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Abstract
Sediments accumulated in check dams are a valuable measure to estimate soil erosion rates. Here, geographic information 
systems (GIS) and three machine learning techniques (MARS-multivariate adaptive regression splines, RF-random forest and 
SVM-support vector machine) were used, for the first time, to predict sediment deposition rate (SR) in check-dams located 
in six watersheds in SW Spain. There, 160 dry-stone check dams (~ 77.8 check-dams km−2), accumulated sediments during 
a period that varied from 11 to 23 years. The SR was estimated in former research using a topographical method and a high-
resolution Digital Elevation Model (DEM) (average of 0.14 m3 ha−1 year−1). Nine environmental-topographic parameters 
were calculated and employed as predictors of the SR. The ability of MARS, RF and SVM was evaluated by using a five-fold 
cross-validation, considering the entire area (ALL), the check dams on the hillslope (HILL) and the valley-bottoms (VAL-
LEY), as well as the three catchments (B, C and D) with the highest number of check dams. The accuracy of the models 
was assessed by the relative root mean square error (RRMSE) and the mean absolute error (MAE). The results revealed that 
RF and SVM are able to predict SR with higher and more stable accuracy than MARS. This is evident for the datasets ALL, 
VALLEY and D, where errors of prediction exhibited by MARS were from 44 to 77% (RRMSE) and from 37 to 62% (MAE) 
higher than those achieved by RF and SVM, but it also held for the datasets HILL and B where the difference of RRMSE 
and MAE was 7–10% and 12–17%, respectively.

Keywords  Sediment deposition rate (SR) · Machine learning techniques · Check dam · Unmanned aerial vehicle (UAV) · 
Structure-from-motion (SfM)

Introduction

Soil erosion by water is considered one of the major issues 
of land degradation in a wide range of environments (Val-
entin et al. 2005; Zucca et al. 2006; Bou Kheir et al. 2007), 
including rangelands of southern Europe (e.g. dehesas in 
Spain). These landscapes are very sensitive to exogenous 
changes induced by anthropogenic factors such as climate 

change (with longer dry periods and more intense rainfall) 
or land use and vegetation cover changes (deforestation, 
overgrazing, fires, etc.). In this global change scene, dehesas 
landscapes are particularly susceptible to water erosion (Her-
guido Sevillano et al. 2017; Pulido et al. 2018). There are 
two main erosive processes in this landscape: sheetwash in 
hillslopes (Schnabel et al. 2010; Rubio-Delgado et al. 2017) 
and gully erosion in valley bottoms (Gómez-Gutiérrez et al. 
2012; Schnabel et al. 2013). Several studies have quantified 
soil erosion rates produced by these processes, for exam-
ple, Schnabel et al. (2010) estimated that soil erosion by 
non-concentrated flow in the hillslopes amounted to 0.63 t 
ha−1 year−1 for the period 1990–1997, while Gómez-Gutié-
rrez et al. (2012) estimated a soil erosion of 0.07 m3 ha−1 
year−1 due to gullying for the period 2001–2007. A recent 
study estimated soil erosion rates in the order of 21–38 t 
ha−1 year−1 for a period between 50 and 90 years influenced 
by land-use pressure, with cultivation in the past and high 
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stocking density since its abandonment (Rubio-Delgado 
et al. 2017).

In the last 30 years, several strategies have been carried 
out to restore the most degraded dehesas. Most of these res-
toration activities consist of (i) reforestation in places with 
poor vegetation cover and (ii) establishment of check dams 
in gullied channels. Check dams are among the most wide-
spread methods to trap sediments and mitigate soil erosion 
effects in Mediterranean areas (Castillo et al. 2007; Bombino 
et al. 2009; Quiñonero-Rubio et al. 2016; Cucchiaro et al. 
2019; Alfonso-Torreño et al. 2021). Check dams control 
sediment transport (Catella et al. 2005), stabilize slopes and 
torrential channels (Conesa 2004; Conesa García and García 
Lorenzo 2007; Romero, 2008); recharge aquifers (Conesa, 
2004; Conesa García and García Lorenzo 2007), retain 
solid material (Martín-Rosales et al. 2003; Conesa 2004; 
Belmonte et al. 2005; Conesa García and García Lorenzo 
2007), decrease water speed, consequently, reducing its ero-
sive capacity (Belmonte et al. 2005; Romero 2008). Despite 
the clear benefits provided by check-dams, their efficiency 
is limited in time (Zhao et al. 2017), i.e. their lifespan can 
be short in headwater areas and steep slopes where soil ero-
sion and sediment transport are intense (Martínez-Murillo 
and López-Vicente 2018). Sediments retained in check dams 
are the consequence of all erosion and sediment transport 
processes operating in a catchment. They may provide valu-
able information about the catchment sediment production 
and transport and have great value for environmental studies 
(Boix-Fayos et al. 2008; Vanmaercke et al. 2011). Catch-
ment sediment yield can be estimated by measuring the sedi-
ment retained in check dams constructed at the outlet of a 
catchment (Verstraeten and Poesen 2002; Bellin et al. 2011; 
Sougnez et al. 2011; Baade et al. 2012).

The development of Unmanned Aerial Vehicles (UAV) 
platforms facilitates the acquisition of high-resolution aerial 
photos from which structure-from-motion (SfM) (Ullman 
1979) photogrammetry together with multiview-stereo 
(MVS) algorithms can be applied to obtain point clouds, 
Digital Elevation Models (DEMs) and orthophotographs 
(Javernick et al. 2014; Woodget et al. 2015; Smith and Veri-
cat 2015). SfM is a low-cost, user-friendly photogrammetric 
technique for obtaining high-resolution datasets at a range 
of scales with application in remote and large areas. Unlike 
conventional photogrammetric methods, the SfM method 
solves the camera pose and scene geometry simultaneously 
and automatically, using a highly redundant bundle adjust-
ment based on matching features in multiple overlapping 
images (Westoby et al. 2012). DEMs produced using these 
technologies are suitable to quantify the volume of sediment 
retained behind check dams (Alfonso-Torreño et al. 2019). 
At the same time, numerous environmental parameters 
may be calculated from the cartographic datasets produced 
using the SFM-MVS workflow, such as vegetation cover, 

topographical and hydrological parameters. Numerous 
factors control the sediment discharge, including climate, 
topography, vegetation cover, land use, drainage network 
characteristics, and soil properties (Hovius 1998; Cerdà 
2002). The quantification of sediments deposited and the 
extraction of variables obtained from the high-resolution 
DEM provide useful information for quantitative models of 
landscape evolution (Restrepo et al. 2006; Keesstra 2007; 
Keesstra et al. 2009). However, modelling sediment deposi-
tion rate is a complex task because of the nonlinearity of 
natural processes intervening at basin scale (Mutua et al. 
2006; Keesstra et al. 2014; Borrelli et al. 2015). Sediment 
volume stored in dams has been used for distributed math-
ematical model validation (De Vente et al. 2008; Alatorre 
et al. 2010; Bussi et al. 2014; Mekonnen et al. 2015). Several 
attempts have been made to understand the role of factors 
influencing sediment yield and to develop hydrological dis-
tributed models in semi-arid regions (Tamene et al. 2006; 
Bouchnak et al. 2009; Bussi et al. 2013). Despite the fact 
that the approaches used in the previous studies represent 
innovative techniques for implementing distributed mecha-
nistic models in sediment ungauged catchments, some draw-
backs should be considered. For example, the errors in the 
estimation of the sedimentation volume and the availability 
of a few accumulated sediment volume values for calibrat-
ing and validating the models. Unlike previous researches, 
in this study, the dependent variable was calculated using 
topographic methods with centimeter precision at 160 differ-
ent sites. The design and implementation of erosion control 
and sediment management strategies require a large amount 
of data on erosion rates and an understanding of the factors 
that control the delivery of sediment through the catchment 
system. The current study would help to fill the research 
gap because limited information is available on sediment 
deposition rates and on the factors controlling depositional 
processes on semi-arid micro-catchments.

In recent years, machine learning techniques supported 
by Geographical Information Systems have been applied 
successfully to model and predict different aspects of soil 
erosion and other geomorphological processes. Machine 
learning is a technique that employs advanced computer 
algorithms to model complex relationships in the training 
data and to provide predictions of the test data (Chen et al. 
2018; Kavzoglu et al. 2019; Ma et al. 2020). For example, 
machine learning techniques have been used to predict spa-
tial distribution of gully erosion (e.g., Gómez-Gutiérrez et al. 
2009a, b, 2015; Conoscenti et al. 2014, 2018; Rahmati et al. 
2016; Garosi et al. 2018; Conoscenti and Rotigliano 2020), 
to assess the landslide susceptibility (e.g., Vorpahl et al. 
2012; Conoscenti et al. 2015; Rotigliano et al. 2019; Mar-
tinello et al. 2020) and to analyze climate change impacts 
on soil erosion (Wilby et al. 1999; Middelkoop et al. 2001; 
Nunes et al. 2008; Bangash et al. 2013).
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In this study, we focus on predicting sediment deposi-
tion rate by using three machine learning techniques that 
were selected because of their ability to model non-linear 
relationships between explanatory and target variables. 
These techniques are: (i) multivariate adaptive regression 
splines (MARS; Friedman 1991), (ii) random forest (RF; 
Breiman 2001), and (iii) support vector machine (SVM; 
Vapnik 1998). MARS, RF and SVM have been applied 
to different fields of geosciences, including detection of 
flood-prone areas (Tehrany et al. 2015; Mojaddadi et al. 
2017) and prediction of landslide (e.g., Pourghasemi et al. 
2013; Jebur et al. 2014; Trigila et al. 2015; Chen et al. 
2017; Rotigliano et al. 2019; Martinello et al. 2020) and 
gully occurrence (e.g., Rahmati et al. 2017; Garosi et al. 
2019; Gayen et al. 2019; Conoscenti and Rotigliano 2020; 
Pourghasemi et al. 2020). In regard to the prediction of 
sediment yield, very few applications of these model-
ling techniques exist in the literature. MARS has been 
employed to model sediment delivery at catchment scale 
in Canada (Sarangi et al. 2005) and Turkey (Yilmaz et al. 
2018). RF was adopted to predict data of suspended sedi-
ment load, measured over a two-year period in a small 
catchment (3.3  ha) located in Panama (Zimmermann 
et al. 2012) and during three months in a medium-sized 
(44,500 ha) catchment of Spain (Francke et al. 2008). 
Çimen (2008) used SVM to estimate daily suspended 
sediment yield of two rivers in the USA whereas Buy-
ukyildiz and Kumcu (2017) applied SVM for the same 
purpose in Turkey. However, none of the studies found in 
the literature have employed MARS, RF and SVM for the 
assessment of the average annual sediment production. 
Indeed, all the papers cited above aimed at predicting 
daily or monthly sediment yield. Moreover, these studies 
employed water discharge as the only predictor, except 
for Zimmermann et al. (2012) who used also day of year 
and antecedent rainfall data, and for Sarangi et al. (2005) 
who included also topographic attributes and parameters 
reflecting channel network and catchment geometry.

MARS, RF and SVM were employed to predict the 
sediment deposition rate measured at 160 dry-stone 
check dams, located within six small catchments of a 
dehesa landscape, in the SW of the Iberian Peninsula. 
The volume of sediment retained during time intervals of 
11–23 years by the check dams was assessed by using a 
high-resolution DEM, produced by applying SfM photo-
grammetry to UAV-acquired imagery (see Alfonso-Tor-
reño et al. 2019 for a detailed description of the proce-
dure). The estimated sediment deposition rate, measured 
in m3 per ha per year, is considered as reflecting the aver-
age annual area-specific sediment yield (SSY) from each 
of the 160 sub-basins drained by the check dams.

Study area

The study was conducted in six catchments, with a total sur-
face of 239 ha, located in a communal farm in the Spanish 
region of Extremadura (Fig. 1a). The catchments belong to an 
extensive wavy erosion surface featured by Ediacaran slates 
and greywackes. The highest parts of the catchments have an 
undulated topography with slope gradients increasing to the 
south. The whole study area shows an average elevation of 
327 m a.s.l. with a mean slope gradient of 19%. The study 
area is composed of six low-order catchments with channels 
draining (ephemeral flows) to the south where they join the 
Almonte River, tributary of the Tagus River (Fig. 1b). Soils in 
the area are very shallow and can be classified as Cambisols 
and Leptosols (Schnabel et al. 2013). Climate is the Medi-
terranean, with a mean annual temperature of 16 ºC and an 
annual average rainfall around 500 mm, with high seasonality 
and high interannual variations. The rainiest seasons are the 
autumn and winter, while the summer is dry. Due to the lack of 
herbaceous vegetation in late summer, the first rainfall events 
during the autumn erode the soil and contribute to the genera-
tion of runoff and sediment yield in the catchments. The area is 
representative of wooded rangelands that extent approximately 
4 million of hectares in the Iberian Peninsula (Fig. 1c). The 
vegetation cover is composed of Mediterranean oak (Quercus 
ilex) and herbaceous plants in the understory. Livestock rear-
ing of goats, cattle, pigs, and horses is the main land use with 
a livestock density of 0.97 LU ha−1 (livestock unit). The farm 
has not been cultivated since 1953. Other activities in the area 
are hunting, beekeeping, and recreational use.

The study area shows evidence of sheet erosion and, in 
some places, gully erosion. To mitigate the consequences of 
soil erosion by water, 269 dry-stone check dams were built 
in different topographic positions (i.e. valley bottom and 
hillslopes) (Fig. 1d). In a previous study, Alfonso-Torreño et al. 
(2019) calculated the sediment deposited behind 160 of these 
check dams. The results showed high spatial variability in the 
sediments deposited, with large volumes of sediment accu-
mulated in the lower areas of the catchment than in the upper 
parts. The average volume of sediment trapped in the check 
dams located in the lower areas was 5.3 m3 with a standard 
deviation of 16.7 m3 and in the upper areas was 0.9 m3 with 
a standard deviation of 2.2 m3. A high spatial variability was 
also observed at catchment-scale. Valley bottom check dams 
retained more sediments than hillslope check dams.
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Materials and methods

Dependent variable

Machine learning models were fed with a database that 
included the sediment deposition rate measured in the dry-
stone check dams as a dependent variable or target and a set 
of environmental variables that were used as explanatory 
variables or predictors (i.e. independent variables).

Alfonso-Torreño et al. (2019) estimated the volume of 
sediment trapped by 160 check dams located in the study 
area, by using a high-resolution DEM (0.2 m pixel size) pro-
duced by means of SfM photogrammetry and aerial images. 
The aerial photographs were acquired using a fixed-wing 
UAV (Sensefly) (Fig. 2a) carrying on board a Sony WX220 

sensor (18 Mpx) that resulted in a Ground Sample Distance 
(GSD) of 4 cm. The UAV was operated autonomously by 
using an external PC and a pre-programmed flight plan 
(Fig. 2b). A set of 1257 images was captured at an approxi-
mate altitude of 60 m on the terrain. A total of 13 GCPs 
were surveyed with a Leica GPS 1200 system (with RTK 
and Post-Processed solutions using GPS + GLONNASS 
satellites) and used to scale and georeference the 3D model 
(Fig. 2c). The photographs and GCPs were used as input 
in the SfM photogrammetry workflow. Pix4Dmapper Pro 
software (v. 3.1.18) was used to process the dataset and to 
produce a point cloud, a high-resolution DEM and an ortho-
photograph (Fig. 2d). The point cloud was projected in the 
ETRS89 UTM-29N coordinate system. The average root-
mean-square error (RMSE) during the SfM processing was 

Fig. 1   a Location of the study 
area in the Iberian Peninsula, c 
study area including the loca-
tion of the six catchments (from 
A to F), the dry-stone check-
dams and the Ground Control 
Points (GCPs) (Alfonso-Torreño 
et al. 2019), c some views of 
the dehesa land-use system 
characterized by undulating 
topography and d an example 
of dry-stone check dam in the 
study area
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0.007 m showing centimeter-level accuracies in the resulting 
cartographic products.

Two DEMs were necessary to estimate the volume of 
trapped sediments using a DEMs of Difference (DoD) 
approach (Wheaton et al. 2010). The first DEM represents 
the current topography and is the SfM-derived DEM. The 
second one represents the initial topography, i.e. the surface 
just before check dam construction. The initial topography 
was obtained digitizing the sediment deposit in each dry-
stone check dam, removing points in the cloud within that 
polygon, and interpolating the surface using the surrounding 
points and the ANUDEM algorithm in ArcMap (topo to ras-
ter tool). To discriminate real topographic change, the root-
mean-square error (RMSE) of the SfM-MVS workflow and 
the interpolation errors associated to the antecedent surface 
were incorporated in the DoD analysis as a minimum level 
of detection. This interpolation error was variable depend-
ing on (1) topographic position of check dams, i.e., valley 
bottom or hillslope and (2) check dam size. In addition, the 
depth of the sediment deposit estimated by this method was 
validated by sampling the depth of deposit at 28 locations 
using an auger. More details about the DoD approach and 
sediment volume estimation may be found in Alfonso-Tor-
reño et al. (2019). The sediment deposition rate (SR) for each 
dry-stone check dam was calculated by using the contribut-
ing drainage area, the volume of sediments retained and the 
age of each check dam. The sediments accumulated in the 

check dams located upstream of a specific check dam were 
also considered. All check dams are located along channels 
and drain a relatively small area (mean 6.3 ha). This restora-
tion measures have performed for 20 years on average and 
we may assume that sediments deposited upstream a specific 
dam would have reached the check dam in the absence of 
the upstream barriers. More details in Alfonso-Torreño et al. 
(2019) and Fig. 3.

Explanatory variables

Numerous factors may influence the sediment dynamics in 
watershed basins. In this study, a set of nine environmental 
variables, which relate to topography, hydrology, and land 
cover, were selected as predictors of sediment deposition 
rate. The explanatory variables were derived from different 
source data, namely: the SfM-derived DEM with 0.2 m pixel 
size (DEM_02) and the SfM-derived orthophotograph with 
a resolution of 0.04 m (ORTHO). Calculation of the predic-
tors was performed for the catchments of each check dam, 
including the area drained by any dams located upstream. 
ArcGIS 10.5 (www.​esri.​com) and SAGA GIS (www.​saga-​
gis.​org) were employed to calculate topographic and hydro-
logic attributes.

The selected explanatory variables are: catchment area 
(CA), catchment slope (SLO), upstream channel slope (UCS) 
and length (UCL), connectivity index (CI), tree frequency 

Fig. 2   Field survey: a UAV 
taking off in the study area, 
b external PC with a pre-pro-
grammed flight plan c registra-
tion of GCPs by RTK survey 
with LoRa corrections and two 
antennas: Base (not shown in 
the picture) and Rover and d 
photogrammetric processing 
of RGB images taken from the 
UAV using Pix4Dmapper Pro 
software

http://www.esri.com
http://www.saga-gis.org
http://www.saga-gis.org
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(TF), canopy cover (TC), bare ground (BG) and animal paths 
density (PAT). Most of the selected predictors are frequently 
used in water erosion studies. Table 1 reports descriptive 

statistics and source data of the predictor variables, calcu-
lated for the entire study area (dataset ALL), as well as for 
each individual catchment (datasets A, B, C, D, E and F).

Fig. 3   a Work flow diagram of 
the method used to estimate the 
sediment deposition rate (SR) 
(i.e. the dependent variable) 
using the volume of sediments 
retained behind check dams 
(through a DEMs of Difference 
approach, see Alfonso-Torreño 
et al. (2019) for more details), 
contributing area and age of the 
check dams, b work flow dia-
gram for the acquisition of a set 
of topographic and environment 
attributes (i.e. the independent 
variables) and c SR in check-
dams using three data mining 
techniques

Table 1   Source data and descriptive statistics (mean and standard deviation) of the independent and independent variables, measured for the 
dams’ drainage area of the entire study area and of the individual catchments

Italic values represent the standard deviation
The number of check dams for each dataset is reported in parenthesis

Variable Source Dataset

ALL (160) A (7) B (43) C (29) D (49) E (21) F (11)

Sediment deposition rate [m3 ha−1 year−1] DEM02 0.52 0.18 0.58 0.46 0.61 0.39 0.51
0.96 0.20 1.57 0.81 0.59 0.35 0.69

Catchment area [ha] DEM02 6.32 16.57 1.33 4.61 10.39 2.41 13.15
10.79 13.55 4.05 11.41 11.80 3.46 16.18

Catchment slope [%] DEM02 16.87 22.64 16.29 17.88 16.84 16.07 14.35
5.59 2.60 5.53 4.96 6.18 5.47 3.94

Upstream channel slope [%] DEM02 15.53 21.01 14.45 17.48 15.10 15.54 13.05
5.51 2.37 3.84 5.83 6.40 5.79 3.82

Upstream channel length [m] DEM02 11.61 26.49 2.31 8.38 19.69 4.48 24.66
19.84 21.19 6.83 20.75 22.45 6.34 30.26

Connectivity index DEM02 -5.82 -4.58 -6.25 -6.30 -5.48 -5.52 -5.66
0.87 1.12 0.86 0.77 0.71 0.58 0.32

Tree frequency [n° of trees per ha] ORTHO 29.29 17.16 15.71 37.27 32.59 44.7 25.02
20.59 8.62 13.43 19.42 15.79 31.88 1.44

Tree canopy cover [%] ORTHO 12.63 11.22 10.29 14.17 11.75 15.91 16.24
5.54 5.00 6.32 6.70 3.32 5.19 0.86

Bare ground [%] ORTHO 13.74 19.50 9.96 10.83 19.08 12.49 11.12
9.68 20.09 7.41 8.77 9.29 7.37 4.54

Animal path density [km ha−1] ORTHO 0.21 0.18 0.09 0.25 0.29 0.24 0.20
0.17 0.09 0.14 0.20 0.14 0.15 0.15
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CA ref lects the area drained by each check dam. 
Drainage area has been largely employed in regression 
equations as the only explanatory variable of sediment 
yield from catchments (Alatorre et al. 2010, and refer-
ences therein). Area-specific sediment production usu-
ally decreases as basin size increases, since with increas-
ing drainage area, average slope steepness decreases 
and more sediment accumulation sites may occur (Van 
Rompaey et al. 2001). SLO is the average slope gradi-
ent of the area upstream of each dam. Slope gradient is 
considered an important predictor of soil erosion as it 
controls flow velocity and thus its erosive power and 
sediment transport capacity. Similarly, UCS and UCL are 
expected to be related to erosivity and transport capacity 
of concentrated flow. The CI reflects the potential of sedi-
ment transfer between two positions within a catchment. 
In this experiment, CI was calculated according to the 
equation proposed by Borselli et al. (2008) and modified 
by Cavalli et al. (2013), who suggested a weighting fac-
tor based on surface roughness (Conoscenti et al. 2018; 
Alfonso-Torreño et al. 2019). TF and TC are calculated 
as the number of trees per hectare and as the percentage 
of catchment occupied by the vertical projection of the 
tree canopy, respectively. Both TF and TC are expected 
to reflect the protective role of trees against soil erosion 
and sediment transport. BG is the percentage of surface 
not covered by vegetation and, thus, directly exposed to 
water erosion. Finally, PAT is calculated as the length of 
pathways created by the livestock transit (km·ha−1).

Modelling of sediment deposition rate

The analysis was performed in three steps. First, The Pear-
son’s correlation coefficient (r) and the variance inflation 
factor (VIF) were calculated. The Pearson correlation 
coefficient was employed to explore bivariate relation-
ships between covariates and sediment deposition rate 
whereas VIF was calculated in order to detect collinear-
ity among the predictor variables. Following the “rule of 
10” (Heckmann et al. 2014; Vargas-Cuervo et al. 2019), 
predictors with VIF > 10 were removed from the analysis. 
Then, after removing collinear predictors, three different 
machine learning methods were trained and tested in the 
entire study area, by using a k-fold cross-validation strat-
egy. Finally, the same models and validation strategy were 
applied individually to the three catchments with the high-
est number of check dams in order to explore differences 
of the predictive performance.

All statistical analysis and calculations were carried out 
in R open source software (R Development Core Team 
2018), by using the packages “corrplot” (Wei and Simko 
2017), “usdm” (Naimi et al. 2014), “caret” (Wing and 

Kuhn 2018), “PerformanceAnalytics” (Peterson and Carl 
2020).

Machine learning models

In this experiment, the following machine learning methods 
were employed in order to compare their ability to predict 
sediment deposition rate: multivariate adaptive regres-
sion splines (MARS; Friedman 1991); random forest (RF; 
Breiman 2001), and support vector machine (SVM; Vapnik 
1998).

MARS is a non-parametric regression technique, which 
is able to establish relationships between both categorical 
and continuous dependent and independent variables. It is 
considered an extension of generalized linear models. How-
ever, differently from linear models, MARS is able to model 
complex non-linear relationships by splitting the range of 
the covariates into regions and fitting to each of them a lin-
ear regression. MARS equations include an intercept and a 
number of terms, which reflect individual linear functions 
or combinations of two or more linear functions (known 
as interaction terms) (Leathwick et al. 2006; Garosi et al. 
2018). In order to avoid overfitting and reduce the complex-
ity of the model, the maximum number of terms and the 
maximum degree of interactions were set equal to 20 and 
2, respectively.

RF is also a non-parametric regression technique able to 
predict both categorical and continuous variables. It oper-
ates by constructing in parallel an ensemble (“forest”) of 
regression trees and providing the average prediction of the 
individual trees. The philosophy basis of RF is that by com-
bining weak learners (i.e. the individual trees), strong learn-
ers can be obtained. Individual trees are trained on samples 
of cases, which are selected randomly with a bootstrapping 
technique. At each node of the trees, the best split is selected 
among the binary splits provided by a small group of inde-
pendent variables, which are selected at random from all 
predictors. The outcome is the average (or weighted aver-
age) of the terminal nodes (Vorpahl et al. 2012). The num-
ber of trees (ntree) and number of independent variables 
(mtry) selected at each node are important parameters for RF 
model training. In our study, ntree was set to 500 whereas 
the RMSE was used to select the optimal model using the 
smallest value of mtry.

SVM is a machine learning technique that can be used 
for both classification and regression tasks. When used in 
regression, SVM is also known as “support vector regres-
sion”. In contrast to linear regression, which aims at mini-
mizing the sum of squared errors, SVM tries to fit the error 
within a certain threshold. In other words, SVR models 
consider an acceptable error and try to identify the best 
hyperplane that fits the data. A kernel function is used to 
transform the data into a higher dimensional feature space 
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where hyperplanes can be applied. Key parameters for SVM 
models are ε (insensitive error constant) and C (regulatory 
factor). The ε parameter delimits the bandwidth where the 
error is considered acceptable, while the C parameter regu-
lates the complexity of the model. In this study, the Radial 
Basis Function was employed as kernel function. Tuning of 
ε and C was performed automatically by R caret package, 
aiming at finding the simplest model with the lowest RMSE 
value.

Calibration and validation of the models

The ability of MARS, RF and SVM models to predict the 
sediment deposition rate at the dry-stone check dams of the 
study area was evaluated by using a k-fold cross-validation 
approach. This operates by randomly splitting the dataset 
into k samples, each containing the same number of obser-
vations, and by using k − 1 combined samples at a time for 
training and the remaining sample for testing. The process 
is repeated k times thus generating k accuracy estimates. In 
our study k was set equal to 5.

The accuracy of the models was assessed by calculating 
the relative root mean square error (RRMSE) and the mean 
absolute error (MAE) of the predicted values of SR at the 
check dams. RRMSE is obtained by normalizing the RMSE, 
which is the square root of the average of squared errors. 
Normalization facilitates the comparison of RMSE calcu-
lated from datasets with different scale and unit of measure. 
MAE is the average absolute difference between predicted 
and observed values.

RRMSE and MAE were calculated as follows:

in which n is the number of check dams, Oi is the 
observed sediment deposition rate (m3 ha−1 year−1) and Pi 
is the predicted sediment deposition rate (m3 ha−1 year−1).

Cross-validation of MARS, RF and SVM models was 
performed using the entire study area (dataset ALL), as well 
as the individual catchments B, C and D (datasets B, C and 
D), which contains the largest number of check dams (43, 
29 and 49, respectively). Moreover, the same validation 
approach was applied separately to the check dams located 
on hillslopes (dataset HILL) and on valley bottom (dataset 
VALLEY).

To evaluate the robustness of the models, the k-fold cross-
validation (with k = 5) was repeated ten times, thus obtain-
ing 50 RRMSE values and 50 MAE values for each model 
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on each of the datasets. Variability of the predictive skill 
was assessed by means of box plots and by calculating the 
mean and the standard deviation of both the metrics. The 
significance of the difference between groups of RRMSE 
and MAE values was explored by performing the Wilcoxon 
signed-rank test with p < 0.01.

To further evaluate the ability of MARS, RF, and SVM 
to predict the sediment deposition rate, a “final model” 
was identified by the “caret” R package for each of these 
techniques. This was done by selecting the models with the 
smallest RMSE, choosing from the ten repetitions of the five-
fold cross-validation, performed on the six analyzed datasets 
(i.e. ALL, HILL, VALLEY, B, C and D). The final models 
were employed to predict the 160 SR values of the six data-
sets; R2 was used to evaluate their performance.

Results

Correlation analysis

The correlation plot of Fig. 4 reports the values of Pear-
son’s correlation coefficient (r), with p-value < 0.01, cal-
culated among variables. The degree and sign of correla-
tion are indicated by circles of different size and color. The 
sediment deposition rate is moderately correlated only to CA 
(r = 0.49), UCL (r = 0.48) and CI (r = 0.45). As regards col-
linearity among predictors, the r coefficient reveals a perfect 
correlation of CA and UCL (r = 1) and a very high level of 
correlation between SLO and UCS (r = 0.88). A high degree 
of correlation (r > 0.6) exists between CI and CA (r = 0.64) 
and UCL (r = 0.62).

The values of VIF, which are reported in Table 2 indi-
cated CA and UCL as strongly correlated (VIF ≫ 10). As 
the correlation coefficient (r) calculated between sediment 
deposition rate and CA is slightly higher than that calculated 
with UCL, we decided to discard the latter from the analysis 
and keep CA. In this way, VIF values were all below the 
threshold of 10 (Table 2) and thus only UCL was omitted 
for modelling the sediment deposition rate, although r values 
indicated a moderate to high level of correlation between 
some of the remaining predictors.

Cross‑validation on the datasets ALL, HILL 
and VALLEY

The results of the five-fold cross-validation performed ten 
times on the datasets ALL, HILL and VALLEY are revealed 
by the three top box plots of Fig. 5, which show the variabil-
ity of the metrics RRMSE and MAE calculated for the mod-
els MARS, RF and SVM. The box plots display the first and 
third quartiles, the median and the highest and the lowest 
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data falling within the distance of 1.5 times the inter-quartile 
range (IQR) from the third and first quartiles, respectively. 
The observed points outside this range are plotted as outli-
ers. Moreover, the mean and standard deviation values of the 
same data are reported in Table 3.

Mean and median values of both RRMSE and MAE indi-
cate that MARS performs worse than RF and SVM on the 
datasets ALL and VALLEY, whereas a smaller difference 
of predictive skill occurs on the dataset HILL. Moreover, 
MARS data are largely dispersed and skewed to the higher 

values of RRMSE and MAE, especially on the datasets ALL 
and VALLEY. On the other hand, RF and SVM models 
exhibit a similar performance on the three datasets. Only 
MAE values calculated on the dataset HILL indicate a signif-
icantly better performance of SVM. However, performance 
metrics calculated for SVM appear slightly more dispersed 
and skewed towards the higher values on the datasets ALL 
and VALLEY.

As regards the predictive skill observed on the datasets 
ALL, HILL and VALLEY, any significant difference of 
RRMSE and MAE values were found for the MARS models. 
On the other hand, RF enables to predict the sediment depo-
sition rate of the VALLEY check dams with significantly 
better accuracy than that achieved on the datasets ALL and 
HILL. Moreover, RF reaches significantly lower RRMSE 
and MAE values on the dataset ALL than on the dataset 
HILL. Accordingly, the selected significance test (i.e. Wil-
coxon signed-rank test) revealed that the accuracy of the 
SVM models on the dataset VALLEY is better than that 
achieved on the dataset ALL, which in turn is better than that 
measured for the hillslope check dams. Only the difference 
of RRMSE values observed on the dataset ALL and VAL-
LEY are slightly above the selected significance threshold 
(p = 0.0136).

Fig. 4   Plot showing significant 
(p-value < 0.01) Pearson’s cor-
relation coefficient (r) values 
between dependent (sediment 
deposition rate -SR-) and 
independent variables (catch-
ment area -CA-, catchment 
slope -SLO-, upstream channel 
slope -UCS- and length -UCL-, 
connectivity index -CI-, tree 
frequency -TF-, canopy cover 
-TC-, bare ground -BG- and 
animal paths density -PAT-)

Table 2   Variance inflation factor (VIF) calculated for all the predictor 
variables (VIF1) and omitting UCL (VIF2)

Variable VIF1 VIF2

Catchment area (CA) 279 2.15
Catchment slope (SLO) 5.42 5.41
Upstream channel slope (UCS) 5.82 5.64
Upstream channel length (UCL) 273 –
Connectivity index (CI) 2.46 2.30
Tree frequency (TF) 1.84 1.76
Tree canopy cover (TC) 1.40 1.40
Bare ground (BG) 1.48 1.47
Animal path density (PAT) 1.48 1.46
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Fig. 5   Box plots showing the variability of relative root mean squared error (RRMSE) and mean absolute error (MAE) calculated for ten repeti-
tions of fivefold cross-validation performed on the datasets ALL, HILL, VALLEY, B, C and D

Table 3   Mean and standard 
deviation (SD) of the 50 
RRMSE and MAE values 
obtained by performing ten 
times a fivefold cross-validation 
on the datasets ALL, HILL and 
VALLEY

Dataset ALL HILL VALLEY

Metric RRMSE MAE RRMSE MAE RRMSE MAE

Model Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

MARS 1.82 1.18 0.46 0.14 1.36 0.46 0.43 0.12 1.90 1.58 0.49 0.24
RF 1.24 0.98 0.34 0.11 1.30 0.30 0.42 0.07 1.16 1.13 0.32 0.16
SVM 1.28 1.03 0.33 0.12 1.25 0.35 0.35 0.08 1.20 1.23 0.30 0.18
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Figure 6 shows the scatter plots of the SR values observed 
and predicted on the datasets ALL, HILL and VALLEY by 
using the final MARS, RF, and SVM models. The linear 
regression lines and the R2 values are reported on the graphs 
of Fig. 6. These plots confirm that the models exhibit the 
best predictive performance on the dataset VALLEY and 
that they are able to predict SR of the dataset ALL with 
better accuracy than the sediment deposition rate of check 
dams located on hillslopes. RF final models achieve the 

best performance on the three datasets, whereas, surpris-
ingly, SVM final models show lower accuracy than MARS 
final models, with the exception of the dataset HILL, where 
MARS generates an intercept-only model with R2 = 0.

Finally, an analysis of the predictor importance was 
performed using the final RF models, which exhibited the 
best fitting on the datasets ALL, HILL, and VALLEY. The 
three top bar plots of Fig. 7 reveal the importance of the 
predictors, which was estimated on these three datasets by 

Fig. 6   Scatter plots of the sediment deposition rate (SR) values observed and predicted on the datasets ALL, HILL, and VALLEY, by using the 
final MARS, RF, and SVM models
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means of the index IncNodePurity (also known as Mean 
Decrease Gini). This index measures the quality (purity) of 
a split for each node (predictor) of a tree by using the Gini 
Index. It is measured separately for each tree of the forest 
and then averaged over all the trees; higher values of the 
index correspond to the greater importance of the variable 
(Kuhn et al. 2008). The ranking of variable importance is 
similar for the datasets ALL and VALLEY, where CI and 
CA are the highest-ranked predictors; the remaining vari-
ables reach substantially lower importance than CI and CA 
and are ranked similarly. On the other hand, the ranking 
of the variable importance was greatly different on the 

dataset HILL, where the percentage of BG exhibits the 
highest IncNodePurity value while TF and PAT are less 
important than other predictors.

Cross‑validation on the individual catchments B, C 
and D

The variability of the 50 RRMSE and MAE values calculated 
by executing ten times the fivefold cross-validation on the 
individual catchments B, C and D is depicted in the bottom 
box plots of Fig. 5 Table 4 reports the mean and standard 
deviation calculated for the same groups of data.
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Fig. 7   Importance of the predictors evaluated for RF models on the datasets ALL, HILL, VALLEY, B, C and D, by using the parameter Inc-
NodePurity

Table 4   Mean and standard 
deviation (SD) of the 50 
RRMSE and MAE values 
obtained by performing ten 
times a fivefold cross-validation 
on the individual catchments B, 
C and D

Dataset B C D

Metric RRMSE MAE RRMSE MAE RRMSE MAE

Model Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

MARS 2.02 1.97 0.66 0.49 1.36 0.67 0.44 0.18 0.54 0.30 0.21 0.10
RF 1.95 1.92 0.62 0.43 1.21 0.67 0.38 0.18 0.30 0.13 0.12 0.05
SVM 1.72 2.02 0.51 0.44 1.47 0.79 0.44 0.19 0.31 0.09 0.14 0.04
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MARS, RF and SVM clearly achieve the best predictive 
ability on the catchment D, where values of RRMSE and 
MAE are largely below those calculated on the catchments 
B and C. Accordingly, data of both the metrics are mark-
edly less dispersed on the dataset D than on the datasets B 
and C. Mean, median and dispersion of RRMSE and MAE 
values measured on the catchment D are also significantly 
below those calculated on the datasets ALL, HILL and VAL-
LEY. Figure 6 shows a similar predictive performance of 
MARS, RF and SVM models on the catchments B and C. 
Accordingly, the Wilcoxon signed-rank test reveals only two 
significant differences of RRMSE (SVM models) and MAE 
(RF models). However, mean and standard deviation values 
of RRMSE and MAE (Table 4) measured on catchment C are 
largely below those calculated on catchment B, where data 
are more dispersed and a number of outliers occur (Fig. 5).

According to cross-validation on catchment D, no sig-
nificant difference of accuracy between RF and SVM is 
observed, whereas both these techniques perform largely 
better than MARS. The three modelling techniques achieve 
very similar performance on catchment C whereas SVM 
exhibits the best ability to predict the sediment deposition 
rate measured on the check dams of the catchment B.

The final MARS, RF and SVM models were employed 
to predict the SR values plotted in Fig. 8 versus the rates of 
sediment deposition observed in the catchments B, C and D. 
As also revealed by Fig. 5 and Table 4, SR values measured 
on the check dams of the catchment D are predicted with 
higher accuracy than that those observed on the catchments 
B and C. RF final models exhibit the best performance on 
the three catchments, achieving very high R2 values. Fig-
ure 8 also reveals a better ability of MARS final models to fit 
the training data if compared to that demonstrated by SVM.

Figure 7 shows the ranking of variable importance of the 
final RF models trained on the catchments B, C and D. CI 
and CA are clearly the most important predictors, with CI 
achieving the highest-ranking position on the catchments 
B and C, whereas CA is the highest-ranked variable on the 
catchment D.

Discussion

The Pearson’s correlation coefficient (r) revealed a mod-
erate correlation between the measured SR and CA, UCL 
and CI, whereas no significant correlation does exist with 
the other predictors. A relationship between SR and CA was 
expected, as well as that with UCL, which strongly depends 
on CA, as it was calculated on a drainage network auto-
matically derived by using this attribute. Drainage area is 
indeed largely recognized in the literature as one of the most 
important explanatory variable of area-specific sediment 
yield (e.g., de Vente and Poesen 2005; Grauso et al. 2008; 

Alatorre et al. 2010; Bachiller et al. 2019), although this 
relationship is usually negative whereas our data reveal a 
positive correlation. A negative relationship is explained in 
the literature considering that erosion mainly occurs on the 
steepest slopes of a catchment and that average catchment 
steepness decreases with increasing CA (Boyce 1975; Van 
Rompaey et al. 2001; Verstraeten and Poesen 2001; Delmas 
et al. 2009). However, the check dams show small drainage 
areas (average of 6.3 ha) with relatively homogeneous steep-
slopes. According to literature (Boyce 1975; Van Rompaey 
et al. 2001; Verstraeten and Poesen 2001; Delmas et al. 2009; 
Nadal-Romero et al. 2011), deposition of sediments in small 
catchments is less probable than in large catchments, where 
slope commonly decreases and intermediate sinks are more 
frequent. In small catchments, an increase in the specific 
sediment yield may be explained by active erosion processes 
and high connectivity typical of first or second-order catch-
ments. Under these circumstances, the occurrence of gullies 
is frequent in the SW of the Iberian Peninsula and evidences 
a threshold phenomenon that requires a minimum discharge 
(or drainage area) and slope gradient Gómez-Gutiérrez et al. 
(2009a).

As sediment yield is related to the degree of connectivity 
between sediment sources and catchment outlet, the posi-
tive relationship of SR and CI was expected and confirms 
the reliability of the employed CI and that of the procedure 
followed to calculate the volume of sediments trapped by the 
check dams in the study area. On the other hand, the absence 
of a significant linear relationship between SR and the other 
selected predictors may indicate that these relationships are 
not linear and thus, if they exist, could be detected by using 
more complex modelling approaches.

The cross-validation performed on the datasets ALL, 
HILL and VALLEY revealed that RF and SVM are able to 
predict the sediment deposition rate with substantially better 
and more stable accuracy than MARS models. On the other 
hand, a very small difference of performance between RF 
and SVM models was detected. The same results were found 
by applying the cross-validation of MARS, RF and SVM 
to catchment D whereas the three modelling techniques 
achieved approximately the same accuracy in predicting the 
SR measured at the check dams of the catchments B and C.

The difference in predictive performance of the 
employed modelling techniques is hard to explain. A possi-
ble reason may be that, compared to MARS, RF and SVM 
are able to detect more complex relationships between tar-
get variables and predictors. In the literature, we did not 
find any study comparing the ability of these modelling 
techniques in predicting sediment yield. The only compari-
son among the three models in the field of erosion that we 
found was carried out by Gayen et al. (2019), in a study 
aiming to predict gully occurrence in an Indian catchment, 
where RF achieved the best accuracy, followed by MARS 
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and SVM. In similar analyses, Arabameri et al. (2018) 
measured a slightly better performance of RF compared 
to MARS, whereas Garosi et al. (2019) and Pourghasemi 
et al. (2020) found that RF achieves a slightly better per-
formance than SVM. In a study applying machine learning 
algorithms to model catchment-scale erosion pin measure-
ment, Nguyen et al. (2020) also estimated a better accu-
racy of RF with respect to SVM models. These erosion 
studies agree that RF is able to achieve the best predictive 

performance. This does not contrast with the results of our 
experiment. Indeed, if cross-validation revealed a similar 
predictive ability of RF and SVM, the fit to the data of the 
final models is substantially different, with RF achieving 
the highest accuracy on all the datasets (Figs. 4 and 7).

The results of the cross-validation revealed that RF and 
SVM achieved the best accuracy in predicting the sediment 
deposition rate measured on the valley bottoms (dataset 
VALLEY), whereas the worst performance was observed 

Fig. 8   Scatter plots of the sediment deposition rate (SR) values observed and predicted on the catchments B, C and D, by using the final MARS, 
RF and SVM models
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on the dataset HILL. The performance of MARS on the 
three datasets is instead not significantly different. The final 
MARS, RF and SVM models also show the best fit to the 
VALLEY dataset. These results agree with those found by 
validating the models on the individual catchments, which 
revealed that RF, SVM, and MARS, obtained the best accu-
racy on the dataset D. The latter is indeed mainly made of 
dry-stone check dams located on valley bottoms (45 out of 
49), whereas catchments B and C include a lower percent-
age of VALLEY check dams (43% and 65%, respectively). 
The poorer ability of the models to predict the sediment 
deposition rate measured at the hillslope check dams could 
be explained considering that dams located on hillslopes 
retained the sediments with less efficiency than those located 
on valley bottoms. The latter are indeed characterized by 
larger walls than those forming the check dams located on 
hillslopes (Alfonso-Torreño et al. 2019).

As the RF final models achieved the best fit to all the 
datasets, they were employed to assess the relative impor-
tance of the independent variables. The IncNodePurity index 
revealed that CI and CA are the most important predictors 
on the datasets ALL and VALLEY, as well on the analyzed 
individual catchments, with CI achieving the highest-rank-
ing position except for the catchment D, where CA is the 
most important predictor. On the other hand, the variables 
are ranked very differently on the dataset HILL, where 
the percentage of BG reaches the best-ranking position. 
However, in light of the poorer performance of the models 
observed on the dataset HILL with respect to the other ones, 
we consider this ranking less significant than those observed 
on the other datasets. Overall, the ranking of the variables 
importance confirms the results of the correlation analysis, 
which revealed that SR has a significant linear correlation 
only with CI and CA. The other variables are not linearly 
correlated with SR and show low importance also for the 
more complex models generated by MARS, RF, and SVM 
algorithms.

Measuring the volume of sediments retained by check 
dams placed at various locations along a drainage network 
allows the estimation of SR from the upstream portions of 
the catchment. As shown in this study, these data can be used 
to calibrate and validate machine learning algorithms which 
are able to provide reliable predictions of SR by using as pre-
dictors a set of environmental variables which can be derived 
from DEMs and remotely sensed images. This approach may 
help to predict the spatial variability of soil erosion, thus 
providing useful information to design effective erosion 
control measures in areas where sedimentological data are 
not available.

However, it is worth noting that the machine learning 
algorithms used in this study are strongly influenced by the 
quality and reliability of the input data. The results of this 
study indeed reveal that the models trained using the data 

measured on the valley bottom dams clearly achieve higher 
accuracy than those calibrated with the data estimated on 
the hillslopes. The latter in fact are probably less reliable 
because, as mentioned above, they were measured using 
smaller walls than those of the valley bottoms. Moreover, 
assuming that the amount of sediment accumulated on each 
DEM_02 pixel located upstream of the check-dams is esti-
mated with the same error across the study area, the error of 
volume estimation is expected to be higher in percentage for 
HILL dams compared to VALLEY dams, where the volume 
of retained sediments is, on average, an order of magnitude 
greater than that assessed for the hillslope dams (Alfonso-
Torreño et al. 2019). Finally, it is worth highlighting that 
exporting these models to other areas with different envi-
ronmental conditions is certainly complicated and requires 
further investigation as also detected by Gómez-Gutiérrez 
et al. (2009b), as highlighted by some attempts to export the 
models from one basin to another, which were performed in 
the framework of this study.

Concluding remarks

In this study, the ability of three machine learning techniques 
(i.e. MARS, RF, and SVM) to predict the SR at the outlets of 
160 sub-basins (mean area = 6.3 ha) of six small catchments, 
was evaluated and compared. A fivefolds cross-validation 
was used to assess the performance of the models on the 
entire study area (dataset ALL), on the hillslope (dataset 
HILL) and valley bottom (dataset VALLEY) check dams, 
as well as on three catchments (B, C and D) with the high-
est number of check dams. SR was calculated by using the 
volume of sediments retained by the check dams, their age 
and drained area. The following conclusions can be drawn 
from the results of this experiment.

RF and SVM are able to predict SR with substantially 
higher and more stable accuracy than MARS models. 
This holds for the datasets ALL, VALLEY and for the 
catchment D. A smaller difference of accuracy was 
instead observed for the dataset HILL, whereas no sig-
nificant difference was revealed by cross-validating the 
models on catchments B and C.
RF and SVM achieved approximately the same perfor-
mance on all the datasets. However, when validating the 
final models on all the check dams of the datasets, RF 
exhibited a substantially better predictive performance 
compared to SVM.
RF and SVM predicted SR of the valley bottom check 
dams with higher accuracy than that estimated for the 
hillslope sub-basins.
The performance of the three modelling techniques 
observed on the catchment D was clearly better than 
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that achieved on the catchments B and C. This can be 
explained by considering that most (92%) of the check 
dams of catchment D are located on valley bottoms, 
where RF, SVM, and to a minor extent MARS, exhib-
ited a better ability to predict SR with respect to hillslope 
check dams.

The sediment deposition rate measured at the 160 check 
dams provides valuable information to understand the mag-
nitude and the spatial variability of the soil erosion and sedi-
mentation rates and processes in dehesa landscapes. Efficient 
modelling of deposition rates at micro-basin scale may assist 
in the suitable location of check dams and, thus, in reduc-
ing the effects on flow and deposition areas. The modelling 
approach described in this paper enables to achieve, with-
out any hydrological measures (i.e. water discharge), a reli-
able prediction of mean annual area-specific sediment yield 
by using environmental data that can be easily extracted 
from high-resolution DEMs and aerial imagery, which are 
increasingly available for large sectors of the world.
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