.594
94020 16.204 26.454 34.696 43.905 58.063 70.62
94030 12.782 23.088 31.934 42.341 59.308 75.236
95003 12.425 19.975 25.447 31.08 38.975 45.373
96002 16.957 25.667 31.685 37.653 45.673 51.909
97000 19.888 28.885 35.064 41.164 49.319 55.628
97047 26.419 37.28 44.291 50.884 59.231 65.35
97054 32.343 45.45 54.214 62.688 73.752 82.114
98004 17.31 27.438 34.953 42.833 54.11 63.437
99005 15.947 27.591 36.929 47.342 63.315 77.45

Table 10   Estimated return level 
of the monthly maximum of 
daily rainfall for difference ARI 
using the L-moments parameter 
estimation technique

Station # 2 years 5 years 10 years 20 years 50 years 100 years

91011 16.575 26.301 33.602 41.33 52.504 61.841
91022 15.233 24.774 31.601 38.561 48.208 55.941
91072 17.138 27.035 33.883 40.682 49.828 56.948
91126 18.161 29.636 37.713 45.842 56.945 65.719
91223 17.619 27.424 34.749 42.474 53.597 62.853
92006 14.155 27.765 40.052 55.102 80.786 105.984
92008 14.68 29.264 42.379 58.393 85.624 112.248
92012 14.257 26.771 37.645 50.565 71.863 92.073
92030 21.072 35.06 45.837 57.479 74.708 89.432
92047 15.149 27.631 38.205 50.516 70.353 88.763
94008 12.382 22.037 29.797 38.464 51.782 63.59
94020 16.048 26.177 34.487 43.923 58.696 72.032
94030 12.884 23.03 31.482 41.193 56.604 70.699
95003 12.56 20.076 25.375 30.712 38.013 43.79
96002 16.933 25.566 31.489 37.331 45.133 51.163
97000 19.887 28.81 34.96 41.046 49.207 55.539
97047 26.366 36.919 43.581 49.739 57.385 62.884
97054 32.137 45.059 53.776 62.259 73.42 81.919
98004 17.37 27.45 34.842 42.525 53.408 62.32
99005 15.827 27.301 36.464 46.646 62.204 75.921
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data set were successfully fitted with the stationary GEV 
models.

The evaluation of the parameters estimation tech-
niques of the GEV distribution were performed based 
on Mean Square Error (MSE) and Mean Absolute Error 
(MAE). The outputs of the error analysis are shown 
in Table 11. The results of the MSE analysis suggest 

that GMLE technique has is less error for most of the 
meteorological stations in the quantile estimation. 
However, the MAE analysis produced less error for the 
L-moment parameters estimation method. Nevertheless, 
there are four rainfall stations (stations #92006, #92008, 
#92012, #92047) with very high MSE. The presence of 
higher MSE for these rainfall stations may be due to the 

Fig. 2   Comparison of the maximum daily rainfall prediction for different average recurrence interval (ARI) using different GEV parameters esti-
mation techniques for the whole study period (1965–2018)
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presence of outliers. It should be noted that outliers were 
not removed from the original data sets. Although MLE, 
GMLE and Bayesian methods produced very large MSE 
for these stations, the L-moments have the least MSE. 
The MAE of these stations are reasonable as evidence 
in Table 11. Therefore, we recommend the L-moments 
method to be adopted for the estimation of parameters 
for the GEV distribution.

Conclusions and recommendations

In this study, monthly maximum of daily rainfall from 1965 
to 2018 were used to estimate the parameters of the general-
ised extreme value (GEV) distribution using several param-
eters estimation techniques. Four different GEV parameters 
estimation techniques used in this study was MLE, GMLE, 
Bayesian and L-moments. The study was conducted to 

Fig. 3   Comparison of the maximum daily rainfall prediction for different average recurrence interval (ARI) using different GEV parameters esti-
mation techniques before millennium drought (1965–1996)
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recommend appropriate parameters selection method for 
the application of the GEV technique in modelling extreme 
rainfall. Since the three parameters GEV distribution has 
been widely applied for describing the extreme climatic 
events, the method was adopted in this research. The avail-
able parameters estimation methods of the GEV distribution 
were applied on Tasmanian extreme rainfall. The parameters 

were estimated for four different time-scale data: the whole 
study period (1965–2018), before millennium drought 
(1965–1996), during millennium drought (1997–2009) and 
after millennium drought (2010–2018).

The outcomes of the errors (MSE and MAE) analy-
sis in quantile estimation suggests that L-moments is the 
best method in estimating the parameters of the GEV 

Fig. 4   Comparison of the maximum daily rainfall prediction for different average recurrence interval (ARI) using different GEV parameters esti-
mation techniques during millennium drought (1997–2009)
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distribution, especially when there is presence of outliers in 
the data series. Therefore, the L-moments method should be 
adopted for the estimation of the GEV parameters for rain-
fall analysis in Tasmania. This research provides a primary 
indication for the selection of appropriate GEV parameters 

estimation techniques in extreme rainfall modelling in Tas-
mania. Nevertheless, further researches in Tasmania and 
other regions are required for a generic conclusion. Moreo-
ver, the length of the data series has considerable implica-
tions on the magnitude of the estimated GEV parameters. 

Fig. 5   Comparison of the maximum daily rainfall prediction for different average recurrence interval (ARI) using different GEV parameters esti-
mation techniques after millennium drought (2010–2018)
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The Fréchet (type II) GEV distribution is suitable for most 
of the rainfall stations for extreme rainfall modelling.

It should be noted that the spatial analysis of the stations 
and the GEV distribution parameters were considered in this 
research. This research can be extended to determine the 
degree of spatial persistence using the covariance between 

two random variables (Campling and Gobin 2001). That 
will allow to determine the potential parameter values of 
the GEV distribution at unsampled locations. As such, GIS 
based ordinary kriging which is the weighted moving aver-
age interpolation technique using covariance models can be 
applied.

Fig. 6   Probability plot (PP), quantile plot (QQ), density and return level plot for Cape Grim (91011) station
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