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Abstract
Landslide susceptibility mapping (LSM) assists identifying and targeting landslide preventive measures, thereby minimizing 
potential losses. Multiple approaches are employed for LSM in various physiographic regions; however, their applicability has 
differed across studies, with limited understanding on the most suitable approach for LSM in high mountain areas. Hence, we 
conducted LSM in the Indrawati watershed, a high mountain area of Central Nepal, employing four approaches: frequency 
ratio, logistic regression, artificial neural network, and support vector machine. Nine landslide causal factors (slope, aspect, 
elevation, geological formation, proximity to river, proximity to road, land cover, soil type, and curvature) were considered for 
LSM. Rainfall-induced landslides were mapped by the on-screen digitization of satellite images and field observations. The 
landslides were randomly split into a ratio of 80:20 for training and validating the susceptibility maps. The LSMs obtained 
by four methods were then validated and compared using area under curve (AUC), kappa index, and statistical inferences 
(sensitivity, specificity, positive predictive value, negative predictive value, and accuracy). Our study showed that Eutric 
Cambisols, a class of soil type, has a strong association with landslide occurrence among the 52 classes of the nine causal 
factors. We found that the artificial neural network approach possessed the best prediction capability (AUC value = 86.9%) 
among the four methods, followed by logistic regression (85.6%), support vector machine (81.2%), and frequency ratio 
(80.1%) approaches. However, Kappa index and other statistical inferences suggested the support vector machine approach to 
be the second-best method. Overall, we found that the artificial neural network yields more accurate and reliable results and 
hence considered as a promising approach for susceptibility mapping in high mountainous region of Hindu-Kush Himalaya. 
The findings of this study might be useful for landslide analysts, development planners and decision-makers in conducting 
LSM and development planning in high mountain regions.

Keywords Landslide susceptibility mapping · High mountain region · Frequency ratio · Logistic regression · Artificial 
neural network · Support vector machine

Introduction and background

Landslides are major geohazards in high mountainous 
regions (Ambrosi et al. 2018; Corominas et al. 2014; Petley 
et al. 2007). Among them, tectonically active high mountain 
areas, which have rough topography, and fragile and unstable 
geological structures, are highly prone to landslides, particu-
larly during monsoon periods due to heavy and concentrated 
rainfalls (Dahal and Hasegawa 2008). Every year, landslides 
in high mountain areas inflict huge damages destroying vil-
lages, important infrastructure, human deaths and injuries, 
and causing substantial harms to national economies (Ba 
et al. 2018; Petley et al. 2007; Soldato et al. 2019).

Several factors contribute to landslides occurrences 
(Corominas et al. 2014; Lee and Pradhan 2007; Meusburger 
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and Alewall 2008), making it difficult to accurately under-
stand the hazard and reduce its vulnerability. While natural 
causes, including slope, rainfall, and seismicity are pri-
mary causes, anthropogenic factors, such as inappropriate 
land-use practices and infrastructure development, are also 
responsible for landslide occurrence (Hong et al. 2015). In 
such a context, preventing landslides may not be possible. 
However, damage to human lives and environment could 
be averted or reduced by identifying landslide-susceptible 
areas (Dai et al. 2002; Pourghasemi and Rahmati 2018) and 
applying appropriate mitigation measures beforehand, which 
is considered an effective strategy to deal with the landslide 
hazard (Corominas et al. 2014).

Landslide susceptibility mapping (LSM) identifies land-
slide-prone areas by correlating major factors responsible 
for landslides with past occurrence (Brenning 2005), with 
the assumption that similar conditions favor the occurrences 
of future landslides (Lee and Talib 2005; Huang and Zhao 
2018). LSM helps identifying landslide-prone areas and pro-
vides information for land-use decisions to a range of users 
including governments, private sector, scientific communi-
ties, engineers, and planners (Akgun 2012; Ba et al. 2018; 
Fell et al. 2008). Furthermore, LSM is an important step in 
landslide risk assessment and hence beneficial to plan the 
mitigation measures (Michael and Samantha 2016). Reli-
able and accurate prediction of landslides is a difficult task 
because it requires high-quality data and employs a range 
of approaches in modelling (Yilmaz 2009). Scholars have 
been using several methods for LSM (Bui et al. 2016), which 
can be clustered in two groups: qualitative and quantitative 
approaches (Ayalew and Yamagishi 2005; Corominas et al. 
2014; Fell et al. 2008) and the selection of method for map-
ping mostly depends on spatial data availability (Van Westen 
et al. 2008).

Qualitative approaches, such as the analytical hierarchy 
approach (Pourghasemi et  al. 2012) and weighted linear 
combination (Ayalew et al. 2004), mostly depend on expert 
opinion and deliver the results in terms of weighted indices or 
relative ranks are in use (Corominas et al. 2014). In contrast, 
quantitative approaches, such as deterministic and statistical 
approaches, are based on numerical correlation of landslide 
distribution and causal factors (Aleotti and Chowdhury 1999). 
The quantitative approaches help to quantify the probability 
of risk in an objective manner allowing comparison and are 
considered important by researchers (Corominas et al. 2014). 
Despite their higher accuracy, deterministic or physically 
based models (e.g., Salciarini et al. 2017; Salvatici et al. 2018) 
are based on extensive experiment (e.g., Parteli et al. 2005), 
site-specific and data-dependent. Therefore, they are suitable 
for small and well-monitored landslide locations (Bui et al. 
2016) and are expensive, and less practical on a regional scale 
(Westen and Terlien 1996). Statistical approaches analyzing 
the quantitative relations between past landslides and causal 

factors (Fell et al. 2008) have been used for LSM. Among 
various statistical methods, bivariate-frequency ratio (FR) 
(Lee and Talib 2005; Yilmaz 2009); weight-of-evidence (Neu-
hauser et al. 2012; Pourghasemi et al. 2013); certainty factor 
(Pourghasemi et al. 2013); logistic regression (LR) (Ayalew 
and Yamagishi 2005; Corominas et al. 2014; Xu et al. 2013) 
are frequently used.

Statistical models require a large amount of data and make 
various statistical assumptions limiting their applicability 
(Pham et al. 2016). To overcome the issue, machine learning 
approaches including artificial neural network (ANN) (Bui 
et al. 2016; Chen et al. 2017; Pradhan et al. 2010; Yilmaz 
2009), support vector machine (SVM) (Huang and Zhao 2018; 
Pham et al. 2016; Pradhan 2013; Yilmaz 2010), decision tree 
(Pradhan 2013), neuro-fuzzy logic (Pourghasemi et al. 2012; 
Vahidnia et al. 2010) are being used for LSM. However, the 
approaches vary in terms of accuracy and suitability of these 
methods under different conditions, particularly for moun-
tainous areas, as it is not adequately studied and there still 
exists dispute on which approach is the best (Carrara and 
Pike 2008; Nefeslioglu et al. 2008). The landslide-susceptible 
zones varied significantly even with the minimal increment 
of the prediction accuracies (Tien Bui et al. 2012), and there-
fore identifying high-performance methods is necessary to 
predict the landslides risk zones accurately (Bui et al. 2016). 
Although, there had been several attempts to compare two or 
more approaches for LSM (e.g. Aditian et al. 2018; Bui et al. 
2016; Moosavi and Niazi 2016; Pham et al. 2016; Pradhan and 
Lee 2010), extensive study to gain consensus on appropriate 
approaches is lacking for high mountainous areas (Ambrosi 
et al 2018). Hence, the comparison of different machine learn-
ing approaches with conventional methods in high mountain 
area is crucial to acquire adequate background knowledge to 
reach some reasonable conclusions.

To address the aforementioned gap, we compared LSMs 
based on FR and LR as statistical approaches, and ANN 
and SVM as machine learning approaches in the upper part 
of the Indrawati Watershed in Nepal to find the best suited 
method for LSM in high mountainous regions. Landslides 
together with floods during monsoon are a major hazard in 
Nepal and are increasing (McAdoo et al. 2018) because of 
the land-use changes and unplanned infrastructure develop-
ment (Petley et al. 2007; Cui et al. 2019). The findings of 
this study would assist LSM in high mountain landscapes of 
Hindu-Kush Himalayan region of Nepal and other develop-
ing countries, due to the comparable context.

Study area

This study was conducted in the Indrawati watershed (85° 33′ 
N–85° 44′ N; 27° 49′–28° 07′ E) of the Sindhupalchok district, 
located about 40 km northeast of Kathmandu, Nepal (Fig. 1). 
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The study area covers 364  km2. Although, the altitude range 
of the watershed is 796–5832 m, only the area up to 4000 m 
is included in the study as rocky slope is a prominent fea-
ture of the area above that limit. Furthermore, the area above 
4000 m in Nepal is mostly covered by snow throughout the 
year (Mishra et al. 2014; Shrestha and Joshi 2009) and it was 
difficult to identify the landslides in Google Earth based satel-
lite imageries. The focus of this study is on rainfall-induced 
landslides to be specific as most of the landslide occurs in the 
Himalayan region is caused by rainfall (Dahal and Hasegawa 
2008; Petley et al. 2007). The slope ranges from 0° to 73° with 
a mean value of 31.6° and 60% of the area belonging to slope 
ranges 20°–40°.

The average annual precipitation (between 2000 and 2015) 
over the four stations located in the study area was 2858 mm 
which ranged from 2405 to 3882 mm (http:// www. dhm. gov. np/ 
dpc). More than 80% of the annual precipitation was observed 
during the monsoon season only (i.e., from June to Septem-
ber), which subsequently contributed to occurrence of majority 
of landslides in Nepal (Petley et al. 2007).

The geology of the area is young and fragile (Regmi et al. 
2014). The area is located at the fore Himalaya geomorphic 
unit (Precambrian age) where the main process of landform 
development is tectonic upliftment, weathering, erosion, 
and slope failure (Upreti 1999). The area is dominated by 
Sermanthang formation and Dhad Khola gneiss formation 
covering 35% and 24% area, respectively (http:// www. dmgne 
pal. gov. np). Sermanthang formation mostly covers the high-
altitude region of the study area which includes lithology of 
interbedded feldspathic schist, augen gneiss, quartzite, and 
biotic-feldspathic schist. However, Dhad Khola gneiss cov-
ers the lower altitudinal region including porphyroblastic 
gneiss, augen gneiss with a thin band of quartzite and schist, 
and migmatitic gneiss lithology.

Forest is the dominant land cover in the area covering 
70% of the land mainly on the northern side of the water-
shed. This is followed by agriculture covering 23% which 
is practiced building small terraces. Agriculture dominates 
the densely populated southern side which also has rapid 
expansion of infrastructures, such as roads and buildings. 
Increasing infrastructure development such as roads often 
without consideration to the geomorphological context of 
the area is contributing factor altering the geological bal-
ances in the region, posing increased landslide risks (Petley 
et al. 2007; Li et al. 2017).

Methods

Landslide distribution mapping and inventory

Landslide inventory is crucial for LSM (Fell et al. 2008; 
Jaafari et al. 2017; Van Westen et al. 2008) and was carried 

out using aerial photographs and satellite imagery (Lee 
and Pradhan 2007; Meten et al. 2015; Shahabi and Hashim 
2015). A devastating earthquake on April 25, 2015 and its 
aftershocks has also hit the study area hardly triggering 
many landslides (Kargel et al. 2016). However, we gener-
ated pre-earthquake satellite images (December 5, 2014 and 
December 18, 2014), to focus on rainfall-induced landslides, 
from the high-resolution GeoEye satellite available on 
Google Earth. The location of landslide occurrences due to 
earthquake and rainfall is comparable as earthquake-induced 
landslides are often clustered along the sharper slope and 
depend on shaking durability, whereas the rainfall-induced 
landslides distributed evenly throughout the flatter slope 
(Gnyawali et al. 2020), where intense precipitation and 
higher anthropogenic pressure are observed (McAdoo et al. 
2018). On-screen digitization of the satellite images in poly-
gon format was used for the landslide inventory. The inven-
toried landslides were also verified by field visits (Xu et al. 
2013) between November 15, 2015 and December 5, 2015, 
and by secondary resources such as annual reports from the 
relevant governmental agencies (Chalkias et al. 2014).

In total, we identified 264 rainfall-induced landslides, 
which cover 0.599  km2 of the study area. The area of each 
landslide was between 757 and 108,000  m2 with mean value 
of 2,270  m2. With the help of ArcGIS 10.3, all the mapped 
landslides were rasterized with 30 m grid size provided by 
size of Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) global digital elevation model 
(gDEM) data.

Landslide data were divided into training landslide and 
validation landslide for susceptibility modelling and validat-
ing, respectively (Ba et al. 2018; Jaafari et al. 2017; Xu et al. 
2013). The training dataset was employed to develop the 
model and the validation dataset to assess the quality of the 
model, in quantitative approaches of LSM (Huang and Zhao 
2018). Although some studies suggested using of different 
ratios including 70:30 (Bui et al. 2016; Pham et al. 2016), 
75:25 (Moosavi and Niazi) and even 50:50 (Pradhan 2013), 
Nefeslioglu et al. (2008) and Swingler (1996) suggested the 
use of approximately 20% of randomly selected data. Hence, 
we randomly selected 20% (133 pixel) of landslides as vali-
dation data and 80% (533 pixel) as training data (Fig. 1) as 
described in Remondo et al. (2003) (e.g., Bai et al. 2010; 
Jaafari et al. 2017; Nefeslioglu et al. 2008; Xu et al. 2012). 
After converting the landslide polygons to 30 m pixels, the 
landslide presence pixels were assigned to a value of 1. As 
landslide susceptibility modelling needs representation of 
no-landslide area (Xu et al. 2013), we randomly selected 
equal proportion of landslide absence pixels (0) from no-
landslide zone of the study site (Jaafari et al. 2017; Van 
Den Eeckhaut et al. 2006; Xu et al. 2013) making the pix-
els number of training and validation dataset 1066 and 266, 
respectively.

http://www.dhm.gov.np/dpc
http://www.dhm.gov.np/dpc
http://www.dmgnepal.gov.np
http://www.dmgnepal.gov.np
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Fig. 1  Location of study along with, stream network, precipitation stations, and landslide (training and testing) locations
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Landslide causal factors

Selection of landslide causal factors (independent vari-
ables contributing to landslides) is an important aspect of 
susceptibility mapping (Ayalew and Yamagishi 2005; Van 
Westen et al 2008). As suggested by Ayalew and Yamagishi 
(2005), the causal factors must be operational, measurable, 
and available for an entire study area, we used nine causal 
factors: slope, aspect, elevation, geological formation, land 
cover, proximity to river, proximity to road, soil type, and 
total curvature. In selecting the causal factors, the signifi-
cance and source of these factors in landslides susceptibility 
were considered (Table 1). We used 0.7 Pearson’s correla-
tion coefficient as cut-off as suggested by Booth et al. (1994) 
and as employed by Bui et al. (2016) to understand the mul-
ticollinearity of conditioning factors (Table 2). A separate 
geo-spatial layer of each of the causal factors was developed 
to use in this study (Fig. 2).

Morphological factors including slope, aspect, eleva-
tion, and curvature were generated using gDEM in ArcGIS 
10.3 employing surface analysis of the Spatial Analyst Tool, 
whereas proximity to river and road was generated by buff-
ering the river and road features, respectively. Hydrology 
analysis of gDEM available on Spatial Analyst Tool in Arc-
GIS provided the river feature of the study area, whereas 
available road feature was used to buffer the road distance. 
The data available on ICIMOD (2013) and Dijkshoorn 
and Huting (2009) were used for land cover and soil type, 
respectively. We classified the continuous causal factor data 
to understand the influence of individual factors for landslide 
occurrences (Chen et al. 2016) in ArcGIS 10.3. Slope and 
elevation were classified in six discrete classes; however, 
curvature was classified in five classes. The classes of cat-
egorical factors including aspect (nine classes), geological 
formation (six classes), land cover (seven classes), and soil 
type (six classes) were preserved. The study area was cat-
egorized in four and two classes for proximity to river and 
road, respectively.

The categorical causal factors were dealt by expressing 
them in binary format (0 and 1) with respect to the definition 
of each class of causal factors whereas the non-categorical 
causal factors with continuous data were dealt as they are 
(Nefeslioglu et al. 2008). Considering five continuous vari-
ables and 28 classes of four categorical variables in binary 
format, total 33 independent variables were included in the 
LSM approaches in a data matrix where each row datum rep-
resents an individual case expressed in pixel, and columnar 
data show the dependent (landslide) and independent vari-
ables (causal factors). As the scales of the input variables are 
different, the input datum was normalized in the range of 0 
and 1 as suggested by Swingler (1996) to increase the speed 
and accuracy of data processing, using Eq. 1 following the 
study of Jaafari et al. (2017) and Nefeslioglu et al. (2008):

where Xnorm is the normalized value of Xi input data, Xi is the 
input data that should be normalized, Xmax is the maximum 
value of the input data, and Xmin is the minimum value of 
the input data.

Analytical approaches

Frequency ratio

Using the individual relations between each causal factor 
and landslide occurrence in analysis (Chalkias et al. 2014; 
Lee and Sambath 2006), FR method allows easy and quick 
processing of huge amounts of data (Lee and Pradhan 2007). 
In this approach, the frequency ratio value (FRV), which is 
the ratio of the landslide ratio in each class to the area ratio 
(Lee and Talib 2005), was calculated for each class of each 
factor based on landslide densities (Corominas et al. 2014). 
The landslide ratio is the ratio of the landslide areas to the 
total area of a class. The area ratio (0.0011 in this case) is 
the ratio of the total landslide area to the total area of the 
watershed. An FRV greater than one indicates a stronger 
association with landslide occurrence, and vice versa; how-
ever, an FRV of one denotes the average association (Prad-
han and Lee 2010). The sum of FRV of all causal factors can 
be defined as the landslide susceptibility index (LSI) value 
(Akgun 2012; Lee and Sambath 2006).

where  FRVi is the FRV of causal factor i; and n is the num-
ber of factors (nine, in our study). All the rasters of causal 
factors with FRV were added to generate the combined LSI 
as per Eq. 2 in ArcGIS 10.3. The landslide susceptibility 
of each pixel is determined using LSI in the FR approach. 
LSI does not provide landslide susceptibility values directly, 
but inferences can be made considering that the higher the 
LSI value, the greater the area susceptible to landslides (Lee 
and Pradhan 2007), as the scale of landslide susceptibility is 
relative (Fell et al. 2008).

Logistic regression

Logistic regression, a generalized linear model (GLM) for 
binary response variables (Hosmer and Lemeshow 2000), is 
one of the commonly used approaches for landslide model-
ling (Brenning 2005; Bai et al. 2010; Budimir et al. 2015). 
The LR approach is based on analysis of a dichotomous 
variable for either true (landslide) or false (no-landslide), 
which is contributed by one or more independent variables 

(1)Xnorm =
Xi − Xmin

Xmax − Xmin

,

(2)LSI =

n
∑

1

FRVi
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(Menard 1995). The probability of landslide occurrence 
calculated based on the relation between landslide spatial 
distribution and causal factors (Ayalew and Yamagishi 2005; 
Budimir et al. 2015), is related to the logit value that con-
tains the independent variables (i.e., causal factors; Mancini 
et al. 2010). One of the benefits of LR is that the independent 
variables can be non-linear, continuous, categorical, or a 
combination of both categorical and continuous (Bai et al. 
2010; Menard 1995). Mathematically, the probability is 
described as follows:

where P is the probability of landslide occurrence and Z is 
the logit value that is expressed in linear form as shown:

where C0 is the intercept; C1, C2…Cn are the coefficients of 
the landslide causal factors; X1, X2…Xn are the binary logis-
tic regression function; and n is the number of causal factors 
(nine, in this study). An area with a higher probability (i.e., a 
lower logit value) has higher landslide susceptibility.

The linear logit model in LR (i.e., Eq. 4) represents the 
presence and absence of landslides on causal factors (inde-
pendent variables; Bai et al. 2010). The coefficients for all 
causal factors were estimated using the maximum likelihood 
criterion (Mancini et al. 2010). The causal factor with the 
highest coefficient value is concluded to have the greatest 
effect on landslide occurrence (Budimir et al. 2015). For this 
purpose, a "glm" package in R 3.5.2 was used to develop a 
GLM (Team 2019).

Artificial neural network

Artificial neural networks consist of interconnected groups 
of artificial neurons that have capability to deal with com-
plex relationships between input and output variables includ-
ing landslides (Alkhasawneh et al. 2014; Bui et al. 2016; 
Fausett 2006; Yilmaz 2009). ANN consists of an input layer 

(3)P = 1∕(1 + e−Z),

(4)Z = C0 + C1X1 + C2X2 +⋯ + CnXn,

(causal factors of landslide), one or more hidden layers and 
an output layer (Kavzoglu and Mather 2003).

Among the various proposed algorithms for neural 
networks in literature, we used multi-layered perceptron 
(MLP) neural net which is widely used ANN in landslide 
modelling (Bui et al. 2016). In MLP, each layer consists of 
neurons which are connected to the neurons in other lay-
ers through the weight and bias (Alkhasewneh et al. 2014). 
The weight between neurons was adjusted using a resilient 
back-propagation learning algorithm to determine the rela-
tionship between pairs of input (causal factors) and output 
(responses) vectors. The neurons of hidden and output 
layer process their inputs by multiplying each input by a 
corresponding weight, obtaining the sum of product, and 
then processing the sum using a non-linear transfer func-
tion (Aditian et al. 2018; Alkhasawneh et al. 2014; Poudyal 
et al. 2010).

We used a three-layer feed-forward ANN to build the 
relationship between input and output variables (Aditian 
et al. 2018) with a 9-5-1 network. The "neuralnet" pack-
age in R 3.5.2 (Günther and Fritsch 2010) was employed to 
develop an ANN model.

Support vector machine

Support vector machine is a machine learning approach 
based on structural risk minimization principle from sta-
tistical learning theory that transforms the input space into 
higher-dimensional feature space to find an optimal sepa-
rating hyperplane (Abe 2010; Pham et al. 2019; Yilmaz 
2010). The SVM is one of the most effective methods of 
classification with high accuracy (Yilmaz 2010) and is being 
used for LSM in recent times (Huang and Zhao 2018). The 
performance of SVM models is affected by the selection of 
kernel function and optimal parameters (Bui et al. 2016; 
Pradhan 2013; Pourghasemi and Rahmati 2018). Among the 
four types of kernel functions, such as linear, polynomial, 
sigmoid, and radial basis functions (RBF), RBF kernel is 
the most commonly used in landslide modelling (Bui et al. 

Table 2  Pearson’s correlation coefficient between landslide causal factors

Causal factors Slope Aspect Curvature Elevation Landcover Lithology River Dis Road Dis Soil Type

Slope 1 – – – – – – – –
Aspect − 0.11 1 – – – – – – –
Curvature 0.55 − 0.01 1 – – – – – –
Elevation 0.07 0 − 0.08 1 – – – – –
Landcover − 0.2 − 0.02 0.02 − 0.48 1 – – – –
Lithology − 0.16 − 0.06 − 0.03 0.17 0.38 1 – – –
River Dis − 0.05 − 0.03 0 0.31 − 0.07 − 0.04 1 – –
Road Dis 0.05 − 0.04 − 0.07 0.69 − 0.35 0.3 − 0.06 1 –
Soil Type − 0.12 − 0.06 0.06 − 0.68 0.57 0.07 − 0.2 − 0.59 1
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2016; Marjanović et al. 2011; Tien Bui et al. 2012) and was 
also used in this study, which can be expressed as

where γ is a kernel parameter which determines the width 
of the RBF and Xi, Xj are the vectors of ith and jth training 
landslides.

The performance of SVM using RBF is influenced by ker-
nel width (γ) and the regularization (C) parameters; there-
fore, these parameters need to be carefully determined (Bui 
et al. 2016; Hong et al. 2015; Huang and Zhao 2018). The 
best values of the parameters were obtained using the most 
reliable grid search method (Kavzoglu and Colkesen 2009). 
A "kernlab" package in R 3.5.2 was used (Karatzoglou et al. 
2004) to develop an SVM model.

LSM categories, map validation, and comparison

The obtained susceptibility values from LSM approaches 
were categorized in five discrete classes (very low, low, 
medium, high, or very high) using the natural breaks (Jenks) 
method in ArcGIS (Chalkias et al. 2014). Natural break 
method employs the natural grouping of data by putting 
together those with similar values and maximizing the dif-
ferences between the classes.

The performances were assessed by comparing the known 
landslide location with landslide susceptibility maps (Xu 
et al. 2013). Both training and testing landslide datasets were 
used to assess and analyze the LSM performances (Hong 
et al. 2015; Pham et al. 2019). The area under curve (AUC), 
statistical evaluation measures, and Kappa index were used 
for the assessment of overall performance of the landslide 
models (Bui et al. 2016; Pham et al. 2016).

The susceptibility maps were overlaid with the training 
and validation landslides separately and AUC values were 
generated (Xu et al. 2012). The AUC values in the train-
ing dataset suggest the capability of the LSM approaches 
for mapping the landslide susceptibility (Pham et al. 2019). 
Whereas, the AUC values in the testing (validation) dataset 
indicate the prediction accuracy for future landslides (Adi-
tian et al. 2018; Lee and Pradhan 2007; Pham et al. 2019). 
The AUC value lies between 0.5 and 1, where 1 indicates 
a perfect fit.

Five statistical evaluation measure metrics, i.e., sensitiv-
ity, specificity, accuracy, positive predictive value (PPV), 
and negative predictive value (NPV), were used to assess the 
performance for landslide and non-landslide classes (Hong 

(5)K
(

Xi,Xj

)

= exp
(

−�∥ Xi − Xj ∥
2
)

,

et al. 2015; Pham et al. 2019). These metrics are calculated 
employing the confusion matrices resulting from the FR, 
LR, ANN, and SVM models. Values for statistical indexes 
were calculated using following equations (Bui et al. 2016; 
Hong et al. 2015; Pham et al. 2016):

where TP (true positive) is the number of landslide pixels 
correctly classified to landslide class, TN (true negative) 
is the number of non-landslide points correctly classified 
as non-landslide. FP (false positive) is the number of land-
slide pixels classified to non-landslide class and FN (false 
negative) is the number of non-landslide points classified to 
landslide class (Hong et al. 2015).

Kappa index as an additional evaluator (Pham et al. 2019) 
was used to understand the prediction accuracy of the model, 
which is given as:

where Pobs is the proportion of pixels predicted correctly as 
landslide or non-landslide and Pexp is the proportion of pix-
els as the agreement is expected by chance (Hoehler 2000).

Results

Frequency ratio values and landslide susceptibility

Eighteen classes among 52 classes of the nine causal factors 
show the positive association for landslide occurrences as 
per the FRV (Table 3). The slope class 30°–40° and 40°–50° 
had the respective values of 1.721 and 1.112 among the six 

(6)Sensitivity =
TP

FN + TP
,

(7)Specificity =
TN

FP + TN
,

(8)Accuracy =
TP + TN

TP + TN + FP + FN
,

(9)PPV =
TP

TP + FP
,

(10)NPV =
TN

TN + FN
,

(11)K =
Pobs − Pexp

1 − Pexp

,

(12)Pobs = (TP + TN),

(13)
Pexp = (TP + FN) × (TP + FP) + (FP + TN) × (FN + TN),

Fig. 2  Distribution of each class of the nine causal factors: a slope, 
b aspect, c elevation, d geological formation, e land cover (NL nee-
dle leaved, BL broad leaved), f proximity to river, g proximity to road 
(red line denotes the road feature), h soil type, and i curvature

◂
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classes, indicating positive relations with landslide occur-
rence. Of the nine aspect classes, the southern, southwestern, 
and western aspects show a positive relation to landslide 
occurrence: the FRVs of these three aspects were 2.185, 
2.095, and 2.117, respectively. In addition, the high FRV 
(= 2.215) of the elevation class (1300–2400) m shows a 
strong positive relation with landslide occurrence.

For the six geological formation classes, the Dhad Khola 
Gneiss and Sermanthang Formation showed the strongest 
associations with landslide occurrence, with FRVs of 1.538 
and 1.440, respectively. Agriculture (FRV = 1.953) displayed 
the strongest association with landslide occurrence among 
the seven land cover types. FRV decreased with increas-
ing distance from both rivers and roads. The higher FRV 
(= 2.507) for regions within 100 m from rivers suggests 
that areas closer to rivers are more susceptible to landslides. 

Within road proximity classes, the higher FRV of the class 
below 150 m (= 1.340) suggests that areas around roads are 
more susceptible to landslides. Among the six classes of the 
soil type, Eutric Cambisols showed the strongest positive 
association to landslides with an FRV of 4.188, followed by 
Eutric Regosols (FRV = 1.701). The regions with a negative 
curvature value, which indicates concavity, have a stronger 
relation with landslide occurrence than those with a positive 
curvature value, which indicates convexity. The curvature 
classes − 4.735 to − 2.087 and − 2.087 to − 0.385 have FR 
values greater than one; the latter had the highest value of 
1.198 (Table 3).

The southern side of the watershed along the proximity 
to a river is highly susceptible to the landslides as per the 
final susceptibility map produced by FR approach (Fig. 3a). 
The five landslide susceptibility categories—very low, low, 

Table 3  FRV for each class of causal factor indicating the association with landslide occurrences in the study area

a FRVs indicate the classes of the causal factors highly associated with landslide occurrence

Class Area pixel Land slide pixel FRV Class Area pixel Land slide pixel FRV

Slope (degree) Land cover
< 10 14,952 6 0.364 Agriculture 92,744 200 1.953a

10–20 69,390 38 0.496 Bare land 582 0 0.000
20–30 126,636 81 0.579 Closed Forest 212,713 230 0.979
30–40 118,921 226 1.721a Open Forest 71,603 11 0.139
40–50 58,786 85 1.310 Water 402 0 0.000
 > 50 16,217 11 0.614 Shrub land 8249 1 0.11
Aspect Grassland 18,609 5 0.243
Flat 8 0 0.000 Proximity to river (m)
North 38,220 5 0.118 < 100 56,009 155 2.507a

Northeast 31,977 2 0.057 100–200 48,376 95 1.779
East 47,096 11 0.212 200–400 86,178 120 1.261
Southeast 52,423 27 0.467 > 400 214,339 77 0.325
South 44,354 107 2.185a Proximity to road (m)
Southwest 57,939 134 2.095 ≤ 150 64,199 95 1.340a

West 66,766 156 2.117 > 150 340,703 352 0.936
Northwest 66,119 5 0.069 Soil type
Elevation (m) Humic Cambisols 149,527 17 0.103
< 1300 32,067 25 0.706 Gelic Leptisols 23,626 5 0.192
1300–1800 70,878 153 1.955 Eutric Regosols 161,892 304 1.701
1800–2400 93,226 228 2.215a Gleyic Cambisols 806 0.0005 0.001
2400–3000 90,738 21 0.210 Eutric Cambisols 22,278 103 4.188a

3000–3600 80,334 13 0.147 Chromic Cambisols 46,773 18 0.349
> 3600 37,659 7 0.168 Curvature
Geological formation − 22.891 to 4.735 9615 8 0.762
Sermathang Formation 140,847 224 1.440 − 4.735 to 2.087 44,393 57 1.164
Simpani 29,188 10 0.310 − 2.087 to 0.385 108,821 144 1.198a

Hadi Khola Schist 35,797 20 0.506 − 0.385 to 1.317 151,118 144 0.862
Dhad Khola Gneiss 98,903 168 1.538a 1.317 to 3.962 75,549 83 0.995
Gyalthung Quartzite 24,027 2 0.075 3.962 to 25.333 15,406 11 0.651
Pangang 76,140 23 0.274
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medium, high, and very high—cover 18.06% (65.72  km2), 
27.33% (99.47  km2), 24.93% (90.74  km2), 20.43% (74.33 
 km2), and 9.3% (33.66  km2) of the total area, respectively.

Model result: logistic regression

The value of McFadden’s R2 obtained from LR analysis is 
0.425, indicating that the logit model shows a good fit to the 
dataset (McFadden, 1977). The coefficients of distance to 
road, slope, aspect (except 2 classes), land cover, geological 
formation, and soil type (except 1 class) are positive sug-
gesting there are positive relations for landslide occurrence 
(Table 4) and vice versa for the causal factors with negative 
coefficient.

Values of the probability of landslide occurrence in each 
pixel, calculated using the LR coefficients of causal fac-
tors, were between 0 and 0.9993. The final susceptibility 
map based on the susceptibility categories is presented in 
Fig. 3b, depicting the high susceptibility categories lie most 
consistently along the proximity to a river. The five land-
slide susceptibility classes—very low, low, medium, high, 
and very high—cover 47.94% (174.49  km2), 20.15% (73.32 
 km2), 12.73% (46.33  km2), 9.98% (36.32  km2), and 9.19% 
(33.44  km2) of the total area, respectively.

Model result: artificial neural network

The training process needed 37,984 steps until all absolute 
partial derivatives of the error function were smaller than 
0.01, the default threshold. The misclassification errors with 
training and testing datasets generated from the model were 
0.056 and 0.162, respectively, suggesting that 5% of the 
pixel of training dataset and 16% pixel of the testing dataset 
were misclassified. The estimated weight of input variables 
ranged from − 1104.44 to 659.30. The lowest value was for 
the input variables soil  type2 (a class of soil type—Gelic 
leptisols) to hidden layer 4 and the highest for  landcover8 
(a class of landcover—Bare area) to hidden layer 5 (ESM 
Appendix 1). The values for probability of landslide occur-
rences in each grid ranged from 0 to 0.9998. On the final 
susceptibility map (Fig. 3c), the five landslide susceptibility 
classes—very low, low, medium, high, and very high—cover 
72.90% (265.27  km2), 5.17% (18.8  km2), 4.46% (16.23  km2), 
5.28% (19.20  km2), and 12.20% (44.4  km2) of the total area, 
respectively.

Model result: support vector machine

The best values of regularization C and kernel width γ, 
obtained from training dataset using bound constraint SVM 
classification were 1 and 0.023, respectively. The final sus-
ceptibility map from SVM (Fig. 3d) showed five landslide 
susceptibility categories—very low, low, medium, high, 

and very high—generated from natural break method, cover 
15.46% (56.26  km2), 50.24% (182.80  km2), 17.74% (64.56 
 km2), 11.68% (42.51  km2), and 4.88% (17.76  km2) of the 
total area, respectively.

Map validation and model comparison

Overall performances of LSM approaches were compared 
using AUC values which showed ANN outperforms all the 
approaches with an AUC value 0.987 (Fig. 4) in the train-
ing dataset suggesting the highest goodness of fit. Similarly, 
the AUC value in testing data was achieved 0.869 (Fig. 5) 
suggesting the highest prediction capability of ANN among 
the modelling approaches. We found LR approach is the 
second-best approach in this study with 0.9 and 0.856 AUC 
values in the training and testing datasets, respectively. The 
AUC value in the training dataset also indicates that there is 
a good correlation between the dependent and independent 
variables in the LR approach (Bai et al. 2010).

Similarly, statistical indices in the training dataset (Fig. 4) 
suggested that ANN model has the highest performance abil-
ity followed by SVM. The ANN model properly classified 
96.62% (PPV) pixel of the training dataset to landslides 
and 95.87% (NPV) to non-landslides. The ANN model has 
highest sensitivity (95.90%) in the training dataset indicat-
ing that the probability of this approach to correctly clas-
sify the pixels in landslide class is 95.90%. In the case of 
specificity, the ANN model was able to classify 96.60% of 
the pixel as non-landslide in the training dataset. Further, 
the ANN approach correctly classified 96.25% (accuracy) 
of training dataset to landslide and non-landslide pixels. The 
kappa index value of 0.693 for ANN model suggests that 
there is a substantial agreement between landslide events 
in the model and actual landslides on the ground. As per 
the values of sensitivity, accuracy, NPV, and kappa index, 
SVM was the second-best model with the value of 86.06%, 
85.93%, 86.15%, and 0.718, respectively (Fig. 4). However, 
in case of specificity (88.17%) and PPV (92.12%), FR model 
is slightly better than SVM and LR model. Simultaneously, 
ANN outperforms all three models (SVM, LR, and FR) in 
terms of sensitivity (82.27%), specificity (86.40%), accuracy 
(84.21%), PPV (87.22%), NPV (81.20%), and kappa index 
(0.693), respectively, in the testing dataset followed by SVM 
model (Fig. 5). However, the PPV (81.20%) value generated 
from FR approach is higher than both SVM (79.70%) and 
LR (79.70%) approaches.

Discussion

Susceptibility mapping is an important step for the landslide 
hazard management in mountainous regions; however, it is a 
challenging task particularly in high mountain areas because 
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Fig. 3  Landslide susceptibility map based on: a FR, b LR, c ANN, and d SVM approaches
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Table 4  LR coefficients 
of landslide causal factors 
indicating the relative 
significance for landslide 
occurrence and constant

Significance in p-value 0.001 ‘***’, p-value 0.01 ‘**’, p-value 0.05 ‘*’

Causal factor Estimate Significance Causal Factor Estimate Significance

(Intercept) -− 4.9359 Broad leaved open forest 1.3285
Curvature − 1.9251 ** Shrubland 0.2325
Elevation − 8.7061 *** Grassland 3.1243
Distance to river − 2.4978 *** Agriculture 2.8046
Distance to road 8.6224 *** Bare area 4.8821
Slope 3.3348 *** Sermanthang Frm 2.2909 ***
Aspect (< 45) − 0.6754 Simpani Frm 2.8948 ***
Aspect (45–90) − 0.234 Hadikhola Schist 2.1913 ***
Aspect (90–135) 1.8751 *** Dhadkhola Gneiss 2.7094 ***
Aspect (135–180) 2.1438 *** Gyalthung Quartzite 1.9284 **
Aspect (180–225) 2.6094 *** Pangang Frm NA
Aspect (225–270) 2.776 *** Humis cambisols 0.9294 *
Aspect (270–315) 1.8314 *** Gelic leptisols 1.0558
Aspect (315–360) NA Eutric regosols 0.6865 *
Needle leaved closed forest 1.9761 Gleyic cambisols − 14.6332
Needle leaved open forest 1.0936 Eutric cambisols 0.811 **
Broad leaved closed forest 0.4122 Chromic cambisols NA

FR LR/GL
M ANN SVM

Sensitivity (%) 69.06 79.04 95.9 86.06
Specificity (%) 88.17 82.5 96.6 85.79
Accuracy (%) 75.42 80.68 96.25 85.93
PPV (%) 92.12 83.49 96.62 85.74
NPV (%) 58.72 77.86 95.87 86.12
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Fig. 4  Statistical indices for validation and comparison of the models 
using training landslide

FR LR/GLM ANN SVM
Sensitivity (%) 66.26% 75.71% 82.27% 82.17%
Specificity (%) 75.73% 78.57% 86.40% 80.29%
Accuracy (%) 69.92% 77.07% 84.21% 81.20%
PPV (%) 81.20% 79.70% 87.22% 79.70%
NPV (%) 58.65% 74.44% 81.20% 82.71%
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FR LR/GLM ANN SVM
TP 108 106 116 106
TN 78 99 108 110
FP 25 27 17 27
FN 55 34 25 23
AUC 0.801 0.856 0.869 0.812
Kappa index 0.45 0.55 0.69 0.62
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Fig. 5  Statistical indices for validation and comparison of the models 
using testing landslide
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of difficulty in data collection due to difficult topography 
and cloudy weather conditions (Bui et al. 2016; Shahabi and 
Hashim 2015), and limited data availability. As landslide 
prediction can be done considering past landslide events 
(Tien Bui et al. 2012), we conducted a landslide inventory 
using satellite images available in Google Earth aided by 
field visits. Integration of GIS in susceptibility mapping has 
improved the effectiveness and ease of LSM and therefore 
been widely used in recent times (Huang and Zhao 2018).

Effects of causal factors on landslide occurrences

Selection of the landslide causal factors is important for 
LSM (Ayalew and Yamagishi 2005). Although there are no 
standard selection criteria, most of the LSM studies used 
geomorphology, topography, geology, hydrology, soil types, 
and land cover as causal factors (Bui et al. 2016). In the 
study, we used nine causal factors slope, aspect, elevation, 
total curvature, geological formation, land cover, proximity 
to river, proximity to road, and soil type for susceptibility 
mapping as no multicollinearity was found among them. 
All the causal factors used in this study area are crucial and 
highly relevant to the landslide occurrence in high mountain 
areas except aspect, which demonstrated only medium rel-
evancy (Corominas et al. 2014).

We found that distance to road and slope has a higher 
positive relation to landslide occurrences through LR analy-
sis, which also agrees with Ayalew and Yamagishi (2005) 
and Mancini et al. (2010). Our study suggests that the chance 
of landslide occurrences in high mountainous area increases 
with slope until the accessible slope (i.e., until the slope 
categories 30°–40°). This is because there are low anthro-
pogenic activities in the higher slope as less people use the 
land. While, the location with high anthropogenic activities 
and intense rainfall favors the occurrence of rainfall-induced 
landslides (McAdoo et al. 2018). Our finding depicts that 
south facing aspects are more prone to landslides which is 
in line with Magliulo et al. (2008) who mapped landslides 
in location with hilly morphology without very steep slopes 
and Gnyawali et al. (2020) who mapped the landslide in 
hilly road. This study found that concave slopes are more 
susceptible to rainfall-induced landslides than convex slopes 
which contrast the study of Gnyawali et al. (2020). It is pos-
sibly due to concave slopes generally holding more water 
during rainfall, increasing the weight and contributing to 
slope instability (Regmi et al. 2014).

Similarly, certain elevation ranges (1300–2400 m) were 
more susceptible to landslides due to higher human interfer-
ence. Improper land-use practices in sloppy terrain, such as 
rapid urbanization and conversion of forest to agricultural 
land (MoHA and UNDP 2009), are the reasons that those 
areas are susceptible to landslides. Our finding aligns with 
the study by Mancini et al. (2010) who found that land cover 

is the important factor for landslide occurrences and the pos-
sibility of landslide occurrences is significant in arable land 
and urban area in a hilly terrain of Italy with maximum alti-
tude of 1143 m, where 90% of the area is under slope angle 
19°. This suggests that agricultural land and infrastructure 
development strategies for high mountain areas need to 
strongly consider the ways to mitigate landslide risks.

Areas around roads of the study site are highly susceptible 
to landslides in the high mountain as suggested by Ayalew 
and Yamagishi (2005) who found proximity to road is an 
important causal factor for LSM in hilly region of Japan 
with maximum elevation reaching to 637 m and slope ranges 
from 0° to 68°. The reason that the areas near the road are 
more susceptible to landslides (Li et al. 2017) might be due 
to limited technical considerations while planning and con-
structions of roads in the study area. As done elsewhere in 
Nepal and many other developing nations suffering from 
weak governance, suggesting weak accountability among 
decision-makers, and resulting limited consideration to 
natural ecology, hydrology and morphology in infrastruc-
ture development and land-use planning (Cui et al. 2019). 
The situation, along with limited technology and resources 
to identify areas susceptible to landslides, creates favora-
ble conditions for landslides and the occurrences trend in 
Nepal is increasing (Froude and Petley 2018; McAdoo et al. 
2018; Petley et al. 2007). Similar to the study by Ayalew and 
Yamagishi (2005), many landslides in the study area started 
either from the slope break or places where the topography 
has been altered during road construction.

Dhadkhola Gneiss and Sermanthang formations, where 
dominant lithology is quartzite and schist, are more suscep-
tible to landslides in the study area. Landslide occurrences 
in the soil type-Eutric Cambisols and Regosols are higher. 
The Eutric Cambisols of the Temperate zone (part of study 
area is in that zone) are among the most productive soils 
whereas Regosols in the mountain region are relatively deli-
cate (Driessen 1991). This might be due to the area domi-
nated by Eutric Cambisols is more widely used for agricul-
ture purposes.

Landslide susceptibility mapping approaches 
and their comparison for high mountain

Our study showed that there are several pros and cons to 
each model to use in LSM of high mountain areas. FR, a 
bivariate approach, is simple and easy, and thus, can be used 
to process large amounts of data and is reliable for regional-
scale mapping (Lee and Sambath 2006; Yilmaz 2009). In 
contrast, LR, despite being a multivariate approach, is com-
plex, produces large amounts of data, and sometimes leads to 
mathematical error (Lee and Pradhan 2007; Park et al. 2013; 
Yilmaz 2009). It assigns statistical significance value to the 
causal factors and produces a map taking those values into 
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account (Budimir et al. 2015). On the other hand, the ANN 
model with its superior performance has the ability to learn 
complex relationships between input and output variables 
(Pourghasemi and Rahmati 2018) that are unable to notice 
by either human or other computer techniques (Yilmaz 
2009). The ANN is highly dependent on the experiences 
and prior knowledge of the designer of the neural network 
system (Huang and Zhao 2018). However, SVM model, a 
powerful machine learning tool that separates the landslides 
and non-landslides zone in hyperplane, is more suited if the 
data is relatively small and has high non-linear dimension 
(Yilmaz 2009; Huang and Zhao 2018). The SVM only con-
siders the points near the boundary, called support vectors, 
to determine the solution of the classification problems 
(Pourghasemi and Rahmati 2018), whereas other approaches 
including LR considers each sample point for the decision 
plane (Huang and Zhao 2018). To identify the better suited 
approach for LSM in high mountainous regions, we have 
compared the LSMs derived from FR, LR, ANN, and SVM 
approaches.

The performances of LSMs were validated using dif-
ferent methods for comparison. All four approaches 
showed satisfactory accuracy in testing dataset with 
AUC value (0.801–0.869), kappa index (0.447–0.693), 
NPV (58.65–82.71%), PPV (79.70–87.22%), accuracy 
(69.92–84.21%), specificity (75.73–86.40%), and sensitiv-
ity (66.26–82.27%). We found ANN-derived LSM shows the 
higher accuracy for high mountainous areas when compared 
with the LSM derived from SVM, LR, and FR approaches. 
The finding is somehow similar to the study by Aditian et al. 
(2018) in the comparison of ANN, LR, and FR approaches, 
conducted in the hilly region of Indonesia where maximum 
elevation is 1207 m and 74% of the study area belongs 
to slopes lower than 30°. Similarly, Bui et al. (2016) and 
Yilmaz (2010) found that the performance of ANN with 
MLP is better than the SVM and LR. Likewise, Yilmaz 
(2009), Pradhan and Lee (2010) and Park et al. (2013) stated 
that LSM derived from ANN is more accurate than the LSM 
derived from LR and FR approaches in their respective 
study. Furthermore, the study by Chen et al. (2017) indicated 
that LSM derived by ANN has better accuracy than SVM 
in the study conducted in Daba mountain of China having 
average elevation of 1017 m and slope ranges from 0 to 80º. 
However, Moosavi and Niazi (2016) and Xu et al. (2012) 
found that SVM outperforms the LSM derived from ANN. 
On the other hand, Xu et al. (2012) stated that LR approach 
performs better than SVM and ANN approaches with better 
AUC value. In another study by Lee et al. (2007), LR has 
better prediction accuracy than ANN for LSM.

Further, LR approach shows better prediction accu-
racy than SVM model in LSM in high mountain area as 
per the AUC value (Fig. 5) which is similar to the study by 
Brenning (2005) and contradicts the study by Pham et al. 

(2016), Moosavi and Niazi (2016) and Yilmaz (2010). Pham 
et al. (2016) reported that SVM outperforms LR and other 
machine learning approaches for LSM in the mountainous 
region of Uttarkhanda, India where the maximum elevation 
reaches 2738 m and slope 70°. However, the SVM outper-
forms LR as per the values of other statistical inferences 
including kappa index, accuracy, NPV, and PPV in this study 
which coincides with the study by Pham et al. (2019). Fur-
thermore, similar to our study, SVM with RBF function out-
performs the FR approach in the study by Chen et al. (2016). 
In contrast, Poudyal et al. (2010) found that FR has slightly 
better accuracy than ANN approach in their study of Panch-
thar district of Nepal located in Himalayan region, where the 
maximum elevation reaches to 2496 m. Similarly, Lee and 
Pradhan (2007) revealed that the accuracy of FR approach 
was slightly higher than that of LR, which contradicts with 
our study and the study by Akgun (2012) where we found 
LR-derived LSM have better accuracy.

The most suitable method varies across different physi-
ographic regions. The local conditions of the causal factors 
and the methods of training data selection (Nefeslioglu et al. 
2008; Xu et al. 2012), selection of causal factors (Pradhan 
and Lee 2010), mapping approaches used, and data quality 
(Nefeslioglu et al. 2008) are possible causes for these con-
trasting results and we suggest further research to confirm 
the causes.

Conclusion

The study contributes for systematic comparison of four 
methods, including conventional (FR and LR) and machine 
learning (ANN and SVM) techniques, for landslide suscep-
tibility mapping in the high mountainous region of Hindu 
Kush Himalaya, the area in Asia with an average slope of 
31.6°. The LSM based on FR, LR, ANN, and SVM was 
evaluated and compared using AUC and other statistical 
inferences including sensitivity, specificity, accuracy, PPV, 
NPV, and Kappa index. The ANN approaches with its high-
est prediction capability of 86.9% and accuracy of 84.21% 
with testing landslide is found to be the suitable technique 
for the susceptibility mapping in the high mountainous 
region. Hence, the result from this study concludes that the 
map derived from ANN approach is best suited for mitiga-
tion of rainfall-induced landslides and land-use planning in 
high mountainous regions. However, further studies includ-
ing in simulated condition in similar regions are likely to 
give more insights.

This research helps landslide analysts, decision-makers, 
and practitioners for landslide assessment study in such 
areas with a number of options but limited basis of com-
parison to respond to their accuracy needs in LSM (Vahidnia 
et al. 2010). The findings of this study can also be important 
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to the science community while conducting rainfall trig-
gered landslides studies in laboratories (e.g., extending the 
experimental work by Brown et al. (1991) and Parteli et al. 
(2005) including rainfall). As land uses are changing and 
infrastructure development is increasing in watersheds in the 
Hindu Kush Himalayan region and stronger consideration of 
landslides is necessary, the suggestion of practical methods 
to map landslides with high accuracy helps mitigation of 
landslides.
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