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Abstract
In recent years, several soft computing models have been proposed to estimate the elastic modulus of magmatic rocks. How-
ever, there are lacks in models that consider the different weathering degrees in determining the elastic modulus of rocks. In 
the literature, mechanical properties are widely used as inputs in predictive models for weathered rocks; however, there are 
only a few models that use index properties representing the effect of weathering on magmatic rocks. In this study, support 
vector regression (SVR) Gaussian process regression (GPR), and artificial neural network (ANN) models were developed to 
predict the elastic modulus of magmatic rocks with different degrees of weathering. The inputs selected by the best subset 
regression approach were porosity, P-wave velocity, and slake durability index. Key performance indicators (KPIs) were 
computed to validate the accuracy of the developed models. In addition to KPIs, Taylor diagrams and regression error char-
acteristic (REC) curves were used to assess the performance of the developed prediction models. In this study, considering 
the difficulties of expressing the error using only RMSE and MAE, a new performance index (PI),  PIMAE, was proposed 
using normalized MAE instead of normalized RMSE. It was also indicated that  PIRMSE and  PIMAE should be used together 
in performance analysis. When considering the Taylor diagram,  PIRMSE, and  PIMAE, the GPR models performed best, and 
the SVR model performed the worst in both the training and test periods. Similarly, according to the REC curve in both 
periods, the performance of the SVR was the worst, while the performance of the ANN model was the best. The  PIRMSE and 
 PIMAE values of the GPR model for the test data were 1.3779 and 1.4142, respectively, and they were 1.2567 and 1.4139, 
respectively, for the ANN model. According to the computed response surfaces, an increase in the P-wave velocity, and a 
decrease in the porosity increased the elastic modulus. However, changes in slake durability index only had a minor effect 
on the elastic modulus.

Keywords Elastic modulus · Weathered magmatic rocks · Machine learning · Porosity · P-wave velocity · Slake durability 
index

Introduction

Natural rock masses consist of intact rock blocks separated 
by discontinuities. Therefore, the mechanical properties of 
intact rock, the geotechnical properties of discontinuities, 
and the rock mass structure are the most important param-
eters affecting the engineering deformation properties of 
rock masses. It is also known that weathering significantly 
affects these engineering properties of rocks (Ceryan 2015). 
One of the most important intact rock properties affecting 
the engineering behavior of rock mass is the elastic modu-
lus ( Es ) just as uniaxial compressive strength (UCS), and 
Poisson ratio ( � ). Therefore, Es of intact rock is generally 
used as an input in both numerical models and in empirical 
relationships to evaluate the engineering behavior of rock 
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masses (Kayabasi et al. 2003; Sonmez et al. 2006; Hoek and 
Diederichs 2006; Bidgoli et al. 2013; Zhang 2017; Saedi 
et al. 2019; Alemdag et al. 2016).

UCS tests, standardized by the International Society for 
Rock Mechanics (ISRM), are utilized to measure the Es 
and UCS of rock materials directly. The tests require well-
prepared rock specimens that cannot always be extracted 
from weak, thinly bedded, stratified, highly fractured, 
highly weathered, high-porosity, clay-containing, coarse-
grained, and block-in-matrix rocks. Furthermore, the tests 
are expensive, complicated, time-consuming, and require 
sophisticated and expensive instruments (Gokceoglu and 
Zorlu 2004; Xia et al. 2014; Ko et al. 2016), making it dif-
ficult to evaluate Es using standard laboratory tests. To over-
come these difficulties for directly measuring Es , regression 
models have been developed (Nefeslioglu 2013; Ozkat et al. 
2017a,b; Aboutaleb et al. 2018; Mashayekhi et al. 2020). 
The independent variables (i.e., the inputs) used in these 
models, are commonly the physical properties of rock sam-
ples that can be measured easily and cheaply. These sim-
ple and non-destructive index properties include the elastic 
wave velocity (Kurtuluş et al. 2010; Brotons et al. 2016), 
porosity, effective porosity, void ratio, unit weight, den-
sity, and water saturation (Tugrul 2004; Yilmaz and Yuk-
sek 2008; Erguler and Ulusay 2009; Marques et al. 2010; 
Wang et al. 2014; Kim et al. 2017). Other inputs derived 
from the index tests are the slake durability index (Yagiz 
et al. 2012; Ceryan 2014; Ghasemi et al. 2018), weathering 
indices (Ceryan 2015, 2016), texture coefficient, and min-
eral content; especially determining quartz, plagioclase, and 
clay content (Shakoor and Bonelli 1991; Singh and Verma 
2012; Pan et al. 2013; Diamantis et al. 2014; Heap et al. 
2014; Undul and Florian 2015; Ajalloeian et al. 2017). Sim-
ple mechanical test results, including the Schmidt hammer 
rebound hardness, the point loading index, tensile strength, 
the blocked punch index, and the cylindrical punch index 
are also employed in regression models (Dinçer et al. 2004; 
Karakus et al. 2005; Yilmaz and Yuksek 2009; Khandelwal 
and Singh 2011; Singh and Verma 2012; Singh et al. 2012; 
Alikarami et al. 2013; Armaghani et al. 2015; Saedi et al. 
2018; Mahdiabadi and Khanlari 2019).

Conventional regression methods, such as simple linear 
regression and multi-linear regression methods, are widely 
used in the literature to estimate Es . In general, the equations 
obtained with conventional regression methods are recom-
mended only for specific rock types (Fener et al. 2005; Beiki 
et al. 2013). If new data are substantially different from the 
original data, the form of the obtained equations needs to be 
updated. Moreover, in some cases, the prediction results are 
inadequate (Sonmez et al. 2006; Yilmaz and Yuksek 2009; 
Beiki et al. 2013; Rezaei et al. 2014). Considering these dif-
ficulties in the prediction of Es using conventional regression 

methods, many researchers have employed soft computing 
methods (Table 1).

The main purpose of this study is to examine the applica-
bility and capability of Support Vector Regression (SVR), 
Gaussian Process Regression (GPR), and Artificial Neural 
Network (ANN) models in the Es prediction of magmatic 
rocks with different degrees of weathering. The inputs, 
porosity (n), P-wave velocity ( Vp ), and slake durability 
index ( Id ) used in the proposed models were determined by 
the best subset regression method, and the performances of 
these models were evaluated with the maximum determi-
nation coefficient (R2), Root Mean Square Error (RMSE), 
normalized RMSE (NRMSE), Mean Absolute Error (MAE), 
normalized MAE (NMAE), Mean Squared Error (MSE), 
Nash–Sutcliffe coefficient (NS), Variance Account Factor 
(VAF), Performance Index (PI), Regression Error Charac-
teristic Curve (REC), and Taylor diagrams.

The remainder of the paper is organized as follows: 
“Materials and experimental details” describes the mate-
rials and experimental procedures; “Problem formulation” 
defines the inputs and output and explains the proposed 
regression models. The results and discussions are intro-
duced in “Results” and “Discussion”, respectively. The con-
clusions are presented in “Conclusion”.

Materials and experimental details

The sample blocks in the present study were gathered from 
three different formation/lithodemes exposed in the Eastern 
Pontides, NE Turkey. They mainly consisted of (1) Late Cre-
taceous volcanic rocks, (2) volcano-sedimentary rock aged 
Eosen, and (3) granitic rocks (Fig. 1).

The tests for Schmidt hardness, specific gravity, slake 
durability, P-wave velocity, and UCS were conducted 
according to standards defined by ISRM (2007). The core 
samples used in these tests were extracted from block sam-
ples that had different degrees of weathering (Fig. 2). The 
index properties and modulus of elasticity of the samples 
used in this study are presented in Table 2.

The N-type rebound hammer was used in the Schmidt 
hammer test to determine the hardness value (SHH). The 
SHH × � term (Deere and Miller 1966; Aufmuth 1974) 
was obtained by multiplying the measured hardness val-
ues (SHH) by unit weight ( � ). The grain density 

(
�s
)
 was 

determined by employing the specific gravity test, and the 
dry density was obtained experimentally. Subsequently, the 
porosity value ( n ) was calculated using Eq. (1).

(1)n = 1 −
�d
�s
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Table 1  Soft computing models proposed to estimate the modulus of elasticity of rock materials

References Technique Input R2 Rock type

Gokceoglu and Zorlu (2004) FIS Vp, BPI, PLI, TS 0.79 Greywacke
Sonmez et al. (2004) FIS VBPri 0.88 Agglomerate
Sonmez et al. (2006) ANN UCS, UW 0.67 Different type of rocks
Yilmaz and Yuksek (2008) ANN ne, Id, SHH, PLI 0.91 Gypsum
Tiryaki (2008) ANN ρ, SH, CI 0.50 Magmatic and sedimentary 

rocks
Yilmaz and Yuksek (2009) ANN, ANFIS Vp, PLI, SHH, WC 0.955 Gypsum
Kahraman et al. (2009) ANN VBP, ρ, Vp, Vs 0.79 Fault breccia
Heidari et al. (2010) ANN UCS, n, ρ, Vp 0.87 Limestone, marl, and dolomite)
Dehghan et al. (2010) ANN n, SHH, PLI, Vp 0.77 Travertine
Khandelwal and Singh (2011) ANN UCS, TS 0.992 Schistose rocks
Ocak and Seker (2012) ANN UCS, UW – Different type of rocks
Singh et al. (2012) ANFIS ρ, PLI, WA 0.66 Different type of rocks
Yagiz et al. (2012) ANN UW, Vp, Id, SHH, n, 0.81 Carbonate rocks
Manouchehrian et al. (2013) GP Q, ρ, n, SH, CI 0.68 Granitic rocks
Kumar et al. (2013) GPR, RVM, MPMR SHH, n, Vp, PLI 0.984

0.992
0.914

Travertine

Beiki et al. (2013) GP ρ, n, Vp 0.67 Carbonate rocks
Liu et al. (2013) ANN

PSO-SVM
Mnrlgy, PrS, VO, BD, MPf 0.764

0.990
Sandstone

Liu et al. (2014) ANN
SVM
RVM

Mnrlgy, PrS, VO, BD, MPf 0.94
0.84
0.98

Sandstone

Ranjbar-Karami et al. (2014) FIS Vp, n, ρ, 0.89 Limestone, dolomites, anhy-
drites

Torabi-Kaveh et al. (2015) ANN Vp, ρ, n 0.96 Limestone
Armaghani et al. (2015) ANFIS ρ, Vp, Q, Pl 0.99 Granite
Armaghani et al. 2016) ANN

ICA-ANN
Vp, n, PLI, SHH 0.643

0.713
Granite

Madhubabu et al. (2016) ANN n, ρ, Vp, PLI, ʋ 0.96 Carbonate rocks
Ceryan (2016) ANN

LSSVM
Vid, ne 0.809

0.860
Basalt, dacite, andesite, tuff

Atici (2016) GEP Vp, SHH, ρ, UCS 0.691 Marble, limestone, and mag-
matic rock

Behnia et al. (2017) GEP Q, n, ρ 0.927 Different type of rocks
Singh et al. (2017) FIS, ANFIS, Vp, n, ρ, 0.932 Basaltic rocks
Aboutaleb et al. (2018) ANN SVR ʋd, Ed 0.912 0.928 Limestone, marl, marl lime-

stone, and marlstone
Roy and Singh (2018) ANN, ANFIS UCS, SP 0.97

0.98
Coal

Bejarbaneh et al. (2018) FIS, ANN SHH, PLI, VP 0.689 0.819 Sandstone, shale, and mudstone
Rezaei (2018) FIS n,  Hc, ρ, Id 0.996 Clay shale, phyllite, sandstone, 

limestone shales, volcanic 
rocks

Umrao et al. (2018) ANFIS n, Vp, ρ 0.955 Sandstone, limestone
Ghasemi et al. (2018) Mtr-M5P SHH, Vp n, Id, UW 0.87 Carbonate rocks
Matin et al. (2018) RF SHH, Vp 0.93 Travertine
Saedi et al. (2018) ANFIS n, BPI, TS, Vp, CPI 0.957 Migmatite
Mahdiabadi and Khanlari 

(2019)
ANN, ANFIS BPI, CPI, PLI 0.782 0.789 Calcareous mudstones

Behzadafshar et al. (2019) ANN
GA-ANN

SHH, PLI, VP 0.766 0.959 Granitic rocks
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The samples were subjected to a four-cycle slake durabil-
ity test to determine the slake durability index (Gokceoglu 
et al. 2000). This test was performed three times for each 
sample. The ultrasonic pulse velocity (UPV) test was con-
ducted using the Portable Ultrasonic Non-destructive Digital 
Indicating Tester  (PUNDIT®) without applying any pres-
sure to the samples. The equipment generates an ultrasonic 

pulse with a frequency of 400 kHz and measures the transit 
time from the transmitter transducer through the sample to 
the receiving transducers. The time of ultrasonic pulses was 
read with an accuracy of 0.1 ms. The P-wave velocity of the 
rock samples without pores and fissures ( Vm ) was calculated 
using Eq. (2) (Barton 2007), and the P-durability index ( Vid ) 
is defined in Eq. (3) (Ceryan 2016)

Table 1  (continued)

References Technique Input R2 Rock type

Mokhtari and Behnia (2019) LLNF ANN COA-ANN ʋd, ρ, n, Vp 0.962 0.703 0.980 Limestone
Tian et al. (2019) ANN PSO-ANN ICA-ANN Vp, SHH, PLI 0.753 0.943

0.952
Granite

Roy and Singh (2020) ANN ANFIS Vp, TS, τ 0.96 0.99 Coal, sandstone, shale
Rezaei 2020) ANN n,  Hc, ρ, Id, Vp, Vs, ʋ 0.981 Clay shale, phyllite, sandstone, 

limestone shales
Armaghani et al. (2020) ANN

GMDH
SHH, n, PLI, VP 0.768

0.961
Granite

Acar and Kaya (2020) LS-SVM UW, VP, PLL, TS 0.908 Tuffaceous rock
This study SVR

ANN
GPR

n, Vp, Id 0.695
0.859
0.898

Tuff, basalt, andesite, dacite, and 
granitic rocks with different 
degree of wethering

VBP the volumetric block proportion (%), VBPri the volumetric different rock block proportion (%), ρ density, n porosity, ne effective poros-
ity, UW unit weight, Vs P-wave velocity, Vp P-wave velocity, Vid P-durability index, WA water absorption, WC water content, SP saturation 
pressure, Hc depth of coring, Q quartz content, Pl plagioclase content, Mnrlgy Minerology (Quartz, Feldspar, Detrital Clay, Other Minerals), 
PrS average particle size, BD bulk density, VO void ratio, MPf micropore fissure, pore wall, pore among particle), BPI block punch index, CI 
Cone indenter hardness, CPI the cylindrical punch index, Id slake durability index, PLI Point load index, SHH Schmidt hammer hardness, SH 
Shore hardness, UCS Uniaxial compressive strength, TS Tensile strength, τ shear strength, ʋd dynamic Poisson ratio, Ed dynamic the modulus of 
elasticity, ANN artificial neural network, ANFIS adaptive neuro-fuzzy inference system, FIS fuzzy inference system, GA genetic algorithm, GE 
genetic expression programming, GP genetic programming, ICA Imperialist Competitive Algorithm, PSO Particle Swarm Optimization, GPR 
Gaussian Process Regression, GMDH Group method of data handling, MPRM minimax probability machine regression, SVM support vector 
machine, LS-SVM least squares support vector machine, RVM relevance vector machine, Mtr-M5P ‘Model trees and the M5P algorithm, LLNF 
local linear neuro-fuzzy, COA-ANN the hybrid cuckoo optimization algorithm-artificial neural network), RF random forests)

Fig. 1  Geology map of Eastern Pontides, NE Turkey, and location of the study area (Guven 1993; Hippolyte et al. 2017)
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where Vfl is the velocity in the fluid, � is the ratio of the path 
length in the fluid to the total path length (the porosity), and 
Id is the slake durability index.

To determine Es , representing the sample stiffness against 
a uniaxial load, initially, the stress–strain curve for axial 
deformations was obtained for UCS. Then, Es was defined 
as the slope of a line tangent to the stress–strain curve at a 
fixed percentage of the ultimate strength, 50%, for the test 
sample (Table 2).

Problem formulation

Methodology

The methodology for predicting the elastic modulus ( Es ) is 
illustrated in Fig. 3. The flow chart consists of three main 
steps, which are (1) selection of inputs, (2) model develop-
ment, and (3) model performance evaluation. In Step 1, the 
best subset regression approach was employed to determine 
inputs from the experimental study. The dataset was divided 
into two parts for the training (75% of the original data) and 
test (25% of the original data) sets of the regression models. 
In Step 2, the proposed regression models, namely, SVR, 
GPR, and ANN were developed using the training dataset. 
In Step 3, the developed regression models were validated 
using the test dataset. The statistical key performance indi-
cators (KPIs), namely RMSE, NRMSE, R2, MAE, NMAE, 
NS, VAF, AOC, Taylor diagram, the performance index 
with RMSE  (PIRMSE), and the performance index with MAE 
 (PIMAE), were applied in this step to evaluate the perfor-
mances of the models.

(2)
1

Vp

=
�

Vfl

+
1 − �

Vm

(3)Vid = 0.01 VmId

Selection of inputs

The accuracy of the regression models largely depends on 
the type of function being used, as well as the quality and 
quantity of observed data. If there are more inputs than there 
should be, selecting a suitable set of inputs is necessary to 
reduce the noise resulting from unnecessary input data. 
Using suitable inputs, the interpretability of the model can 
be improved and the predictive ability increases (Omoruyi 
et al. 2019).

The input selection methods for the regression model 
can be collected under three main categories: (1) filter 
method (for example, Pearson’s Correlation, Akaike 
information criterion, Bayesian information criterion, 
linear discriminant analysis, principal component analy-
sis, analysis of variance, and chi-square), (2) embedded 
methods (for example, least angle and shrinkage selection 
operator and ridge regression), and (3) wrapper methods 
(for example, forward selection, backward elimination, 
recursive future elimination, stepwise method, best subset 
regression) (Huang et al. 2010; Desboulets 2018; Haque 
et al. 2018; Park and Klabjan 2020).

Here, the best subset regression approach was employed 
to determine the inputs. First, all possible regression models 
derived from all possible combinations of the inputs were 
defined. Then, the best model was determined according 
to KPIs, including Mean Square Error (MSE), RMSE, R2, 
adjusted determination coefficient (adjR2), and Mallow’s Cp 
(Mallows and Sloane 1973), given in Eqs. (4)–(8).

(4)MSE =
1

n − p

n∑

i=1

(
yi − ŷi

)2

(5)RMSE =
√
MSE

(6)R2 = 1 −
MSEi

�2

Fig. 2  Core samples investigated
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Table 2  Lithology, index 
properties, and the modulus of 
elasticity (Es) of the samples

Ex ID Lty SHH n
(%)

Vp
(km/s)

Id
(%)

Es
(GPa)

Vm
(km/s)

SHH × � Vid
(km/s)

1 Anst 54 2.7 4.090 98.8 30.109 4.214 140.832 41.634
2 Dc 59 2.1 4.124 99.2 31.802 4.461 147.736 44.253
3 Anst 43 3.7 3.722 94.9 23.063 4.352 106.9 4.13
4 Tff 25 8.2 3.285 77.8 12.408 3.883 5.29 3.021
5 Tf 35 6.9 3.246 81.9 12.072 3.804 78.155 31.155
6 Tf 42 5 3.332 79.2 13.069 3.873 92.316 30.674
7 Anst 44 5.4 3.73 89.1 17.14 4.185 108.86 37.288
8 Dc 37 10.6 3.265 78.9 13.937 4.001 84.989 31.568
9 Grd 44 4.1 2.668 94.7 5.424 4.606 114.36 43.619
10 Grd 52 1.8 2.891 97.2 23.935 5.63 13.754 54.724
11 Bsl 42 1.5 3.896 93.8 24.835 4.239 105.34 39.762
12 Anst 38 4.1 3.691 95.4 25.891 4.09 97.394 39.019
13 Bsl 33 3.8 2.674 78.5 11.347 3.326 79.728 26.109
14 Dc 42 9.4 3.4 87.6 15.306 3.889 93.576 34.068
15 Dc 37 12.5 3.288 85.6 11.871 4.047 84.841 34.642
16 Grd 58 1.9 4.157 98.8 23.342 5.738 15.341 56.691
17 Bsl 52 1.1 4.202 98.1 26.752 4.332 136.14 42.497
18 Bsl 53 0.6 4.559 96.3 33.786 4.624 137.22 44.529
19 Dc 57 3.9 3.883 97.4 28.616 4.327 136.46 42.145
20 Grd 38 2.9 3.404 97.5 16.753 4.68 97.888 4.563
21 Dc 52 3.1 3.7 96.2 30.787 4.078 123.71 3.923
22 Dc 22 11.4 3.178 74.5 10.745 3.669 52.778 27.334
23 Grd 40 1.7 4.227 98.7 22.25 5.656 10.828 55.825
24 Grd 63 4 3.105 95.2 9.554 4.444 163.67 42.307
25 Dc 53 4.1 3.661 90.4 25.203 4.106 121.26 37.118
26 Dc 32 8.2 3.404 88.3 19.875 3.815 71.904 33.686
27 Anst 39 3 4.043 96.2 26.646 4.43 9.945 42.617
28 Grd 30 5.9 2.625 85.2 12.862 4.294 7.524 36.585
29 Dc 26 11.9 3.173 89.7 12.232 3.534 59.072 3.17
30 Dc 38 7.6 3.55 91.8 18.024 3.957 87.704 36.325
31 Tf 38 2.7 3.538 94.2 17.104 3.995 85.728 37.633
32 Dc 44 8.7 3.517 89.7 15.747 4.029 98.692 3.614
33 Anst 42 3.3 3.886 94.6 27.237 4.253 105.71 40.233
34 Grd 57 1.6 4.053 99.5 22.172 5.032 153.5 50.068
35 Dc 32 10.2 3.046 66.3 10.478 3.934 70.208 26.082
36 Dc 31 6.5 3.144 79.3 13.15 3.756 65.162 29.785
37 Grd 51 2.4 3.833 98.3 19.214 5.012 135 49.268
38 Grd 64 1.9 4.285 99.6 21.474 5.873 166.59 58.495
39 Tf 28 5.9 3.352 80.5 12.946 3.93 60.592 31.637
40 Grd 38 4.3 3.065 95.5 13.621 4.594 98.496 43.873
41 Dc 47 4.1 3.757 97.8 29.572 4.089 113.88 3.999
42 Dc 43 8.3 3.471 93.4 12.636 3.908 101.14 36.501
43 Dc 60 2.3 3.571 96.5 26.988 4.237 14.628 40.887
44 Dc 47 4.7 3.629 93.8 22.143 4.019 108.9 37.698
45 Bsl 37 2.9 3.057 88.7 17.12 3.682 90.798 32.659
46 Dc 42 4.7 3.836 93.7 24.035 4.274 99.834 40.047
47 Anst 50 3 4.1 96.3 28.374 4.16 12.985 40.061
48 Bsl 35 5.2 2.578 72.1 11.24 3.105 88.095 22.387
49 Bsl 39 2.8 3.575 94.7 22.435 3.985 98.397 37.738
50 Grd 34 1.7 3.504 97.5 17.084 4.95 91.324 48.263
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(7)AdjR2 = 1 −
n − 1

n − i − 1

(
1 − R2

)

(8)Cp = (n − p)
MSEi

MSEF

− (n − 2i − 1)

where yi and ŷi are the measured and predicted values, 
respectively. MSEi is the mean of residual squares in the 
model with i parameters, MSEF is the mean of residual 
squares in the full model with p parameters, �2 is the vari-
ance of the dependent variable, n is the number of data, i is 
the number of inputs in the model, and p is the number of 
parameters in the aforementioned model.

Table 2  (continued) Ex ID Lty SHH n
(%)

Vp
(km/s)

Id
(%)

Es
(GPa)

Vm
(km/s)

SHH × � Vid
(km/s)

51 Dc 58 1.8 4.048 99.5 32.143 4.375 141.58 43.531
52 Dc 56 10.3 3.417 91.1 14.145 3.817 13.412 34.773
53 Dc 41 3.1 3.841 97.3 29.974 4.129 93.808 40.175
54 Dc 43 2.5 3.857 98.8 21.781 4.108 103.46 40.587
55 Bsl 48 0.7 4.625 98.6 36.458 4.747 123.55 46.805
56 Dc 33 10.6 2.876 68.4 7.025 3.381 74.382 23.126
57 Tf 32 6.9 3.246 81.6 13.327 3.993 70.272 32.583
58 Dc 48 5.8 3.479 94.5 16.783 3.876 119.57 36.628
59 Dc 38 8.1 3.228 74.9 9.829 3.886 92.834 29.106

Lty Anst, Bsl basalt, Dc dacite Grd: Tf, SHH Schmidt hammer hardness, SHH × � = SHH × �  10–2, n poros-
ity (%), Vp P-wave velocity (km/s), Vid P-durability index, Vm P-wave velocity in the solid part of the sam-
ple, Id Slake durability index (%), Es the modulus of elasticity (GPa)

Fig. 3  The methodology of the present study for predicting the elastic modulus
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R2 increases with an increasing number of inputs, and 
therefore, it does not indicate the correct regression model. 
Instead, adjR2 is generally considered to be a more accurate 
goodness-of-fit measure than R2 because it applies a pen-
alty score to the model when considering more inputs. The 
RSME is frequently used as a measure of the differences 
between the predicted and measured values. The perfor-
mance of the model improves as the RMSE value decreases. 
The goal of Mallow’s Cp is to achieve a balanced number of 
inputs in the model. It compares the precision and bias of the 
full model generated using all inputs to the models gener-
ated using a subset of inputs. The full model always yields a 
Mallow’s Cp value equal to the number of parameters in the 
regression model ( p ), so the full model based on Cp should 
not be selected. Furthermore, a Mallow’s Cp value below the 
p value represents sampling errors. If several models have 
Mallow’s Cp near the p value, the model with the smallest 
value of the difference between the Mallow’s Cp and the p 
value can be chosen as the best model.

The index properties, measured experimentally in 
this study, are: (1) Schmidt hammer hardness (SHH), (2) 
SHH × � index, (3) slake durability index ( Id ), (4) poros-
ity ( n ), (5) P-wave velocity ( Vp ), (6) P-velocity in the solid 
part of the samples ( Vm ), and (7) P-durability index ( Vid ). 
These properties are also, the most frequently used inputs 
in the Es prediction. The Vp and Id values were measured 
experimentally, and the Vm and Vid values were calculated 
empirically from Eqs. (2) and (3). Therefore, the prediction 
models, namely, SVR, GPR, and ANN should be created by 
selecting only one of the Vm , Vid , and Vp values. Similarly, 
Vid and Id cannot be used as inputs for the same prediction 
model at the same time. According to these defined condi-
tions, the seven inputs were divided into three groups as fol-
lows: (1) n , Vp , Id , SHH, and SHH × � , (2) n , Vid , SHH, and 
SHH × � , and (3) n , Vm , SHH, and SHH × � . Then, the best 
subset regression analysis was performed for each group to 
determine the inputs for the prediction models.

According to the results of the best subset regression 
analysis, the highest R2 and adjR2 values, as well as the 

lowest RSME value, for the linear regression model using 
the inputs in the second and third groups were 0.611, 0.575, 
and 4.930 MPa, respectively. However, the R2, adjR2, and 
RSME values for the linear regression model using the 
inputs of the first group were 0.774, 0.753, and 3.7635 MPa, 
respectively. Considering these values, the inputs in the first 
group, namely, n , Vp , Id , SHH, and SHH × � were selected 
to determine the optimum inputs that would be employed 
during the development of the prediction models.

Table 3 presents the results of the best subset regression 
analysis performed for different combinations of inputs from 
the first group and illustrates the two best-fitting models for 
each combination. The differences between Mallow’s Cp 
and p value (the number of parameters in the full model) 
obtained for the 1st, 2nd, and 4th rows are larger than oth-
ers. Although the smallest values of the differences between 
Mallow’s Cp and the number of the parameters in the full 
model are obtained in the 7th and 9th rows, the input param-
eters in the 7th and 9th rows cannot be used because both 
SHH, and SHH × � are used together in the regressions 
(Table 3). SHH, and SHH × � are not independent of each 
other as SHH × � is a function of R. The performance of the 
regression model in the 3rd row is slightly better than that 
of the model in the 8th row. In addition, while there are two 
inputs in the 3rd row, there are four inputs in the 8th row. 
Although the Mallow’s Cp value obtained in the 3rd row is 
smaller than that in the 5th row, the R2, adjR2, RSME, and 
Mallow’s Cp − p values in the 5th row are better than those 
in the 3rd row (Table 3).

As a result of the best subset regression analysis, the 
regression in which porosity ( n ), P-wave velocity ( Vp ) and 
slake durability index ( Id ) are used together yields the best 
performance. Thus, n , Vp, and Id were employed as inputs for 
the regression models developed for the modulus of elastic-
ity of the investigated samples.

Figure 4 illustrates the resulting histograms, cumula-
tive distribution functions (CDFs), and additional statisti-
cal information, namely the number of data (N), maximum 
and minimum values, mean and standard deviations of both 

Table 3  Best subset regression; 
Es versus n , Vp , Id , SHH and 
SHH × �

Row Vars R2 adjR2 RMSE
(MPa)

Mallow’s Cp Mallow’s Cp—p n Vp Id SHH SHH × �

1 1 0.674 0.668 4.3584 21.43 19.43 ×
2 1 0.490 0.481 5.4507 64.4 62.4 ×
3 2 0.743 0.734 3.8996 7.4 4.4 × ×
4 2 0.714 0.704 4.1155 14.0 11.0 × ×
5 3 0.748 0.735 3.8965 8.0 4.0 × × ×
6 3 0.744 0.730 3.9279 8.9 4.9 × × ×
7 4 0.764 0.747 3.8084 6.3 1.3 × × × ×
8 4 0.750 0.731 3.9229 9.7 4.7 × × × ×
9 5 0.774 0.753 3.7635 6.0 0 × × × × ×
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inputs (porosity, p-wave velocity, and slake durability index) 
and output (elastic modulus).

Most, if not all, machine learning algorithms, such as 
regression models, rely on selected training and test sets. 
These are often selected based on simple random sampling 
with prescribed ratios while considering that the training set 
should be larger than the test set. The experimental results 
(i.e. original dataset) are arbitrarily divided into two data-
sets that are the training dataset, which contains 75% of the 
original data, and the test dataset, which contains 25% of the 
original data. The training dataset was employed to fit the 
machine learning models, and the test dataset was used to 
evaluate the machine learning model fit based on the defined 
KPIs.

Regression model development

This study aims to develop reliable predictive models to deter-
mine the elastic modulus of magmatic rocks using porosity 
( n ), P-wave velocity ( Vp ) and Slake durability index ( Id ); and 
then, to compare the developed models utilizing the KPIs, the 
Performance Index, the REC curves, and Taylor diagram. Let 

us gather three inputs that are Porosity (n) (i.e. x1), P-wave 
velocity 

(
Vp

)
 (i.e. x2), and the Slake durability index 

(
Id
)
 (i.e. 

x3) in Eq. (9), where i and j are the index of experiments and 
inputs; whereas, Ni and Nj are the numbers of experiments and 
inputs, respectively.

Similarly, let us gather the dependent variable Es (i.e. y1) in 
a set given in Eq. (10).

In general, the regression models 
(
f
(
��, �

))
 , between inde-

pendent variables (inputs) and the dependent variables (tar-
gets/outputs), can be represented as follows:

where ( � ) is the set of unknown parameters, and ( � ) is the 
error term. One of the aims of this research is to develop 

(9)� =
{
��
}
=
{
xi,j

}
∀i = 1,… ,Ni , ∀j = 1,… ,Nj

(10)� =
{
yi
}

∀i = 1,… ,Ni

(11)

ŷi = f
(
��, �

)
+ 𝜖i

� =
{
𝛽0, 𝛽1,… , 𝛽j,… , 𝛽Nj

}

�� =
{
xi,1, xi,2,… , xi,j,… , xi,Nj

}

Fig. 4  Histograms and statistical summaries of porosity, p-wave velocity, slake durability index, and elastic modulus in the dataset
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regression models that most closely fits the experimental 
results, and then evaluate and compare the performance of 
the developed regression models using defined KPIs. The 
background of the SVR, GPR, and ANN models are briefly 
explained in the following subsections.

Support vector regression

SVR model derived from statistical learning theory (Vapnik 
1995) is used the sigmoid kernel function which is equiv-
alent to a two-layer perceptron neural network. SVRs are 
alternative training methods for polynomial, radial basis 
function, and multilayer perceptron classifiers in which the 
weights of the network are found by solving a quadratic pro-
gramming problem with linear constraints, rather than by 
solving a non-convex, unconstrained minimization problem 
as in standard ANN training (Huang et al. 2010).

The goal in linear regression is to minimize the error term 
between the actual and the predicted values of the dependent 
variables; whereas, the goal in SVR is to make sure that the 
errors do not exceed the threshold value (i.e. � ) (Suykens 
and Vandewalle 1999). Suppose that the empirical risk (ER) 
value is minimized, as follows:

where |yi − ŷi| is �-insensitive loss function written as:

The proposed solution to this minimization problem is 
presented in Eq. (14).

where �i, �∗i  are positive and negative slack variables from the 
threshold value (�) , respectively, and C is the meta-parameter 
which controls the trade between the model complexity (i.e. 
flatness) and the deviations from the (�) . If C is too large, the 
target only minimizes the empirical risk without considering 
model complexity in the optimization formulation. Addi-
tionally, the value of (�) influences the number of support 
vectors used for constructing the regression function. The 
bigger the value (�) , the fewer support vectors are selected.

(12)ER =
1

N

Ni∑

i=1

|yi − ŷi|

(13)||yi − ŷi
|| =

{
0 if ||yi − ŷi

|| < 𝜀
|||yi − f

(
��, �

)
− 𝜀

||| − 𝜀 otherwise

(14)

minimize
1

2
�T� + C

Ni∑
i=1

�
�i + �∗

i

�

subjec to

yi − f (��, �) − � ≤ � + �i
f (��, �) + � − yi ≤ � + �∗

i

�i, �
∗
i
≥ 0

Gaussian process regression

GPR is a non-parametric kernel-based probabilistic regres-
sion model. Despite GPR is a powerful modeling tool, this 
method has been addressed in solving very few problems 
related to rock mechanics (Momeni et al. 2020; Kumar et al. 
2013, 2014; Huang et al. 2017). The basic idea behind GPR 
is to predict the value of a function at a given point by com-
puting a weighted average of the known values of the func-
tion in the neighborhood of the point. It combines a global 
model and local deviations (Rasmussen 2004; Hong et al. 
2014). Now consider that the unseen observation, where the 
prediction will happen, �∗ = {x∗,j} ∀j = 1,⋯ ,Nj . The GPR 
model is of the form (Eq. 15)

where f (�∗, �) is the unknown polynomial function, and 
Z(��, ��) is the realization of a stochastic process with mean 
zero and nonzero covariance, which is given in Eq. (16).

where � is the correlation matrix, and R(��, ��) is the corre-
lation function between two observations (i.e. ��, �� ). When 
the Gaussian correlation function is employed, the correla-
tion function is expressed as:

where �j is the unknown correlation parameter to be deter-
mined, and Nj is the number of inputs.

 where � is the column vector of length Ni that contains the 
responses of the experimental data and � is a column vec-
tor of length Ni that is filled with ones when � (�) is taken 
as a constant. ��(�∗) is the correlation vector between the 
unseen observation x∗ and the whole seen observation 
(i.e.� = {��} ∀i = 1,⋯ ,Ni ), which is defined as:

The parameter �̂  is calculated in Eq. (20).

The estimated variance is calculated as:

(15)ŷ(�∗) = f (�∗, 𝛽) + Z(��, ��)

(16)cov
(
Z
(
��, ��

))
= �2�

(
R
(
��, ��

))

(17)

R
(
��, ��

)
= exp

[
Nj∑

j=1

�j
(
xi,j − xk,j

)
]

∀i, k = 1,… ,Ni

(18)f
(
�∗, �

)
= �̂ + ��

(
�∗
)
�−1

(
� − � �̂

)

(19)��(�∗) =
[
R
(
�∗, ��

)
,… ,R

(
�∗, ��

)
,… ,R

(
�∗, ���

)]T

(20)𝛽 =
(
���−��

)−�
���−��

(21)�̂�2 =
(� − �𝛽)T�−1(� − �𝛽)

Ni
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The unknown parameters �j in Eq. (21) obtained employ-
ing the maximum likelihood approached defined as:

Artificial neural network

ANN model is an alternative fitting method to map a relation 
between inputs and outputs. A neuron, which is the building 
blocks of ANN, is composed of the input layer, one or more 
hidden layers, and the output layer. Every neuron has connec-
tions, which are called weights, with every neuron in both the 
previous and the following layer. Moreover, each neuron has 
a bias that makes it work or not work depending on the level 
of the input signal (Agatonovic-Kustrin and Beresford 2000; 
Bektas et al. 2019a). The inter-connectivity between neurons 
is generally done either feed-forward (FFNN) and recurrent 
(RNN) architectures. In the presented work, a feed-forward 
hierarchical topology is used, and the neuron’s output z can 
be expressed in Eq. (23).

where xj is the input, wj is the weight of the neuron, β is the 
bias value, and n is the number of the elements in inputs. 
The relationship between the output and the inputs is for-
mulated as:

where fh is activation function which is generally linear and 
sigmoid. In the presented work, the sigmoid activation func-
tion was employed as defined in Eq. (25) (Ham and Kostanic 
2000; Bektas et al. 2019b)

The general network structure for a two-layer feedforward 
with a sigmoid transfer function (fh) in the hidden layer and a 
linear transfer function (fo) in the output is written in Eq. (26).

Depending on the techniques used to train the feed-forward 
neural network models, different back-propagation algorithms 
have been developed. In this study, the Levenberg–Mar-
quardt back-propagation algorithm was used for training. In 
the back-propagation phase, the performance index E(W) to 

(22)max 𝜙
(
𝜃j
)
= −

Ni ln
(
�̂�2
)
+ ln(|�|)
2

(23)zj =

n∑

j=1

wjxj + �

(24)yj = fh
(
zj
)

(25)fh =
1

1 + e−x

(26)yj = f0

(
b +

nh∑

h=1

wh ⋅ fh

(
bh +

n∑

i=1

wih ⋅ xt−i

))

be minimized was defined as the sum of the squared errors 
between the target and network output as defined in Eq. (27).

where W consists of all weights in the network, and e is 
the error vector comprising the errors for all the training 
examples. When training with the Levenberg–Marquardt 
algorithm, the changing weights ΔW can be computed as 
follows:

Then, the update of the weights can be adjusted according 
to Eq. (29)

where J is the Jacobian matrix, I is the identity matrix, and 
µ is the Marquardt parameter to be updated using the decay 
rate β depending on the outcome. In particular, µ is multi-
plied by the decay rate β (0 < β < 1) when E(W) decreases, 
while µ is divided by β when E(W) increases in a new k-step. 
After the construction of the overall network, weights and 
biases parameters are iteratively adjusted to meet the pre-
defined error criteria. Iteration by iteration the weights and 
the biases are updated proportionally to the mean squared 
error between the calculated output and the desired targets.

Criteria for the performance evaluation and data 
normalization

To justify the accuracies of the SVR, GPR, and ANN mod-
els, the following KPIs, namely, MSE, RMSE, R2, adjR2, 
MAE, the Nash–Sutcliffe coefficient (NS) to evaluate the 
capability of the model at simulating output data from the 
mean statistics, the variance account factor (VAF) to rep-
resent the ratio of the error variance to the measured data 
variance, and the Performance Index (PI), were computed 
for each model. MSE, RMSE, R2, and adjR2 were calculated 
using Eqs. (4)–(8). MAE, NS, and VAF were calculated 
using Eqs. (30)–(32), where yi and ŷi are the measured and 
predicted values. Here, the PI index is calculated separately 
according to both the normalized RMSE and normalized 
MAE values written in Eqs. (33) and (34). The NRMSE 
and NMAE values were obtained by dividing the RMSE 
and MAE values by the standard deviation of the Es values 
measured.

(27)E(W) = eTe

(28)ΔWk = −
[
JT
k
Jk + �kI

]−1
JT
k
ek

(29)Wk+1 = Wk + ΔWk

(30)MAE =
1

Ni

Ni∑

t=1

||yt − ŷt
||
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The Taylor diagram is also used to assess the perfor-
mance of the regression models (Taylor 2001). It is a two-
dimensional plot showing four statistical quantities: (1) the 
standard variation of observed data ( �o ), (2) the standard 
variation of predicted data ( �p ), (3) the correlation coef-
ficient (R), and (4) the centered RMSE, which is the key 
to constructing the Taylor diagram, is defined Eq. (35).

The standard deviation shown in Fig. 5 is denoted by 
the radial distance from the origin. When the standard 
deviation of the predicted value ( �p ) is closer to the stand-
ard deviation of the observed ( �o ), the performance of the 
model is higher. R is represented by the azimuthal angle 
(Fig. 5). The centered RMSE is related to the distance 
between the observed (OBS) and developed model (MDL), 
assessed in units identical to those of the standard devia-
tion. While the performance of the model increases with 
increasing R, it decreases with increasing centered RMSE 
value.

(31)NS = 1 −

Ni∑
t=1

�
yt − ŷt

�2

Ni∑
t=1

�
yt − ȳt

�2

(32)VAFi =

(
1 −

var
(
yi − ŷi

)

var
(
yi
)

)
⋅ 100%

(33)PIRMSE = adjR2 + 0.01 VAF − NRMSE

(34)PIRMAE = adjR2 + 0.01 VAF − NMAE

(35)RMSEcentered = �2
o
+ �2

p
− 2�o�pR

Another graphical assessment of the performance of the 
models was conducted with the REC, which is a generali-
zation of receiver operating characteristic (ROC) curves 
for regression (Bi and Bennett 2003). The REC curves 
plot the error tolerance on the x-axis versus the percent-
age of points predicted within the tolerance on the y-axis. 
The resulting curve estimates the cumulative distribution 
function of the error. The area over the REC curve (AOC) 
provides an approximation of the expected error. The AOC 
reveals additional information that can be used to assess 
the model. The smaller AOC, the better the model will 
perform (Bi and Bennett 2003).

The experimental results differ in scale. Therefore, an 
adjustment was made before employing the suggested 
methods to prevent the models from being dominated 
by variables with large values. Z-score normalization is 
widely used in this field, and its formulation is defined in 
Eq. (36).

Results

Application and prediction

In this study, the SVR, GPR, and ANN models developed 
for the prediction of Es were implemented in the MATLAB 
2019a software environment. Considering the results of best 
subset regression, porosity ( n ), P-wave velocity ( Vp ) and 
slake durability index ( Id ) were taken into account as input 
parameters in the models. The experimental results, that is, 
the original dataset, were randomly divided into two data-
sets, which were (1) the training dataset that contained 75% 
of the original data and (2) the test dataset that contained 
25% of the original data.

In supervised machine learning, the covariance func-
tion (kernel function) expresses the statistical relation-
ship between two data points ( xi , xj ). The kernel function 
(k(xi , xj)), which is specified by hyperparameters ( � ), can 
be defined in various forms, such as Gaussian, exponential 
Gaussian, rational quadratic, Matern 5/2, and radial basis 
function. In this study, the MATLAB hyper-parameter 
optimization method was employed to obtain the optimum 
hyper-parameters for each regression model. For the SVR 
model, the Gaussian function was selected as the kernel and 
its hyper-parameters were optimized by the kernel scale 
method. The kernel scale, input means (µ), input standard 

(36)

𝐱𝐧𝐨𝐫𝐦
𝐢

=
xi,j − �̄�𝐢

�
1

Nj

Nj∑
j=1

�
xi.j − �̄�𝐢

�2
∀j = 1,… ,Nj

𝐗𝐧𝐨𝐫𝐦 = 𝐱𝐧𝐨𝐫𝐦
𝐢

∀i = 1,… ,Ni

Fig. 5  Drawing of Taylor Diagram ( reproduced from Taylor 2001)
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deviation (σ), and bias terms (β) were found to be 6.9, (4.9, 
3.5, 90.73), (3.14, 0.46, 8.68), and 19.44, respectively. For 
the GPR model, the exponential Gaussian function was cho-
sen as the kernel and its hyper-parameters were optimized 
by the sigma method. The characteristic length scale, input 
standard deviation, and bias term were computed as 9.29, 
10.03, and 18.75, respectively. The Levenberg–Marquardt 
back-propagation approach was used to train a feedforward 
neural network using supervised learning. The constructed 
neural network was composed of one input layer with three 
neurons, two hidden layers with ten neurons in the 1st hidden 
layer and six neurons in the 2nd hidden layer, and an output 
layer with one neuron. The tansig function was a suitable 
function for smooth prediction in the ANN model and was 
thus used as a kernel function. The ANN model constructed 

was run for 300 iterations, and the best ANN model was 
selected according to the lowest MSE. Thirty-nine training 
epochs were used, and the 29th epoch was found to be the 
best, with an MSE of 1.678.

A comparison of the estimated values with the measured 
true values is shown in Figs. 6 and 7. Figure 6 indicates 
that the Es values obtained from the ANN and GPR models 
are located closer to the measured values, compared to the 
values obtained for the SVR model. When considering the 
outputs of the regression line drawn according to the meas-
ured and predicted Es values, and the line (1:1 line) where 
the measured and predicted values are equal (Fig. 7), the 
ANN and GPR model outputs are more successful than the 
other models.

Response surface

The training dataset was used to develop the regression mod-
els. The unseen values required for response surface plots 
were estimated using the developed models. The impacts of 
P-wave velocity and slake durability index with a constant 
porosity on Es are depicted in Figs. 8, 9 and 10. According 
to all the regression models developed, Es tends to increase 
with decreasing porosity, and with increasing P-wave veloc-
ity, and slake durability index. When the n value is kept con-
stant, the Es value increases as the Vp value increases. How-
ever, the change of Es with Id is not very clear. Moreover, 
when considering the plotted response surfaces, the SVR 
model shows linear behaviors, and the GPR model indicates 
quasi-linear behaviors, but the ANN model demonstrates 
completely nonlinear behaviors. Owing to the calculation 
algorithms of the SVR model, the response surfaces exhibit 

Fig. 6  Comparison of the estimated and measured E
s
 values

Fig. 7  Scatter plots for the SVR, GPR, and ANN models developed showing the training and test periods
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Fig. 8  Surface and contour plots for the SVR model showing the effect of Id and Vp for selected n values on E
s
 ; a training dataset and b test data-

set

Fig. 9  Surface and contour plots for the GPR model showing the effect of Id and Vp for selected n values on E
s
 ; a training dataset and b test data-

set
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more linear behaviors compared to the GPR and ANN mod-
els. As shown in Fig. 9, the Es value reaches its maximum 
at the maximum Vp value, regardless of the Id value. This is 
because Vp plays an important role in estimating the Es value 
in the ANN model. The response surfaces of the training and 
test data illustrate the same trends for each regression model.

Performance evaluation

In the training and test periods, the performance of the ANN 
model is very close to that of the GPR model, but there is a 
significant difference between the ANN and SVR models. 
This is also true for the SVR and GPR models (Table 4, 
Figs. 11 and 12).

Fig. 10  Surface and contour plots for the ANN model showing the effect of Id and Vp for selected n values on E
s
 ; a training dataset and b test 

dataset

Table 4  Performance evaluation of the developed models using the defined KPIs

RMSE MAE NRMSE NMAE R2 adj R2 NS Min Max VAF PIRMSE PIMAE

(GPa) (GPa) (GPa) (GPa) (%)

Training
 SVR 3.244 2.558 0.459 0.362 0.787 0.777 0.782 8.873 27.739 78.26 1.1008 1.1978
 GPR 2.066 1.532 0.292 0.217 0.912 0.906 0.908 8.587 27.919 91.17 1.5251 1.6006
 ANN 2.486 1.493 0.352 0.211 0.870 0.864 0.872 7.063 29.975 87.24 1.3844 1.5249
 Observed 5.429 36.458

Test
 SVR 5.662 5.196 0.619 0.568 0.695 0.644 0.615 11.990 30.355 62.71 0.6519 0.7029
 GPR 3.365 3.043 0.368 0.332 0.898 0.881 0.864 9.666 32.928 86.52 1.3779 1.4142
 ANN 3.767 2.337 0.412 0.255 0.859 0.835 0.830 5.512 36.406 83.39 1.2567 1.4139
 Observed 7.028 31.802
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During the training period, the RMSE, NRMSE, MAE, 
NMAE R2, NS, and VAF values for the SVR model were 
3.244 GPa, 0.459, 2.558 GPa, 0.362, 0.787, 0.782, and 
78.26%, respectively (Table  4). When considering the 
RMSE, the standard deviation of the Es values estimated, 
and R values in the Taylor diagram, the performance of the 
SVR model is significantly worse than the performances of 
the ANN and GPR models (Fig. 11). The AOC value of the 
SVR model is 2.521 MPa (Fig. 12). The  PIRMSE and  PIMAE 
values obtained for the SVR model are 1.101 and 1.198, 
respectively (Table 4). From the performance indicators 
obtained for the SVR model, it can be concluded that the 
learning ability of the SVR model is insufficient.

During the training period, the RMSE, NRMSE, R2, NS, 
and VAF values of the GPR model were 2.066 GPa, 0.292, 
0.912, 0.908, and 91.17%, respectively, while the values 

for the ANN model were 2.486 GPa, 0.352, 0.870, 0.872, 
and 87.24%, respectively (Table 4). Additionally, the AOC, 
MAE, and NMAE values of the ANN model were 1.6846 
GPa, 1.493 GPa, and 0.211, respectively, and were 2.377 
GPa, 1.532, and 0.217, respectively, for the GPR model 
(Table 4 and Fig. 12). The standard deviation of the meas-
ured Es was 7.0707 GPa, that of the predicted Es GPa using 
the ANN model was 7.0673 GPa, and that of the predicted Es 
using the GPR model was 6.3447. Therefore, the variability 
of the Es values measured and that estimated by the ANN 
model are similar. The ANN model is more successful in 
terms of proximity to the measured Es (Fig. 11). In addition, 
the best result for approaching the maximum and minimum 
values of Es is obtained with the ANN model. However, as 
shown in the Taylor diagram (Fig. 11), the GPR model is 
more successful in terms of the RMSE and R values, than the 

Fig. 11  Performance evaluation by Taylor diagram of the models developed

Fig. 12  ROC curves of the models developed
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ANN model. In terms of the  PIRMSE and  PIMAE values, the 
GPR model performed better than the ANN model. While 
the  PIRMSE and  PIMAE values of the GPR model are 1.5251 
and 1.6006, and those of the ANN model are 1.3844 and 
1.5249, respectively.

For the test period, the RMSE, MAE, NRMSE, NMAE, 
R2, NS, VAF, and AOC values of the SVR model are 5.662 
GPa, 5.196 GPa, 0.619, 0.568, 0.695, 0.615, 62.7%, and 
4.198 GPa, respectively (Table 4 and Fig. 12). The  PIRMSE 
and  PIMAE values obtained with the SVR model for the test 
data are 0.6519 and 0.7029, respectively. When considering 
the values of the key performance indices, the  PIRMSE, and 
 PIMAE, the SVR model is not successful in predicting the Es 
of the samples investigated.

For the test data, the ANN and GPR models are better 
than the SVR model in terms of R, RMSE, proximity to 
the standard deviation of the measured Es , and AOC values 
(Figs. 11 and 12).

The performance of the GPR model for the test data for 
R2, RMSE, NRMSE, NS, and VAF is higher than that of the 
ANN model (Table 4). In the test period, the R2, RMSE, 
NRMSE, NS, and VAF values obtained for the GPR model 
are 3.365 GPa, 0.368, 0.898, 0.864, and 86.5%, respectively, 
and those for the ANN model are 3.767 GPa, 0.412, 0.859, 
0.835, and 83.4%, respectively (Table 4). When consider-
ing only the MAE, NMAE, and AOC values, the success of 
the ANN model in predicting Es is higher than that of the 
GPR method. For the test period, the MAE, NMAE, and 
AOC values for the ANN model are 2.337 GPa, 0.255, and 
1.3822 GPa, respectively, while those for the GPR model 
are 3.043 GPa, 0.332, and 1.5598 GPa, respectively (Table 4 
and Fig. 12).

As illustrated in the Taylor diagram for the test data, the 
slope of the line connecting the point representing the GPR 
model with the origin is lower than the point representing 
the ANN model (Fig. 11). This indicates that the GPR model 
has a higher R value and a lower RMSE value than the ANN 
model in the test period. However, the point representing the 
ANN model is closer to the circle passing through the OBS 
(observed value) than the point representing the GPR model 
(Fig. 11). In the test period, the standard deviation of the 
measured Es is 9.0517 GPa, while the standard deviations 
of Es predicted using the ANN and GPR models are 7.637 
GPa and 7.157 GPa, respectively. Therefore, for the test 
data, as for the training data, the variability of the measured 
Es values and the variability of Es values estimated by the 
ANN model are significantly closer to each other than that 
of the GPR model (Fig. 11). In the test period, the  PIRMSE 
and  PIMAE values obtained for the ANN model are 1.2567, 
and 1.4139, respectively, while those obtained for the GPR 
model are 1.3779 and 1.4142, respectively. When consider-
ing that  PIRMSE and  PIMAE were formed by more than one 
KPI, the GPR model performed better than the ANN model.

Discussion

To compare the performance of the models developed in 
this study to the prediction models given in the literature, 
the studies aimed to predict Es of magmatic, and metamor-
phic rocks and include the prediction models based on ANN, 
SVR, and GPR models. As shown in Table 1, the proper-
ties of intact rock commonly used in the prediction mod-
els suggested for Es of magmatic and metamorphic rocks 
are the Schmidt hammer hardness (SHH), shore hardness 
(SH), UCS, tensile strength (TS), point load index (PLI), 
and block punch index (BPI). Although the measurement 
of SHH is rapid and easily executed, simple, and portable, 
it has limitations, such as the anisotropy and heterogeneity 
of the rocks, a very small test conduction area, and surface 
roughness (Yilmaz 2009). UCS, TS, and BPI tests have two 
main limitations and problems, which are (1) a standard 
sample cannot always be obtained and (2) the tests cannot 
be repeatable. The BPI test is only valid for very thin small 
discs, and an irregular failure causes the need for a sub-
stantial amount of rock specimens (Yilmaz 2009). These 
limitations and problems related to the UCS, TS, and BPI 
are more concerning for weathered rocks. The disadvantages 
of PLI that do not need a standard sample are as follows: (1) 
tests are applied in very small areas, (2) invalid test results 
frequently occur, (3) the specimen may move during load-
ing, and (4) micro-fissures may cross the conical platens 
(Yilmaz 2009). In addition, the force measurement accuracy 
in PLI may not be sufficient for the testing of weathered 
rock samples, and in these samples, there may be penetrat-
ing conical platens in the sample. The main shortcoming 
of the SH test is that the measurements are obtained from a 
random mineral, and anisotropy and/or heterogeneity of the 
rocks. Taking into account the limitations and problems, it 
can be acknowledged that there may be difficulties in using 
the results of such hardness and strength tests as inputs in 
the regression models.

The performances of the soft computing models to esti-
mate the Es of magmatic and metamorphic rock samples 
reported in Khandelwal and Singh (2011), Saedi et  al. 
(2018), Tian et al. (2019), Armaghani et al. (2020), and 
Acar and Kaya (2020) are higher than those of the GPR 
model proposed in this study when comparing their R2 val-
ues (Table 1). However, these prediction models use one 
or more of the SHH, SH, UCS, TS, PLI, and BPI as inputs. 
Other prediction models developed for the Es of magmatic 
and metamorphic rock samples reported by Sonmez et al. 
(2006), Manouchehrian et  al. (2013), Armaghani et  al. 
(2016), Atici (2016), and Behzadafshar et al. (2019) also 
used hardness and strength properties as inputs, even though 
they had limitations and problems (Table 1). Furthermore, 
the performances of the regression models were not better 
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than those of the GPR and ANN models developed in this 
study.

Kumar et al. (2013) adopted a relevance vector machine 
(RVM), GPR, and minimax probability machine regression 
(MPMR) for the prediction of UCS and Es of travertine sam-
ples. The GPR model in their study had a higher R2 value 
than the GPR and ANN models developed in this study, 
but UCS and PLI were used as inputs in their study. The 
ANFIS models used by Armaghani et al. (2015) and Singh 
et al. (2017) performed better than the GPR models devel-
oped in this study but here, the GPR models were developed 
with different magmatic rock types with different degrees of 
weathering, while the ANFIS models were developed with 
only one rock type (Table 1). The input parameters of the 
LS-SVM models for predicting the Es of weathered rock 
samples given in Ceryan (2016) are the effective porosity 
and the P-durability index. The P-durability index is based 
on the slake durability index and P-wave velocity. Although 
the LS-SVM model successfully predicted Es , it had a lower 
R2 value than the GPR and ANN models developed in this 
study. In addition, the P-durability index could not be 
selected as a suitable input parameter while selecting input 
parameters using the best subset regression analysis applied 
in this study. Behnia et al. (2017) developed a gene expres-
sion programming (GEP) model to predict the Es and UCS 
of different rocks. The model used quartz content, porosity, 
and density as input parameters and performed successfully, 
with an R2 value of 0.927. It can be concluded that using the 
GEP model to predict the Es of weathered magmatic and 
metamorphic rock is useful.

When selecting inputs used in the suggested models in 
this study, the following factors were taken into account: 
(1) inputs are able to characterize these intrinsic characteris-
tics and the state of weathering, (2) their measurements can 
be performed easily and rapidly in practical and economic 
terms, and (3) they provide high performance to the predic-
tion models in which they are used. The simple and non-
destructive properties ( n , Vp , Vm , Vid , Id , SHH, and SHH × � ) 
were obtained experimentally for use in the Es estimation of 
the studied samples. As indicated in Table 1, these proper-
ties are the most frequently used inputs in prediction models. 
However, not all of them have been used in the same predic-
tion models because of the practical and technical difficulties 
discussed here. For this, the best subset regression approach 
was employed to determine the inputs. As a result, porosity 
( n ), P-wave velocity ( Vp ), and the slake durability index ( Id ) 
were employed as inputs for the proposed SVR, GPR, and 
ANN models.

There are good relationships between the elastic wave 
velocity and the chemical and mineralogical composition 
of rocks (Ceryan 2015). This is also valid for weathered 
rock because the fresh mineral content decreases, while 
micro-fracture voids increase with weathering. Therefore, Vp 

decreases with increasing weathering (Ceryan et al. 2008a; 
Wyering et al. 2014; Momeni et al. 2017; de Vilder et al. 
2019), and it is possible to characterize weathered magmatic 
and metamorphic rock material properties by Vp measure-
ments (Ceryan et al. 2008b). Furthermore, it was also pro-
posed that a non-destructive measurement of Vp offers an 
alternative input for Es estimation with relative ease and at 
a low operational cost (Yasar and Erdogan 2004). The pore 
characteristics and fundamental microstructural parameters 
are important physical properties that govern the physical 
attributes of rocks, for example, strength, deformability, and 
hydraulic conductivity (Tugrul 2004). There are difficulties 
in determining pore size distribution, pore geometry, pore 
infilling, and pore connectivity, and therefore, porosity and 
effective porosity are commonly used to define the pores of 
rock materials (Ceryan 2014, 2015). The total porosity and 
the number of connected pores generally characterize the 
weathering state and these properties increase with weath-
ering (Ceryan et al. 2008a). For these reasons, porosity or 
effective porosity is commonly used for estimating the Es 
of rock materials (Table 1). The slake durability test is an 
inexpensive and easy test to conduct and requires very little 
sample preparation. Therefore, it is a good index for rep-
resenting weathering processes (Lee and De Freitas 1989; 
Cargill and Shakoor 1990; Ceryan et al. 2008b; Sharma 
et al. 2008; Ceryan 2015). The slake durability index can 
be used inexpensively and easily to estimate the deforma-
tion modulus of weathered or soft rocks (Table 1). When 
the result of considering the best subset regression analysis 
performed, and the characterization of the weathering pro-
cess in magmatic and metamorphic rocks, it is apparent that 
using porosity, slake durability index, and P-wave velocity 
as inputs in prediction models developed for rock materials 
is a practical and economical approach.

In all regression models, the combination of Vp and Id 
can estimate the behavior of Es referred to response sur-
faces illustrated in Figs. 7, 8, 9 and 10. Furthermore, the 
maximum Es value is obtained at higher Vp and Id values and 
lower n values as expected.

When the n value is kept constant, the Es value enhances 
as the Vp value increases. On the other hand, the increase in 
the Es value is very subtle only increasing with the Id value 
when other inputs are held constant. For example, consid-
ering the same data point [ Vp : 4.16 km/s, Id : 99.5%] the Es 
values are around 27 GPa with n : 2.52% for SVR, and GPR; 
whereas the Es value is around 21 GPa with n : 11.057% 
for SVR, and GPR. Moreover, the estimated Es value at the 
given data point for lower porosity value was around 27 GPa, 
but it decreased to around 12 GPa with the increase of the 
porosity value. As a result, ANN is more sensitive chances 
in Vp and n . On the other hand, the SVR and GPR models 
are more sensitive chances in Vp . As seen in the response 
surfaces, while the output values of the models are most 
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sensitive to the change of Vp , they are least sensitive to the 
change of Id . The sensitivity of the output of the models 
in chances of the input parameters is related to the results 
of weathering processes on the rock material, as is related 
to the characteristics of soft computing techniques. Due to 
that the weathering product content, which having lower Vp 
than fresh minerals, and micro-fracture voids increase with 
weathering, the decreasing of Vp with weathering is more 
regularly and faster than Id and n.

KPIs, namely VAF, RMSE, MAE, and R2, can be sepa-
rately used to examine model accuracy, but none are superior 
and therefore, the PI, which combines these KPIs, was sug-
gested (Yagiz et al. 2012). Successively, adjR2 was employed 
in computing the PI value instead of R2 because it is a statis-
tic with systematic error based on the number of independ-
ent variables in the equation, sample size, and the coefficient 
of variation (Ceryan 2014). However, the PI value given in 
Ceryan (2014) depends on the RMSE. The RMSE and MAE 
metrics, can range from 0 to ∞ and are indifferent to the 
direction of errors. The errors are squared before they are 
averaged, and therefore, the RMSE gives a relatively high 
weight to large errors. Owing to this characteristic of RMSE, 
it usually determines model performance differences better 
than other indices (Chai and Draxler and 2014). However, 
RMSE has important disadvantages because it is a func-
tion of three characteristics of a set of errors, rather than of 
one (the average error). RMSE varies with the variability 
within the distribution of error magnitudes, and the square 
root of the sample number, as well as with the average error 
magnitude (MAE) (Willmott and Matsuura 2005). Without 
the benefit of other information, for example, MAE, it is 
impossible to discern the extent to which RMSE reflects the 
central tendency (average error) or the variability within the 
distribution of squared errors (Mielke and Berry 2001; Will-
mott and Matsuura 2005; Willmott et al. 2009). Given the 
definition of MAE, it is clear that MAE, unlike RMSE, is an 
unambiguous measure of average error magnitude (Willmott 
and Matsuura 2005). However, the MAE might be affected 
by a large number of average error values without adequately 
reflecting some large errors (Chai and Draxler 2014). For 
these reasons, using the KPI, which considers both the errors 
themselves and the squares of the errors, would be more 
accurate. With this in mind, a new PI,  PIMAE, has been pro-
posed using normalized MAE instead of normalized RMSE. 
Both  PIRMSE and  PIMAE were used in this study. When the 
values of these performance indices are less than 1, the pre-
diction model fails, and the success of the model is higher as 
the value approaches 2. A prediction model is more success-
ful if it has a larger  PIRMSE and  PIMAE value than the other 
model. If the  PIRMSE is large and the  PIMAE is small, other 
performance criteria should also be considered.

In this study, the REC diagram is drawn using the abso-
lute value of errors (as in MAE). In contrast, RMSE is used 

in the Taylor diagram and does not provide the differences 
between the measured and obtained values directly. To over-
come this deficiency, the REC curve was used to evaluate the 
performance of the models developed in this study.

Based on performance evaluation according to Perfor-
mance Indexes, Taylor, and REC diagrams, it is clear that the 
SVR model developed in this study is the worst model for 
estimating the Es of the investigated samples. In the training 
and test periods, the GPR model performs better than the 
ANN model in terms of the R and centered RMSE compo-
nents of the Taylor diagram, while the variability (standard 
deviation) of Es values obtained with the ANN model is 
closer to the variability of the observed Es values. The AOC 
value obtained according to the absolute values of the errors 
(as in the MAE) is lower for the ANN model. However, the 
GPR model has a better performance than the ANN model 
in terms of  PIRMSE and  PIMAE values.

The SVR, GPR, and ANN models can approximate 
almost all types of non-linear functions, including quadratic 
functions. The soft computing models use a “black box” 
approach and have some difficulties in sharing the meth-
odology with other researchers (Suykens and Vandewalle 
1999; Agatonovic-Kustrin and Beresford 2000; Rasmussen 
2004; Desai et al. 2008; Ahmadi and Rodehutscord 2017; 
Ozkat et al. 2017c). The SVR and GPR models are based 
on the same probabilistic regressive model, while ANN is 
not a probabilistic model. The GPR and SVR models devel-
oped here assume a Gaussian data distribution, but the ANN 
model does not assume any data distribution. The ANN and 
GPR models do not have a sparse solution. They use all sam-
ple/feature information to perform the prediction. The SVR 
model has the noteworthy advantage of frequently yielding 
sparse solutions. It minimizes reconstruction errors through 
convex optimization, ensuring that the optimal estimate is 
found, but it is not a unique solution. In the ANN model, 
the optimization is not always convex, and therefore, the 
solution is not always a global minimum (Suykens and 
Vandewalle 1999; Agatonovic-Kustrin and Beresford 2000; 
Rasmussen 2004; Khandelwal and Singh 2009; Kumar et al. 
2013; Samui et al. 2019).

Parametric approaches distill knowledge about the 
training data into a set of numbers. They require a large 
amount of data, especially for architectures with many lay-
ers because of the vast number of weights and connections 
in ANN models. In contrast, Gaussian processes are non-
parametric methods. A Gaussian processes kernel allows 
for the specification of a prior control on the function space, 
which can be extremely useful, especially when there are 
scant data (Bijl et al. 2017). However, as Gaussian processes 
are non-parametric, they need to take all the training data 
into account each time they make a prediction. This means 
that the computational cost of predictions increases with the 
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number of training samples (Agatonovic-Kustrin and Beres-
ford 2000; Rasmussen 2004; Bijl et al. 2017).

The originality and limitations of this study are as 
follows:

The best subset regression approach was employed to 
determine the inputs in the proposed prediction model devel-
oped. As a result of this analysis, the most suitable param-
eters were found to be porosity ( n ), P-wave velocity ( Vp ), 
and the slake durability index ( Id ). They are frequently used 
inputs in prediction models (Table 1) and are commonly 
used to define the state of weathering and in predicting 
the UCS and Es of weathered magmatic and metamorphic 
rocks (Ceryan 2018). The measurements of Vp and n are 
non-destructive, repeatable, easy, and economical. The slake 
durability test is an inexpensive and easy test to conduct and 
requires very little sample preparation.

The ANN and GPR models developed in this study 
successfully predicted the Es of the samples investigated. 
Although there are many ANN models to predict the Es of 
rock materials, the number of GPR methods is quite low 
(Table 1). Moreover, according to the literature, there are 
very few soft computing models developed to assess the Es 
of magmatic rock material with different degrees of weath-
ering (Table 1). This study provides data and approaches to 
overcome this deficiency.

This study demonstrates that it is more useful to use 
together criteria based on the square of errors (e.g., RMSE 
and Taylor diagram) and criteria based on the absolute value 
of errors (i.e., MAE and REC have drawn depending on the 
absolute value of errors). In this study, the new Performance 
Index, PIMAE, which takes MAE into account, was created 
and it was stated that it would be beneficial to use together 
with this performance index and the Performance index 
based on RMSE. The ANN and GPR models given in this 
study have been developed to estimate the Es of magmatic 
and metamorphic rock samples with different degrees of 
weathering. These models can be applied to magmatic and 
metamorphic rock samples containing at least three different 
degrees of weathering.

Conclusion

This study from NE Turkey, examined the applicability and 
capability of the SVR, GPR, and ANN models in Es predic-
tion of magmatic rocks with different degrees of weathering. 
The selection of the inputs for use in the models was per-
formed using the best subset regression approach. As a result 
of these analyses, porosity, P-wave velocity, and the slake 
durability index that are used commonly in defining the 
weathering state and in predicting the Es of weathered rocks, 
were selected as inputs for the prediction models developed 
in this study. Here, the weathering effect on the engineering 

behaviors of rock material is considered, and it is shown that 
using porosity, slake-durability index, and P-wave velocity 
together is a very powerful tool for estimating the elastic 
modulus of weathered magmatic and metamorphic rocks.

Given the difficulties of RMSE and MAE in expressing 
the error alone, it is useful to use both the index based on the 
absolute value of errors and the index based on the square 
value of error in evaluating the performance of the predic-
tion models. For this, a new PI,  PIMAE, is proposed here, 
using normalized MAE instead of normalized RMSE.

According to the computed KPIs, Taylor diagram, and 
REC curves, it is concluded that the SVR model is insuf-
ficient for predicting the elastic modulus of the weathered 
magmatic rock samples. In the test period, the R2, RMSE, 
and AOC values obtained for the SVR model were 0695, 
5.662 GPa, and 4.198 GPa, respectively. In addition, the 
 PIRMSE and  PIMAE obtained for the SVR model developed 
were lower than 1.0, being 0.6519 and 0.7028, respectively.

During the training and test periods, the results of the per-
formance analysis of the ANN and GPR models using KPIs, 
the Taylor diagram, and the REC curves were excellent. In 
both the training and test periods, when the performance met-
rics were considered one by one, in the criteria based on the 
absolute value of error, for example, MAE, NMAE, and AOC, 
and when approaching extreme measured values and standard 
deviation of Es value, the ANN model was more successful 
than the GPR model. The MAE, NMAE, and AOC values of 
the ANN model for the test data were 2.337 GPa, 0.255, and 
1.3822 GPa, respectively, while those of the GPR model were 
0.043, 0.332, and 1.5598 GPa, respectively. Conversely, in 
terms of  R2, RMSE, NRMSE, NS, and VAF, the GPR model 
performed better than the ANN model. In the test period, the 
 R2 value obtained for the GPR model was 0.898, while that 
for the ANN model was 0.859. For  PIRMSE and  PIMAE, which 
were created by combining multiple KPIs, the performance 
of the GPR model was better than that of the ANN model. 
The  PIRMSE and  PIMAE values of the GPR model for the test 
data were 1.3779 and 1.4142, respectively, while those for the 
ANN model were 1.2567 and 1.4139, respectively. In the Tay-
lor diagram, the GPR model performed better than the ANN 
model. Moreover, because of the probabilistic and non-para-
metric nature of the GPR system, it can be easily simulated 
and projected.

The performance of the GPR model is slightly better than 
that of the ANN model, although both the models are success-
ful in predicting the Es of the magmatic rock samples with 
different degrees of weathering. It would be useful to develop 
GPR and ANN models with porosity, P-wave velocity, and 
the slake durability index to predict the Es and UCS of other 
weathered rock samples, including samples with at least three 
different degrees of weathering.
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