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Abstract
Groundwater quality management is based on understanding the spatial distribution of parameters in when assessing the 
suitability of groundwater for use. In this study, different interpolation methods were evaluated in two shallow aquifers 
according to their hydrogeological characteristics. After initial data processing, 24 deterministic and geostatistical interpo-
lation methods were used with linear and nonlinear relationships. These included: the inverse distance weighted method; 
the ordinary kriging; the lognormal ordinary kriging (Log_OK); the universal kriging; the disjunctive kriging; the empiri-
cal Bayesian kriging; the simple kriging; natural neighbor; the trend surface; and the Spline methods were compared. The 
spatial distribution of the total dissolved solids parameter was assessed in the Lenjanat and Babol–Amol shallow aquifers 
with different hydrogeological characteristics. The seven error criteria were used for verification in cross-validation of all 
sampling wells. The nonlinear Log_OK method produced better results in the Lenjanat and Babol–Amol aquifers with 57 
and 71% of error criteria, respectively. Consequently, the non-linear Log_OK method had promising performance in both 
shallow aquifers with different hydrogeological characteristics.

Keywords Groundwater contamination · TDS parameter · Shallow aquifer · Linear–nonlinear spatial interpolation · Aquifer 
characteristics

Introduction

One of the most vital management tools in water resources 
field is the ability to determine and track the spatial and tem-
poral variations trends of groundwater quality parameters 
with a high level of confidence. To do this, it is essential that 
the spatial and temporal distribution of physical and chemi-
cal aquifer characteristics are well understood in an aquifer 
for contamination risk assessment, an issue which does not 
seem possible without consideration of the spatial relation-
ships of data points (Lee et al. 2007). To this end, geostatisti-
cal techniques can be used for this purpose which take the 
spatial relationships of the distances of the points and also 

the orientation and values of the variables into considera-
tion. These techniques offer advantages such: an increase in 
the measurement accuracy of key parameters; and an ability 
to reduce the sampling density and frequency, which can 
decrease the cost of sampling programs (Bryan 1988). The 
geostatistical approach has provided useful techniques for 
investigating the spatial distribution of data such as ground-
water contamination (Arslan 2012; Nas and Berktay 2010). 
By identifying spatial patterns and undertaking interpola-
tion in locations that lack sufficient information, interpola-
tion analysis can estimate the input parameters of random 
points in network grid cells using the observed data and, 
therefore, play an important role in sustainable groundwater 
management (Arslan 2012; Shan et al. 2013). A paucity of 
groundwater data results in significant uncertainty (Liu et al. 
2004). Geostatistical techniques have been used in various 
scientific studies in fields such as groundwater assessment, 
geochemistry, water resources assessment and soil science 
as a powerful technique to determine the level of uncertainty 
that is associated with data collection and assessment (Pyrcz 
and Deutsch 2014; Chilès and Delfiner 2012; Arslan 2012).
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The interpolation methods in geographic information sys-
tem (GIS) are powerful tools for data interpolation and the 
prediction of values (Gong et al. 2014). Linear geostatisti-
cal methods such as conventional kriging methods are not 
appropriate due to the smoothing effect which resulted from 
equation exponents and they also require the calculation of a 
variogram. Their use, therefore, is often not practical (Chilès 
and Delfiner 2012; Costa 2003). Nonlinear geostatistical 
methods, which do not contain the weaknesses of requiring 
equation exponents and smoothing effects are recommended 
for the estimation of renewable resources and mapping their 
spatial characteristics (Emery 2008; Mare’chal 1984).

For example, Martinez-Cob (1996) utilized the three geo-
statistical interpolation methods of ordinary kriging (OK), 
co-kriging (Co-K) and modified residual kriging (MRK) for 
the interpolation of the long-term average of annual refer-
ence evapotranspiration and precipitation and found that 
none of these methods outperform others. Khattak et al. 
(2014) utilized ordinary and Bayesian kriging (BK) methods 
to determine the salinity levels of shallow wells in Pakistan 
and concluded that the second method shows more accu-
racy. Yao et al. (2014) studied eight interpolation methods 
to identify the spatial distribution of groundwater levels and 
showed that the kriging method yielded the best results. 
Afzal et al. (2015) used ordinary multi-Gaussian kriging 
(OMK) and simple multi-Gaussian kriging (SMK) for mod-
eling the spatial distribution of iron based on subsurface 
data in the iron ore deposit. The results indicated that the 
SMK method was more accurate in moderately and weakly 
iron mineralized zones, and that the OMK method was more 
accurate in enriched, highly iron mineralized zones.

Arslan and Turan (2015) compared the interpolation 
methods of inverse distance weighting (IDW), radial basis 
function (RBF) and OK to estimate the spatial distribution 
of17 heavy metals of groundwater. They found that all of 
these methods were suitable for estimating the distribution 
of one or several specific metals. Mirzaei and Sakizadeh 
(2015) reported the use of IDW, OK, and empirical Bayes-
ian kriging (EBK) interpolation methods in the estimation 
of 17 groundwater contaminant variables. The results of 
this investigation indicated that EBK possessed a slightly 
higher accuracy compared with the two other methods. 
Plouffe et al. (2015) used IDW, thin plate spline (TPS), 
OK, and BK methods for the measurement of monthly 
rainfall in the low and heavy rain months for a 2-year 
period for minimum and maximum annual rainfall values. 
They found that BK and TPS methods showed a higher 
accuracy in the estimation of minimum and maximum 
rainfall values, respectively. Babu (2016) employed the 
trend surface (TS), IDW, OK, universal kriging (UK), and 
Spline methods to assess the spatial and temporal patterns 
of rainfall. The results of this investigation showed that 
the TS method demonstrated more accuracy due to the 

minimum error between the observed and estimated rain-
fall. However, the OK and UK methods were identified 
as being the best methods, despite the higher root mean 
square error (RMSE) values, since they produced a smooth 
and more realistic interpolated surface. Gol et al. (2017) 
compared the block kriging, Co-K, and IDW methods with 
the power of 1, 2, and 4 to estimate the spatial distribution 
of soil carbon and demonstrated that the Co-K method 
yielded better results. To estimate electromagnetic levels, 
Rufo et al. (2018) utilized the spline, IDW, and OK meth-
ods after optimizing the characteristic parameters of each 
method. They reported a higher accuracy using the IDW 
method. Njeban (2018) investigated the use of the RBF, 
simple kriging (SK), UK, OK, and IDW methods to meas-
ure the spatial distribution of groundwater levels and to 
produce groundwater level and prediction standard error 
maps, and found that the UK methods was the method that 
produced the best results.

However, to date, no study has provided a precise evalu-
ation of how interpolation methods are affected by the 
characteristics of aquifers that are under investigation. 
Consequently, this study was undertaken to compare linear 
and nonlinear interpolation methods to provide a cohesive 
instruction and guideline for the achievement of the most 
accurate method based on aquifer type and its characteris-
tics. In this study, the total dissolved solids (TDS) param-
eter, which is the most widely used parameters for assessing 
groundwater quality, was measured in two shallow aquifers 
with different hydrogeological characteristics which are 
located in two important geographical regions in Iran. The 
aquifers that were assessed using interpolation techniques 
were the shallow aquifer that underlies the Lenjanat plain 
of Isfahan, and the shallow aquifer beneath the Babol–Amol 
plain of Mazandaran area. The study was undertaken using a 
combination of 24 different interpolation methods including 
the inverse distance weighted (IDW), OK, lognormal ordi-
nary kriging (Log_OK), universal kriging (UK), disjunctive 
kriging (DK), EBK, simple kriging (SK), natural neighbor 
(NN), trend surface (TS) and Spline interpolation methods 
with seven error parameters in cross-validation of all sam-
pling wells. In the end, the best interpolation method was 
introduced based on the aquifer characteristics.

Methodology and materials

Study area

In this research, two shallow aquifers have been studied: one 
is located in the center of Iran and another one located in the 
north of Iran near the Caspian Sea shore. A location map of 
the study areas is illustrated in Fig. 1.
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Lenjanat aquifer

Area description This aquifer, has an area of 1189  km2 and 
is located between longitudes 51° 2′ to 51° 47′ and latitudes 

31° 53′ to 32° 31′, in the southwestern part of Isfahan prov-
ince in the center of Iran. The average annual precipita-
tion and temperatures in the area are equal to 209 mm and 
12.46 °C, respectively.

Fig. 1  Location of the study area with spatial distribution of sampling wells: a Lenjanat b Babol–Amol
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One of the most important rivers in Iran, the Zayandehrud 
River, in an easterly direction through the plain and has an 
average discharge rate of 42  m3/s. Furthermore, the Salt 
River is located in the southern half of the region with an 
average discharge of 12.2 million cubic meters (MCM) per 
year that is used for agriculture.

Based on groundwater potentiometric head contours and 
the topography of the area, the groundwater discharges into 
the Zayandehrud River in a 26 km reach from the entrance to 
the Lenjanat aquifer. On the other hand, this river recharges 
the aquifer in the remaining 17 km due to the high rate of 
groundwater withdrawal in the area.

Two of the most important industrial facilities in the 
country are located in this area. These are Isfahan and 
Mobarekeh Steel Co. which has 28,000 employers). The 
main and traditional activity of the population is agriculture 
and consequently 400,000 ha of the study area is used for the 
irrigated cultivation of wheat, barley and rice.

The water demand of the plain is supplied by groundwater 
abstraction from the underlying aquifer, from rivers, from 
karst springs, and from Qanats (sloping underground chan-
nels in an aquifer).

The Lenjanat aquifer is the most significant water source 
as groundwater pumped from this aquifer supplies 70% of 
the water demand for the industrial, agricultural and domes-
tic sectors in the study area. A map of the study area is 
illustrated in Fig. 1a.

Hydrogeological characteristics The Lenjanat aquifer con-
sists of alluvial sediments and is unconfined. The main 
source of its recharge is precipitation. The bedrock of the 
Lenjanat aquifer is Jurassic shale and, in some areas, Creta-
ceous limestone. The deepest alluvial layers that are depos-
ited at the top of the bedrock are fine clay-marl sediments, 

which have a higher percentage of salt than other sediments. 
This layer is highly impermeable due to its degree of com-
paction.

Evaporite minerals have developed in the form of gyp-
sum and salt layers and crystals within these sediments. 
The percentage of salt and clay in the sediments increases 
in the lower layers. The thickness of young alluvial sedi-
ments gradually increases at the intersection of flood 
channels towards Zayandehrud. In the middle areas of the 
plain, the thickness of sediments reaches more than 150 m. 
Based on geophysical studies, the average saturated thick-
ness of the aquifer is about 50 m.

Despite the anisotropy of alluvial sediments beneath 
the plain, impermeable horizons are not observed among 
discontinuous sediments and subsurface information indi-
cates the existence of an unconfined aquifer in the Len-
janat plain. The geological map of this area is shown in 
Fig. 2a.

The transmissivity of aquifer varies from 600 to 2000  m2/
day and average specific yield is 2%. The spatial variation of 
transmissivity is illustrated in Fig. 3a.

The depth of groundwater level varies from 2 m near the 
Zayandehrud River to about 50 m in the center of the plain. 
The hydraulic gradient varies between 3 and 21 m/1000 m. 
The groundwater level map and streamlines are shown in 
Fig. 4a.

In this study area, the aquifer output from the pump-
ing wells, spring, and Qanat for industrial, agricultural 
and domestic water demands are 132, 1.4, and 57 MCM, 
respectively. A 6 MCM negative groundwater budget was 
calculated in this aquifer for the study year.

Based on geochemical evidence, the variation of EC 
depends on partial dissolution of evaporite minerals in the 
aquifer sediments.

Fig. 2  Geology maps of: a Lenjanat aquifer b Babol–Amol aquifer
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Due to the presence of calcareous formations in sedi-
ments that enclose the plain, groundwater in the aquifer is 
dominantly a calcium bicarbonate composition type.

The dissolution of halite in aquifer sediments leads to 
the evolution of the anionic composition of groundwater 
along flowpaths, with a progressive change from bicarbonate 
dominance to sulfate and then to chloride dominance with 
the formation of Cl–Na facies groundwater. The release of 
sodium ions into groundwater due to the dissolution of halite 
and the contact of groundwater with alluvial marl sediments 
causes Na absorption and the release of Ca into groundwa-
ter and the formation of Cl–Ca facies in the middle of the 
plain. Recent geochemical changes in this part of the aquifer 
have caused the groundwater electrical conductivity (EC) 
to increase by more than 11,000 µmoh/cm.in a few points.

The EC of groundwater in this area varies from 700 to 
8500 µmoh/cm. It usually decreases during spring rainfalls. 

The total dissolved solids (TDS) data were calculated from 
EC measurements using the following equation (Rhoades 
et al. 1999):

The TDS level map (ppm) including main rivers of aqui-
fer is shown in Fig. 5a.

The Babol–Amol aquifer

Area description This aquifer has an area of 1445  km2 and 
lies between longitudes 52°11′ to 52° 52′ and latitudes f 36° 
18′ to 36° 44′ It is located in a coastal region (Caspian Sea 
Coast) of the Mazandaran province in the north of Iran. The 
average annual rainfall and temperatures of the region are 
870 mm and 17.9 °C, respectively.

(1)TDS(ppm) = 0.64 × EC(μmoh∕cm),

Fig. 3  Transmissivity spatial distribution maps of: a Lenjanat aquifer b Babol–Amol aquifer

Fig. 4  Groundwater-level maps and streamlines of: a Lenjanat aquifer b Babol–Amol aquifer
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Three main rivers, the Babol, Haraz, and Talar rivers, 
flow from the south to the north of the plain with average 
discharge rates of 493, 940, and 311 MCM/year, respec-
tively. The main sources of these rivers, are snowmelt 
and precipitation. After the irrigation of a large area of 
agricultural land, these rivers enter the Caspian Sea. The 
main and traditional activity of the local people is agri-
culture and horticulture with a 101,000 ha irrigated area 
that is cultivated for rice and oranges. Both groundwater 
and water from the rivers are used as sources of irrigation 
water. Rivers in the area are both sources of groundwater 
recharge and receive groundwater discharge.

The Babol–Amol aquifer plays an important role in this 
area as the supplier of 63% water demand in the agricul-
tural–horticulture and domestic sectors. The general map 
of the study area is illustrated in Fig. 1b.

Hydrogeological characteristics The Babol–Amol aquifer 
is alluvial and unconfined. The main source of its recharge 
is precipitation and leakage through riverbeds. The bed-
rock of this aquifer is clay.

The alluvial fan deposits are usually coarse-grained 
and include rubble, sand, which are alternated with fine-
grained sediments such as clays and silts. The granulation 
and material of discontinuous sediments in lateral expan-
sion and depth are very different in this plain. The west-
ern regions of the Babol–Amol aquifer are affected by the 
Haraz River and have created a deep basin with a large 
thickness of alluvial sediments, which has been extended 
to the Caspian Sea. The sediment-resistant zones in the 
central and eastern part of the area have been formed under 
the influence of Sajadrud alluvial fans and the Babol and 
Talar Rivers. This basin has a limited expansion compared 
to the Haraz sedimentary basin. The geological map of the 
area is shown in Fig. 2b.

According to the results of pumping tests, the transmis-
sivity of the Babol–Amol aquifer varies from 146 to 1512 
 m2/day and the average specific yield is 6%. The western part 
of the plain has a higher transmissivity compared to the east-
ern part due to the expansion of alluvial of the Haraz River. 
The spatial variation of the transmissivity of the aquifer in 
the area is shown in Fig. 3b.

The depth of the groundwater level varies from 0.5 to 
37 m and the hydraulic gradient variation in this aquifer 
is between 2.4 and 5.5 m/1000 m. Based on the geophysi-
cal survey results, the average saturated thickness of the 
Babol–Amol aquifer is about 80 m. The groundwater levels 
and streamlines are illustrated in Fig. 4b.

In the study area, aquifer output from pumping wells for 
agricultural and domestic water demands are 323 MCM and 
a there is a 69 MCM negative average groundwater budget 
during a period of 12 years with a groundwater level decline 
of 0.8 m.

In terms of hydrogeochemistry, the EC of groundwater in 
the Babol–Amol aquifer varies from 500 to 3000 µmoh/cm, 
which was transformed into TDS. The TDS level map (ppm) 
including main rivers of the aquifer is shown in Fig. 5b.

Data sources

The sampling wells are homogenously distributed in the 
region so that they represent the characteristics of the whole 
aquifer. The quality sampling well network is suitable and 
covers the all of aquifer zones. The sampling wells in satu-
rated layer of aquifer are all screened.

The TDS samples which are collected from 72 obser-
vation wells of Lenjanat aquifer and 50 observation wells 
of the Babol–Amol aquifer were obtained from the Isfahan 
Regional Water Organization, Isfahan Water and Wastewater 
company, and the Department of Environment of Tehran for 

Fig. 5  TDS-level maps with main rivers of: a Lenjanat aquifer b Babol–Amol aquifer
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a period of 14 water years between 1995 and 2009, respec-
tively. The locations of the observation wells, which were 
uniformly distributed across the aquifer to indicate the whole 
area hydrogeological characteristics, are illustrated in Fig. 1.

The statistical and mathematical basics

This study made use of primary concepts of geostatistics 
such as the definitions of isotropy and anisotropy and dif-
ferent interpolation methods which were used in many stud-
ies. For more information refer to Mastroianni and Milo-
vanovic (2008) and Duffy and Germani (2013). As depicted 
in Table 1, the methods used in this study including IDW, 
OK, Log_OK, UK, DK, EBK, SK, NN, TS, and Spline were 
identified as the superior methods in prior studies. This sec-
tion only provides an explanation of the Log_OK method 
which is the most accurate interpolation method of this 
study.

Lognormal ordinary kriging (Log_OK)

Despite the nonlinear interpolation methods, skewed data 
cannot be used in linear interpolation, because there would 
be incompatibility of variance with the average. The solution 
of this problem is a proper approach based on transforma-
tion data (Roth 1998). It is better to use one of the linear 
interpolation methods such as OK to estimate the data after 
normalization using the appropriate transformation method. 
In next step, the estimated values are transformed into real 
values using the back-transformation approach (Isaaks and 
Srivastava 1989).

If Z(x) represents the value of regional variable at a point 
with the location of x at unobserved points in a region D, so 
that the normal distribution of Z(x) is Y(x) = lnZ(x), x ∈ D , 
the objective is to estimate the value of the regional variable 
of Z(x) (Yamamoto 2000). The main step is the transforma-
tion of the problem from Z to stationary normal distribution, 
Y. The value of Y

(
x0

)
 is estimated as follows:

where Ŷ
(
x0

)
 is the estimated value of Y

(
x0

)
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(
x0

)
= exp

(
Ŷ
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is provided in the reference books of Journel and Huijbregts 
(1978) and Dowd (1982).

Accuracy analysis of different interpolation methods

Cross validation is one of the most widely used methods 
to compare the performance of interpolation methods (Yao 
et al. 2014). In this method, one of the observed points (
Z
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 is estimated using other data with one of the inter-

polation methods. This process must be repeated until all 
input data is estimated (Kitanidis 1993).

In this study, the cross-validation of all sampling wells 
was used to estimate the best interpolation method. Then 
seven error criteria were calculated using mean error (ME), 
mean bias error (MBE), mean absolute error (MAE), mean 
relative error (MRE), mean squared error (MSE), root mean 
squared error (RMSE), Nash–Sutcliffe efficiency (NSE) and 
percentage BIAS (PBIAS):

where Z∗
(
x
i

)
 is the interpolated value for ith well, Z

(
x
i

)
 is 
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2011). The best fit model is the one in which the standard 
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Table 1  Superior methods of the previous studies

Case study Field References Compared methods Best method

1 Agriculture and soil science Van Kuilenburg et al. (1982) NeN, IDS, OK OK
2 Geoscience Puente and Bras (1986) UK, DK, local mean estimator UK
3 Agriculture and soil science Laslett et al. (1987) TPS, OK, global means and medians, 

NeN, IDW, IDS, AK, NN, Trend
OK and TPS

4 Computer and geoscience Isaaks and Srivastava (1989) OK, IDS, TIN, NeN OK
5 Geoscience Boufassa and Armstrong (1989) OK, Log_OK, SK, lognormal SK, 

disjunctive OK, disjunctive SK
OK and SK

6 Meteorology and water resources Hosseini et al. (1993) OK, UK, IDW, AK, trend OK
7 Agriculture and soil science Gotway et al. (1996) OK, IDW OK
8 Agriculture and soil science Kravchenko and Bullock (1999) OK, Log_OK, IDW Log_OK
9 Agriculture and soil science Hartkamp et al. (1999) IDW, TPS, OCK Similar
10 Geoscience Zimmerman et al. (1999) OK, UK, IDS OK
11 Agriculture and soil science Schloeder et al. (2001) OK, IDW, TPS OK and IDW
12 Agriculture and soil science Moyeed and Papritz (2002) OK, Log_OK, DK, IK, MBK Similar
13 Agriculture and soil science Meul and Van Meirvenne (2003) OK, UK, SKlm, OCK UK and OCK
14 Meteorology and water resources Sterling (2003) IDW, Spline-r, Spline-t, TPS, MS, 

IMS, OK, SK, UK
SK and TPS

15 Meteorology and water resources Vicente-Serrano et al. (2003) LM, NeN, IDW, splines, trend, SK, 
OK, BK, UK, OCK, LM with IDS, 
splines with LM

Kriging and LM

16 Agriculture and soil science Hu et al. (2004) SK, OK, Lognormal kriging, UK, 
DK, IDW

UK

17 Meteorology and water resources Naoum and Tsanis (2004) Splines, IDW, NeN, LM, OK, UK OK and UK
18 Environmental science Dick and Gerard (2006) OK, UK, LM UK
19 Meteorology and water resources Barca and Passarella (2007) DK, conditional geostatistical 

simulation
DK

20 Meteorology and water resources Hua et al. (2009) IDW, Ok OK
21 Meteorology and water resources Chiu et al. (2009) OK, DetOK, AniOK, OCK, ResOK, 

Log_OK
Log_OK

22 Meteorology and water resources Sun et al. (2009) IDW, RBF, OK, UK, SK SK
23 Meteorology and water resources Keblouti et al. (2012) IDW, OK, Spline IDW
24 Environmental science Joseph et al. (2013) IDW, NeN, OK, UK, simple average OK
25 Computational fluid dynamics Wang et al. (2013) POD, spline Spline
26 Mathematics and computer science Aguilera and Aguilera-Morillo 

(2013)
P-spline, smoothing spline, regres-

sion spline
P-Spline

27 Marine science Liu et al. (2014) IDW, LPI, OK, DK DK
28 Meteorology and water resources Gong et al. (2014) IDW, OK-Gaussian, OK-spherical, 

OCK
IDW

29 Meteorology and water resources Khattak et al. (2014) OK, EBK EBK
30 Meteorology and water resources Yao et al. (2014) IDW, GPI, LPI, Spline-r, Spline-t, 

Ok, UK, SK
OK

31 Meteorology and water resources Mirzaei and Sakizadeh (2015) IDW, OK, EBK EBK
32 Meteorology and water resources Plouffe et al. (2015) IDW, TPS, OK, EBK EBK and TPS
33 Geoscience Szypuła (2016) IDW, NN, Spline, RBF, kriging, LPI Kriging and NN
34 Geoscience Babu (2016) IDW, Spline-r, Spline-t, trend, Ok, 

UK
Ok, UK, Trend

35 Meteorology and water resources Salekin et al. (2018) IDW, NN, TR TR and NN
36 Environmental science Rufo et al. (2018) IDW, OK, Spline IDW
37 Meteorology and water resources Njeban (2018) IDW, OK, UK, SK, RBF UK
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error of ME, MSE, and PBIAS is close to zero, NSE is close 
to 1, and contain the lowest values in RMSE, MAE, MRE.

Study procedure

This study made use of ArcGIS 10.5 software in the follow-
ing processes:

Data analysis

Spatial autocorrelation of data Data semi-variograms were 
produced by the GIS software using the OK method. If the 
semi-variogram of the spatial data increases regularly with 
the increase in the distance until it reaches the sill, the data 
will have an appropriate spatial correlation.

Removing local and global outliers Usually, in the presence 
of global outliers, the semi-variogram is divided into two 
completely separate parts consisting of upper sparse and 
dense points. To detect global outliers, first the sparse points 
at the upper layer of semi-variogram were selected and their 
locations were marked on the map. Then, one or two spe-
cific points, in which all the selected points were joined, 
were recognized. These specific points were global outliers 
which were removed due to the lack of logical reasoning and 
the measurement error (Krivoruchko 2011).

Removal of the local outliers was performed by the clus-
tering and Voronoi section of the GIS software. A Voro-
noi polygon was made around each of the TDS observation 
wells. Considering the range of data variability, the poly-
gons were subdivided into several clusters. In the absence 
of common cluster between each Voronoi cell and neighbor 
polygons, that cell is potentially an outlier and is shown in 
grey. After the analysis of the hydrogeological characteris-
tics of observation wells located in the grey Voronoi poly-
gon, in case of the absence of logical reasoning, these points 
were considered as local outliers and were removed from 
the network.

Data trend identification The identification of the data trend 
is important for the selection of an interpolation method. 
Therefore, the trend analysis of the data in two north–south 
and east–west directions was performed.

Interpolation and providing spatial distribution maps 
of groundwater contamination

In addition to the type of interpolation method, the method 
parameters including the number of effective neighbor-
ing points for estimating unknown points, the type of 

semi-variogram model, the size of the lags of the semi-vari-
ogram model, the number of lags, the overlaying factor, the 
number of simulations, etc. are influential in determining the 
accuracy of the results. To this end, after processing the data 
and optimizing the parameters related to each method, TDS 
interpolation was performed with cross-validation of the 
different interpolation methods. Subsequently, TDS spatial 
distribution maps were generated to compare the difference 
between the contamination estimations in different interpola-
tion methods, and also to select the best method. Eventually, 
the superior method was selected based on error criteria and 
was used for generating the TDS spatial distribution maps 
after determining its compatibility with the hydrogeologi-
cal characteristics of the aquifer. Based on the standards of 
the World Health Organization (WHO), the TDS threshold 
selected was 1200 parts per millions (ppm). The flowchart 
of the study methodology is provided in Fig. 6.

Results and discussion

The produced maps using 24 different linear and nonlin-
ear interpolation methods are demonstrated in Fig. 7. These 
methods were used to assess TDS levels in a total of 122 
observation wells in two different characteristics shallow 
aquifers of Lenjanat and Babol–Amol, so that the obtained 
results would be able to demonstrate the different conditions 
of the aquifers in general. The produced maps show a high 
concentration of TDS in the northern, eastern, and central 
boundaries of the Lenjanat aquifer, which was justifiable 
regarding the location of the industrial sites, factories, cem-
eteries and wastewater plants of Zarinshahr and Safaeiyeh 
which are generally in the east-northern and central parts of 
the Lenjanat plain. Spatial distribution maps indicated TDS 
concentrations in the northern, northeastern, and central 
parts of the Babol–Amol aquifer. The results made sense 
with the regional geological formations and the land uses 
in the Qaemshahr city neighborhood in the south of Babol. 
As predicted, the quality of groundwater decreased with 
the flow of water into downstream of the aquifer which was 
mainly the result of the leach-scour of the municipal and 
agricultural sewage which conformed to the TDS spatial dis-
tribution maps of Fig. 7. Besides, the reduction of ground-
water quality downstream of the studied areas was congru-
ent with distribution of the population which is greater in 
downstream areas than elsewhere in the study areas.

Table  2 illustrates the criteria of standard cross 
validation of the TDS parameter related to different 
interpolation methods in two shallow aquifers of Len-
janat and Babol–Amol with different hydrogeological 
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characteristics. In the Lenjanat shallow aquifer, Log_OK 
had the best results concerning the RMSE value. Next 
comes the IDW methods with the respective power of 
4 and 3 given the lowest RMSE values compared to the 
other methods. |ME| near to zero demonstrated the less 
skewedness of the data. Spline-t, SK, and Log_OK with 
the lowest |ME| values yielded better results, respectively. 
Log_OK produced the best result with the lowest values 
of MAE and MSE. Log_OK, NN, and IDW_4, with NSE 
close to 1, contained the best prediction accuracy, respec-
tively. IDW_4, Log_OK, and IDW_3, with the lowest 
MRE values, were identified as the best methods, respec-
tively. Spline-t with the lowest |PBIAS| yielded the best 
results. After that, minimal |PBIAS| was obtained by SK 

and Log_OK, respectively. The weight parameter had a 
significant effect on the accuracy of interpolation so that 
the more IDW power leads to lower values of RMSE, |ME|, 
MAE, MRE, MSE and PBIAS and greater NSE.

In the Babol–Amol shallow aquifer, Log_OK produced 
the best result with the lowest amount of RMSE, MAE, 
MRE, and MSE. Trend-1 yielded the most accurate result 
with the lowest values of ME. EBK-emp and EBK-logemp 
came in the next rank, respectively. Log_OK and EBK-
logemp, with NSE closer to 1, demonstrated the best results. 
The lowest |PBIAS| belonged to Trend-1. With the increase 
in the IDW power, there was a decrease in the values of 
MAE and MRE and an increase in NSE.

Fig. 6  Flowchart of the pro-
posed methodology for ground-
water quality assessment
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Fig. 7  Interpolated maps for TDS using different interpolation methods of: a Lenjanat aquifer b Babol–Amol aquifer (the legend indicates the 
predicted TDS concentration)
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Fig. 7  (continued)



Environmental Earth Sciences (2021) 80:427 

1 3

Page 13 of 19 427

As a result, the Log_OK method provided more accurate 
results with 57% of the error criteria in the Lenjanat shal-
low aquifer and 71% in the Babol–Amol shallow aquifer. 
However, the IDW method also had a reliable performance.

Conclusions The present research, for the first time, com-
pared the accuracy of 24 interpolation methods in estimating 
the spatial variation of groundwater TDS concentration in 
two shallow aquifers with different hydrogeological char-
acteristics. The main contributions of this study were as 
follows:

1. In the Lenjanat shallow aquifer, Log_OK produced the 
best result with the lowest values of MAE and MSE. 
Log_OK, NN, and IDW_4, with the NSE closer to 1, 
contained the best prediction accuracy, respectively. 
IDW_4, Log_OK, and IDW_3, with the lowest MRE 
values, were identified as the best methods, respectively. 
Spline-t with the lowest |PBIAS| yielded the best results. 
After that, minimal |PBIAS| is obtained by SK and Log_
OK, respectively.

2. In the Babol–Amol shallow aquifer, Log_OK produced 
the best result with the lowest amount of RMSE, MAE, 

Fig. 7  (continued)
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Fig. 7  (continued)
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Fig. 7  (continued)
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MRE, and MSE. Trend-1 yielded the most accurate 
result with the lowest values of ME. EBK-emp and 
EBK-logemp came in the next ranks, respectively. Log_
OK and EBK-logemp, with NSE of almost 1, demon-
strated the best results. The lowest |PBIAS| belonged 
to Trend-1. With the increase in the IDW power, there 
was a decrease in the values of MAE and MRE and an 
increase in NSE.

3. As a result, Log_OK method provided more accurate 
results with 57% of error criteria in Lenjanat and 71% in 
Babol–Amol aquifers. However, IDW method has also a 
good performance.

4. Furthermore, we can conclude that the interpolation 
pattern of the TDS concentration in shallow aquifers 
was not highly affected by different hydrogeological 
characterization. It could be due to some common 
points of view in these two shallow aquifers such as: 
existence of a Salt River in the Lenjanat plain vs. 
the Babol–Amol Coastal plain, shallow groundwater 
depth, almost the same groundwater transmissivity, 
agricultural activities, and a closed fresh river–aquifer 
interaction.

Fig. 7  (continued)
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Table 2  Cross-validation 
performance and different 
interpolation methods ranking

Method Area RMSE |ME| MAE MRE MSE NSE |PBIAS|

IDW_1 Lenjanat 0.762 0.625 0.765 0.456 0.581 0.330 0.625
Babol–Amol 0.583 0.509 0.697 0.531 0.339 0.197 0.509

IDW_2 Lenjanat 0.724 0.590 0.669 0.397 0.524 0.396 0.590
Babol–Amol 0.544 0.494 0.625 0.465 0.296 0.300 0.494

IDW_3 Lenjanat 0.679 0.536 0.579 0.336 0.461 0.469 0.536
Babol–Amol 0.534 0.511 0.587 0.435 0.285 0.326 0.511

IDW_4 Lenjanat 0.651 0.501 0.566 0.301 0.423 0.512 0.501
Babol–Amol 0.542 0.541 0.577 0.429 0.294 0.305 0.541

OK-spherical Lenjanat 0.757 0.595 0.799 0.479 0.574 0.339 0.595
Babol–Amol 0.542 0.428 0.600 0.454 0.293 0.306 0.428

OK-circular Lenjanat 0.757 0.595 0.799 0.479 0.574 0.339 0.595
Babol–Amol 0.543 0.426 0.600 0.452 0.295 0.302 0.426

OK-exponential Lenjanat 0.757 0.595 0.799 0.479 0.574 0.339 0.595
Babol–Amol 0.531 0.427 0.591 0.448 0.282 0.332 0.427

OK-Gaussian Lenjanat 0.757 0.595 0.799 0.479 0.574 0.339 0.595
Babol–Amol 0.613 0.454 0.687 0.514 0.376 0.111 0.454

OK-linear Lenjanat 0.757 0.595 0.799 0.479 0.574 0.339 0.595
Babol–Amol 0.548 0.428 0.601 0.452 0.301 0.289 0.428

UK-linear drift Lenjanat 0.720 0.795 0.724 0.395 0.518 0.403 0.795
Babol–Amol 0.682 0.418 0.737 0.540 0.465 -0.101 0.418

UK-quadratic drift Lenjanat 1.000 1.000 1.000 0.589 1.000 -0.153 1.000
Babol–Amol 0.631 0.452 0.682 0.541 0.399 0.057 0.452

NN Lenjanat 0.637 0.207 0.582 0.491 0.406 0.532 0.207
Babol–Amol 0.521 0.540 0.590 0.465 0.271 0.358 0.540

Spline-r Lenjanat 0.865 0.737 0.798 1.000 0.749 0.137 0.737
Babol–Amol 1.000 1.000 1.000 1.000 1.000 -1.366 1.000

Spline-t Lenjanat 0.737 0.124 0.685 0.595 0.543 0.374 0.124
Babol–Amol 0.589 0.603 0.638 0.547 0.347 0.178 0.603

Method Area RMSE |ME| MAE MRE MSE NSE |PBIAS|
Trend-1 Lenjanat 0.772 0.552 0.815 0.511 0.595 0.314 0.552

Babol–Amol 0.674 0.260 0.728 0.512 0.455 -0.075 0.260
Trend-2 Lenjanat 0.806 0.590 0.831 0.503 0.650 0.251 0.590

Babol–Amol 0.731 0.533 0.855 0.635 0.534 -0.263 0.533
Trend-3 Lenjanat 0.799 0.569 0.817 0.469 0.638 0.264 0.569

Babol–Amol 0.707 0.550 0.823 0.643 0.500 -0.184 0.550
Trend-4 Lenjanat 0.841 0.725 0.905 0.585 0.707 0.185 0.725

Babol–Amol 0.620 0.503 0.675 0.524 0.384 0.091 0.503
EBK Lenjanat 0.830 0.599 0.864 0.523 0.690 0.205 0.599

Babol–Amol 0.529 0.492 0.583 0.450 0.280 0.337 0.492
EBK-emp Lenjanat 0.827 0.594 0.806 0.497 0.685 0.211 0.594

Babol–Amol 0.500 0.394 0.536 0.408 0.250 0.409 0.394
EBK-logemp Lenjanat 0.727 0.384 0.715 0.493 0.529 0.391 0.384

Babol–Amol 0.497 0.399 0.526 0.402 0.247 0.415 0.399
DK Lenjanat 0.797 0.297 0.855 0.612 0.635 0.269 0.297

Babol–Amol 0.497 0.482 0.577 0.449 0.247 0.415 0.482
log_OK Lenjanat 0.572 0.153 0.479 0.305 0.327 0.623 0.153

Babol–Amol 0.494 0.450 0.511 0.398 0.244 0.422 0.450
SK Lenjanat 0.725 0.126 0.766 0.581 0.525 0.395 0.126

Babol–Amol 0.510 0.505 0.583 0.460 0.260 0.385 0.505
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