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Abstract

The estimation of sediment yield concentration is crucial for the development of stream ventures, watershed management,
toxins estimation, soil disintegration, floods, and so on. In this study, we summarize various existing artificial intelligence
(AI)-based suspended sediment load (SSL) estimation models to calculate the suspended sediment load, to our knowledge
to date. The artificial neural network (ANN), generalized regression neural network (GRNN), neuro-fuzzy (NF), genetic
algorithm (GA), gene expression programming (GEP), classification and regression tree (CART), linear regression (LR),
multilinear regression (MLR), Chi-squared automatic interaction detection (CHAID), extreme learning machine (ELM), and
support vector machine (SVM) are among the many Al-based models that have been successfully implemented for sediment
load prediction. In this paper, we describe a few popular Al-based models that have been used for SSL prediction. ANN,
SVM, and NF had overcome each other in different circumstances of prediction; and all three can be said as good predictors.
Models using ANN with ELM or wavelet analysis in some ways are good predictors as their predicted values generally lie
closer to the measured value. Performances of the algorithms are usually evaluated by applying various types of perfor-
mance assessment methods most commonly RMSE, R?, MAE, etc. This review is required to bear some significance to the
researchers and hydrologists while seeking models that have been effectively actualized inSSLestimation or in hydrology
related aspects, however, mainly focused on the researches between January 2015 and November 2020.
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Definition and basic concepts

Sediment transport is a burning question in river manage-
ment practices. It shows great variation in sediment deposi-
tion throughout the river bed. The intense seasonal rain-
fall, streamflow, tropical climate, and immature geology
are some of the factors which influence sediment transport
and its deposition. Generally, sediment transport predomi-
nantly occurs during the monsoon season which results in a
notable amount of sediment deposit the downstream of the
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amount due to the sediment transport by the river. Naidu
(1999) stated that 20 billion tons of earth materials on the
planet get conveyed to the oceans every year by waterways
or streams of which Indian subcontinent alone contributes
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sediment frequently varies from one place to another place
which affects greatly the process of sediment deposition.
Hence, prediction of sediment load is essential for various
civic development activities such as the dam designing,
designing of reservoirs, watershed management and estima-
tion of floods in flood-prone areas, etc. It is also essential
to understand the sediment transport prediction during the
development of Hydro-Power projects (Zarris et al. 2006,
2011). Hence, without a doubt, the precise estimation of
suspended sediment load (SSL) plays a major part in hydrau-
lic engineering as well as in civic development and river
engineering practices(Brownlie 1981; Alonso et al., 1982).

Sediment transport mechanics is the study of fluid sedi-
ment motion laws and erosion, transport, and deposition pro-
cesses. Various types of movement of sediments are found in
nature, including the movement of sediments in rivers and
canals, reservoirs, along the shore, and in the marine environ-
ment. The deserts and the pipelines are the results of flow,
wind and waves of the stream. Stats indicate that 13 of the
world’s major rivers carry over 5.8 billion tones of annual
sediment load (Chien and Wan 1998). There are peculiarities
in a river that is heavily loaded with sediment that cause it to
differ extensively from rivers that carry much less sediment.
These differences have led to various engineering problems
such as flood control, reservoir sedimentation, irrigation sedi-
mentation of canals, and sedimentation problems in ports and
estuaries (Duan and Takara 2020). According to Chien and
Wan (1998), the mechanics of sediment transport should be a
component of sediment science. In particular, this component
should cover the following four aspects:

Sediment formation and its properties

Sediment transport mechanics

Field measurements and laboratory experiments
Applied science of sedimentation.

=

The sediment movement phenomenon is quite compli-
cated. In general, sediment movement is a two-phase flow
issue. Sediment moves under a flow’s action, and its pres-
ence, in turn, influences the flow. In addition, practical prob-
lems arise when direct measurements are taken (Rezapour
et al. 2010). Sediment transport is an intricate and non-linear
process. Hence, it is a difficult task to model it (Kalteh et al.,
2008). In the past, to perceive the mechanism for sediment
transportation in rivers, great works have been enacted. As
the evolution of river sediment science has taken place, the
focus on sediment discharge estimation saw its growth. Sedi-
ment load in a river could be categorized into SSL and bed
load (BL). The SSL corresponds to the major portion of
the sediment load. BL depicts a particle in a flowing fluid
that is transported along with the bed (Colby and Hembree
1955; Rijn 1984). A large number of researchers have stud-
ied the river SSL estimation and its simulation during the
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last few decades. Direct measurements or indirect measure-
ment through algorithms have been used to calculate the
SSL of a stream. Direct measurements are directly carried
on the site which has been selected for the experiment for
gaining data, but it is uneconomical to acquire data at all
locations and is not a feasible way with respect of time as it
requires an enormous amount of time to collect satisfactory
data. These direct measurements are more trustworthy than
indirect measurements, but are avoided due to their complex
nature. In this work, we have reduced the range of review
models to the ones that specifically take account of SSL.

Since the suspended load prediction is a complex process;
a comprehensive model is required for prediction, which
will be accurate and easy to use. Sediment load is depend-
ent on flow conditions as well as climatic conditions like
rainfall, temperature (in some special cases), as well as on
river delta mouth characteristics; hence, suspended sedi-
ment load prediction is a non-linear phenomenon to under-
stand thoroughly, because it includes a number of intercon-
nected components. It was found that the traditional models,
viz., Einstein approach (Einstein 1950), Brook’s approach
(Brooks 1965), and SRC were used for suspended sediment
load modeling (Kisi et al. 2006) before 1990. Furthermore,
there was a tremendous turn of researchers toward the Al-
based models like artificial neural network (ANN) (Tayfur
and Gundal 2006) in various fields such as environmental
engineering and water resource management. ANN algo-
rithm is a very efficient and powerful computational machine
learning algorithm utilized for simulating the complicated
associations among variables which are non-linear (Gallan-
tand Gallant 1993; Smithand Eli 1995; Yitianand Gu 2003).
The application of ANN was performed in many areas other
than river engineerings such as electrical engineering, image
processing, financing, physics, neurophysiology, and others
(Panagoulia et al. 2017).

In designing ANN models, some problems arise for high-
value data and small value data; it does not provide satis-
factory results in estimation compared to the actual value
and converge to a local minimum. These ANN models for
their better performance need a long duration training data,
so that the over-fitting in the model could be avoided. To
overcome these shortcomings, sometimes, it is inadequate
to go for the ANN-based model. Hence, in this complex
hydrological process, it would be better to use a tool which
could provide a better solution to the problem taken. Vapnik
and Cortes (1995) proposed a novel approach that uses the
structural risk minimization principle, called SVM (Vapnik
1999, 2000). SVM is essentially implemented for solving
problems concerned with classification and regression. The
regression model is known as SVR (Drucker et al. 1997;
Awad and Khanna 2015). They become popular because of
their promising empirical performance. In several hydraulic
engineering process and environmental problems, the SVM
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is effectively implemented in recent decades (Flood and Kar-
tam 1994; Sivapragasam et al. 2001; Dibike and Solomatine
2001; Sivapragasamand Muttil 2005; Tripathi et al. 2006;
Lin et al.2006; Hong 2008; Khan and Coulibaly 2006; Chen
and Li 2010; Yunkai et al. 2010; Noori et al. 2011; Ch et al.
2013; Ji and Lu 2018). SVM is used in suspended sediment
estimation through its different models to estimate the SSL
of two water bodies (Cimen 2008). Sediment yield simula-
tion was also done through SVM by Misra et al. (2009).
It was reported by them that as compared to ANN, SVM
furnish better outcomes in training, testing, and validation.
Azamathulla et al. (2010) in their work applied SVM to vali-
date its predictive capability. They finally found that SVM
displayed superior performance in comparison with the other
traditional models. Whenever the outputs gathered through
the usage of datasets, it was seen that SVM provided better
results as compared to ANN for SSL estimation (Jie and
Yu 2011). Hazarika et al. (2020a) compared the prediction
performance of SVR and ANN model and discovered that
SVR outperforms the ANN model. Hassanpour et al. (2019)
showed the applicability of fuzzy C-mean clustering-based
SVR model for suspended sediment load prediction. A vari-
ation of SVM is also used in modeling is known as least
square SVM (LSSVM). LSSVM was introduced for dem-
onstrating SSL relationship and it was discovered that the
LSSVM model could over-play the ANN model and the two
models executed superior to the SRC model (Kisi 2012).
Lafdani et al. (2013) described the two models, viz., ANN
and SVM through gamma test for input selection might
prompt preferable effectiveness over the regression com-
bination. For solving non-linear classification, LSSVM is
a powerful methodology. Mondal (2011) proposed a new
model, viz., gamma geomorphologic instantaneous unit
hydrograph (GGIUH) for the estimation of direct runoff
for a river basin. This model yields satisfactory result in
prediction. Yaseen et al. (2016) in his work introduced a
new data-driven model for streamflow forecasting, known as
ELM. It was contrasted with other data-driven models like
SVR and GRNN and observed to be significantly more supe-
rior to them with RMSE value around 21.3% less than SVR
and roughly 44.7% less compared to GRNN. Li and Cheng
(2014) combined the ELM with WNN for better monthly
water discharge estimation in the river. They compared it
with SLFN-ELM and SVM and discovered that SLFN-ELM
performs slightly better in the prediction of the peak dis-
charge and the taken WNN-ELM model yields more pré-
cised estimation compared to the other two models. Gupta
et al. (2020) applied two asymmetric Huber loss function-
based ELM model to deal with the noisy nature of the river
SSL data. Experimental results expose that the ELM-based
models were able to deal with the SSL datasets with high
accuracy. Sadeghpour et al. (2014) proposed a hybrid model
called a wavelet SVM (WSVM), which was a conjunction of

wavelet and SVM. It was found that WSVM could be used
further as a prediction model for successful SSL prediction.
Yadav et al. (2018) tried to forecast the SSL of Mahanadi
River, India using a hybrid genetic algorithm-based artifi-
cial intelligence (GA-AI) model. In the comparison of this
model with conventional models like MLR and SRC, it was
found that the proposed GA-AI model yields better perfor-
mance. Daneshvar and Bagherzadeh (2012) evaluated sedi-
ment yield using pacific southwest interagency committee
(PSIAC) model and modified pacific southwest interagency
committee (MPSIAC) model with the help of geographic
information system (GIS) in Toroq watershed of Iran. Both
models provided comparative outcomes and showed cor-
relation coefficients with moderate level to the high level
(R*=0.436-0.996 to 0.893-0.998) for PSIAC as well as
MPSIAC models, respectively. Rejaie-balf et al. (2017)
applied a new parametric method called multivariate adap-
tive regression splines (MARS). It gave comparatively bet-
ter performance compared to ANN, ANFIS, SVM, and M5
tree models. Choubin et al. (2018) used the CART model
for modeling the SSL in a river. This model was compared
with four common models: ANFIS, MLP neural network,
radial basis function-SVM (RBF SVM), and proximal SVM
(P-SVM). To evaluate the model capacities, various perfor-
mance evaluation methods were used. As per the researcher,
the CART model displayed the best results in estimating
SSL, followed by RBF SVM. Kisi and Yassen (2019) imple-
mented three ANFIS-based model to prove their usability in
SSL estimation. Tarar et al. (2018) applied the Mann—Ken-
dall test along with wavelet transform for SSL estimation in
the upper Indus River and results show a very good R? value
of 0.9. Gupta et al. (2018) tried to implement the KINEROS
2 model for forecasting streamflow and sediment load which
yielded an average result. Very recent literature on SSL pre-
diction using ANN includes Khan et al. (2019a, b), Nivesh
et al. (2019), Yadav et al. (2020), Hazarika et al. (2020b),
etc.

Predicting SSL through the GEP and ELM are some new
techniques of artificial intelligence which had shown better
performance over existing FFNN-BP technique. Notwith-
standing when it is not feasible to create the mathematical
function for the issue taken with the accessible soft comput-
ing methods, GEP could model it and thus wind up favorable
during these circumstances over existing strategies. Another
type of model known as SWAT was also implemented for
calculating mean annual sediment precipitation. It showed
an average result in SSL prediction (Oeurng et al., 2011).
Morgan et al. (1998) applied a new model named the Euro-
pean soil erosion model (EUROSEM) for SSL estimation.
However, it has a disadvantage that it is possible to be actu-
alized only in smoothly incline railless planes, rilled sur-
faces, and crinkled surfaces. It was found by the researchers
that EUROSEM overestimated the suspended sediment load
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concentration, but the dissimilarity was not large. Tabatabaei
et al. (2019) proposed a non-dominated sorting algorithm for
SSL prediction from the dataset of Ramian hydrometric sta-
tion on Ghorichay River. The results obtained from various
SRC models suggest that the sediment rating curve-genetic
algorithm-II model using non-dominated sorting algorithm-
II gives better efficacy than the other models. Nourani et al.
(2019) in their work proposed a wavelet-based data mining
approach called a wavelet-M5 model for predicting the SSL
of two different rivers named Lighvanchai and Upper Rio
Grande. The obtained results in the Upper Rio Grande river
reveal that the proposed wavelet-M5 model showed better
performance compared to ANN, M5, and Nash Sutcliffe
efficiency. Sharghi et al. (2019) suggested a novel wavelet
exponential smoothing algorithm for estimating the SSL
in the Lighvanchai and Upper Rio Grande rivers. Experi-
mental results reveal that combining wavelet transform with
exponential smoothing algorithm yields more precise results
compared to WANN, ARIMA, and seasonal ARIMA mod-
els. Samet et al. (2019) tried to compare the performance
among ANN, ANFIS, and GA, and noticed that among these
models, the ANFIS showed the least error while predicting
the SSL. Sharghi et al. (2019) suggested a hybrid emotional
ANN (EANN) and wavelet transform conjunction model
called wavelet EANN (WEANN) for river SSL prediction.
The obtained results suggest that the model gives a good
performance in estimating the SSL of Lighvanchai and
Upper Rio Grande rivers.

The main intent of this paper is to present a brief discus-
sion of the different artificial intelligence (AI)-based model
that has been successfully applied for sediment load predic-
tion. However, the main focus in on the studies between
January 2015 and November 2020. Furthermore, to reveal
the quality works that have been published between January
2015 and November 2020, a list of SCI/SCIE and Scopus
indexed publication is also presented.

The rest of the paper is organized as follows: “Existing
Al-based SSL estimation models” focuses on the major arti-
ficial intelligence (Al)-based models that have been fruit-
fully implemented from January 2015 to November 2020.
The papers are obtained using the two queries “sediment
load prediction” and “suspended sediment load prediction”
in Google Scholar. “Experimental analysis” shows experi-
mental analysis on two different SSL datasets that are col-
lected from two different rivers in India. The last section is
the conclusion and the future projection of the work. The
details of the work that has been performed for SSL predic-
tions are shown in Table 1. To be more specific, we have
shown only the works that are indexed only in SCI/SCIE
and Scopus using the two queries “sediment load predic-
tion” and “suspended sediment load prediction” in Google
Scholar. However, we have omitted ResearchGate as the
recent research suggests that ResearchGate cannot still
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challenge Google Scholar to provide early citation indica-
tors. Moreover, although ResearchGate, in theory, allows
automated data collection, unlike Google Scholar (except
for Publish or Perish), its current maximum crawling speed
is a major practical limitation on its use for large-scale data
gathering (Thelwall and Kosha 2017). Moreover, Table 2
elaborates describes the performance evaluators that have
been used by the researchers.

Existing Al-based SSL estimation models

The ANN

The property of working of brain to learn is studied and
checked if it can be applied to the machine learning and
gave rise to a very strong learning model known as neural
networks or ANNs. ANNSs are distributed, adaptive, and
generally non-linear in nature built from many different
processing elements (PEs). Each PE receives connections
from other PEs and/or itself. Interconnectivity defines
the topology of the system. Signals flowing through the
connections are scaled by adjustable parameters called
weights. PEs add up all of these contributions and produce
an output that is a non-linear function of the sum. Outputs
of PEs are either system outputs or sent to the same or other
PEs (Rojas 1996). The value of ANNs stems from their
expressive power, their ability to approximate functions,
starting with the famous “Universal Approximation Theo-
rem” according to which ANNs with depth 2, depending
on their activation function, can theoretically approximate
any continuous function in a compact domain to any level
of accuracy (Cybenko 1989; Funahashi 1989; Hornik et al.
1989; Debao 1993; Barron 1994). This is done by emu-
lating a non-linear process without actual knowledge of
the model (Sharma and Lie 2012) and is capable of auto-
adjusting in case conditions change in a time-dependent
way (Lodge and Yu 2014) and of handling same or similar
patterns (Wang et al. 2004). ANN are computationally dif-
ficult to train. On the other hand, modern neural networks
are trained efficiently using stochastic gradient descent,
backpropagation (BP), conjugate gradient descent, radial
basis function (RBF), cascade correlation algorithm, etc.,
and a variety of tricks, including various activation func-
tions (Livni et al. 2014). Goodfellow et al. (2015) have
shown, for seven different ANN models of practical inter-
est, that there is a straight path from initialization to solu-
tion that reduces objective function smoothly and mono-
tonically. Recently, Bastani et al. (2016), Zhang et al.
(2018), and Mangal et al. (2019) proposed new matrices
for measuring the robustness of ANN. The ANN network’s
robustness is explicitly discussed in Bastani et al. (2016),
Zhang et al. (2018), and Mangal et al. (2019). ANNSs can
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Table 2 Description of the
performance indicators used in
Table 1

@ Springer

S1 No Indicator Formula
1. MSE (mean square error) E (im0
MSE = =
N
2. RMSE (root mean square error) N
—4/L1 — o2
RMSE = 1/ gl ; - 0;)
3. MAE (mean absolute error) N
MAE = § 3 |(/ - o)
4, R or CORR (Correlation Coefficient) %(f} 7 )03
R — i=1
> (i) X (0i=0)
5. R*(Correlation Coefficient2) N 2
X (i~ )00,
R2 = /v:] N
X (i) X (0=3)
6. VAR (Variance) % (%)
VAR = =
7. CE or COE or NS or NSE or NSSE or DC or ENS (Nash % (=0,
and Sutcliffe 1970) i
8. NNSE( Normalized NSE)
8. RSR (RMSE observations standard deviation ratio)
9. PCC (Pearson’s correlation coefficient)
PCC =
10. WI (Wilmot’s Index)
Wi=1-
11. PBIAS (Percent bias N
( ) PARE = ¥ =% % 100
i=1 %
N
13. ME (Mean error) 3 (=0
ME = &
N
14. MBE (Mean biased error) N
MBE = % (fi_0i>
N
15. PARE (Pooled average relative error N
( £ ) PARE = ¥ =% % 100
=1 Y
16. SMAPE (Symmetric mean absolute percentage error N
Gy P £ECMOD GMAPE = iy |’f'
i=1 i
17. MASE (Mean absolute scaled error) MASE = MAE&
nalvcmodcl
18. SSE/SST (Sum of squared error/total sum of squares) (0 )
SSE/SST = ——
N 2(0,—5‘)
19. SI (Scatter Index) S = RMSE
20. DR (Discrepancy Ratio
(Discrepancy Ratio) bR Z 4
21. RE (Relative Error)

RE = 2| —o, /f|/
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Table 2 (continued)

S1 No Indicator Formula
22. MARE (Mean absolute relative error) %(f’—u)
=l

MARE = ¥
22. AIC (Akaike’s information criterion) AIC = —2(log —likelihood) + 2K
23. CRM (coefficient of residual mass) ( %f— % , )

CRM — i=1 i=1

Z‘,lf,
24. VAF i ted fc — — 0.
(variance accounted for) VAF = (1 var(f, — 0,) /Var(f,-))

easily become unstable in the presence of disturbances or
unmodelled dynamics. A constrained stable background
algorithm (CSBP) was proposed by Korkobi et al. (2008)
to overcome this situation. Furthermore, Haber and Ruhetto
(2017) developed new forward propagation techniques to
overcome the numerical instabilities in vanishing gradient
problems of deep neural networks. Few other structural
learning (SL)-based ANN architectures are the Cascade-
Correlation learning (Fahlman and Lebiere, 1989) and the
SL via forgetting (SLF) (Ishikawa 1996).

In the field of pattern classification and pattern recog-
nition, ANNSs have been effectively implemented (Bishop
1995) and are progressively utilized as a part of the stud-
ies taken in hydrology (Aly and Peralta 1999; Dawson
and Wilby 1998; Zhang and Stanley 1997; Behzad et al.
2009). The embodiment of numerical-water drive models
in ANNs was done by Dibike et al.(1999) for the problem
of flow forecasting with positive results. In watersheds,
ANNs are widely applied for soil erosion problem and
rainfall-runoff relationship (Zhu et al. 1994; Tokar and
Johnson 1999). As the utilization of ANNs developed
in hydrological resources, a review of its idea as well as
implementations were done by ASCE (2000) and inferred
that ANN’s execution is on a par with already operational
models. By Freiwan and Cigizoglu (2005), it was applied
in monthly river flow forecasting. Flood frequency analy-
sis (1998), estimation of sanitary flows (1998), hydraulic
characteristic of severe contraction (1998), and classifica-
tion of river basins (2000) are some applications of ANN
in other fields (Karunanithi et al. 1994; Grubert 1995;
Venkatesan et al. 2009). Nagy et al. (2002) trained the
ANN through deduced stream data for estimating the SSL
in rivers. To calculate the output SSC (suspended sedi-
ment concentration), a network was established. This net-
work has input variables like the Reynolds number, stream
width ratio, Froude number (F,), mobility number, etc.,
which were applied to calculate the load concentration.
The commonly used models were compared with the ANN
model on the output data. For comparison, the information
of observed total load concentration (TLC) and calculated
TLC through the predictor was used by:

D, =To/r . )

In (1)

T,=observed TLC and.

T.=calculated TLC through the predictor.

ANN showed much better results than the most fre-
quently used models. The calculated discrepancy ratio for
Engelundand Hansen (1967) approach (2.34) had shown
much more variations between T, and T,, whereas, for
ANN (1.04), it was much closer. To predict the transpor-
tation rates of sediment load, an ANN-based method was
introduced by Sarangi et al. (2005), which itself a data-
driven model. Field data collected from several studies
and published ravines having a high varying nature were
taken to build or train the ANN model. The precision of
estimation was observed to be superior to the models
which were regularly utilized like Engelund and Hansen
(1967). An ANN model was applied by Raghuwanshi et al.
(2006) in Nagwan watershed for estimating the sediment
load and overflow. Linear regression models were like-
wise produced for the examination of performance with
the ANN. Here, every day and week by week drainage
and sediment load was taken for prediction. The training
data for both the models were of 5 years and the testing
data were for 2 years. It was noticed that the ANN models
outperformed the traditional methods like linear regression
models. The ANN models for SSL prediction were also
developed based on climate factors such as temperature,
average rainfall, flow discharge, and the intensity of rain-
fall as these factors play a vital role in sediment deposi-
tions. Another ANN-based model was introduced by Zhu
et al. (2007) based on these climate factors to simulate
the monthly behavior of sediment depositions in Long-
chuanjiang River in China. The ANN model successfully
simulated the monthly behavior of sediment depositions in
Longchuanjiang River with nearly accurate results when
proper variables were considered with the consideration
of correlation of these variables with the suspended sedi-
ment depositions of the previous month. The conventional
methods of prediction such as Multi Linear Regression
(MLR) were also matched with the ANN models. In Alp

@ Springer
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and Cigizoglu’s research (2007), both these models were
contrasted with each other based on their performance cri-
teria. They took a couple of ANN models in which the BP
learning algorithm and RBF algorithm were considered.
The hydro-meteorological variables such as rainfall and
flow and their relation with the daily SSL were examined
by utilizing these two techniques of ANN by training it
through the hydro-meteorological variables and SSL data
taken from a catchment called Juniata in the United States.
The outcomes implied that the performance given by ANN
was much more accurate than MLR. To forecast the daily
suspended sediment concentration, SRC, MLR, and ANN
models were used by Rajaee et al. (2009) at a couple of
gauging stations. The day-by-day waterway discharge and
SSL information taken from these two stations utilized
as the testing set for ANN. The outcomes generated from
ANN model showed better results in comparison to the
other models and the hysteresis phenomenon could be also
simulated (Shiri and Kisi 2011). The conjunction of ANN
with different approaches to make the predictions more
precise to the measured value have also been done in the
last decade. Geomorphology-based ANN (GANN) was
modeled by Zhang and Govindaraju (2003), using morpho-
logical parameters to estimate the flow path probabilities
for the prediction of runoff in a watershed. To estimate the
flow path probabilities, a geomorphologic instantaneous
unit hydrograph (GIUH) was applied. This graph could be
developed through the engaged morphological parameters.
To assign the synaptic, i.e., connection weights the path
probabilities were applied to the hidden and the output
layer. Hence, the application of other models along with
the ANN showed that GANN performed more rationally
and realistically. Soft computing tools were also used with
the ANN to get more accuracy. According to Baskar et al.
(2003), FFNN-BP performed better with five hidden layers
with the use of GIS tools and ANN. Sarangi and Bhat-
tacharya (2005) generated an ANN and a regression model
using watershed-scale geomorphologic parameters for pre-
dicting sediment loss. While using the geomorphological
based ANN, they found that the (coefficient of determina-
tion) R? values lying between 0.78 and 0.93 and efficiency
factor (E) values in between 0.71 and 0.76, on the other
hand, utilizing geomorphological based regression the
R? numbers of 0.39-0.54 and E values of 0.53-0.46, and
hence, it is concluded that ANN model was better concern-
ing performance compared to regression models. Gharde
et al. (2015) performed sediment yield modeling using
the ANN model. The comparison of the performance of
ANN with linear regression is done and they discovered
that ANN concludes better accuracy compared to linear
regression. Adib and Mahmoodi (2017), in his work,
tried to predict ANN genetic algorithm (GA) and Markov
chain hybrid model at flood conditions. Using GA, the

@ Springer

various ANN parameters are optimized. The researchers
found that the normalized mean square error (NMSE) can
be deducted by GA to 80%, but it does not significantly
increase R. The water discharge (Q) and the suspended
sediment concentration (SSC) were taken and their rela-
tionship was modeled by Khan et al. (2019b), in Ramganga
river using ANN for SSC calculation. They concluded that
ANN algorithm is efficient to model the relation between
Q and SSC of a river. Moeeni and Bonakdari (2018) for
the first time applied autoregressive moving average with
exogenous terms (ARMAX) in conjunction to ANN for
sediment load prediction. The ARMAX-ANN conjunc-
tion model achieved better outcomes than each ANN and
ARMAX model (Choubin et al. 2017).

The physics of ANN changes with its training data and as
it is all carried through hidden layer hence is not known to
the user. The definition of an optimal network architecture
of ANN and the knowledge of the internal system conditions
are rigid as the user is not aware of the working of the hid-
den layer and no defined physical principles are available
due to non-linearity of the input data. Hence, researchers
faced difficulty in determining the appropriate ANN struc-
ture; therefore, they used the trial-and-error methodology
to find the unit quantity of neurons working in the hidden
layers. These analyses were broad and an expansive number
of trials must be done to get the correct number of units.
Due to its time-consuming property with similar operations
application the trial-and-error approach resulted in the need
for the development of some new methodology. The hydro-
dynamics could be integrated into the ANN models, so that
the disadvantages arose due to the trial-and-error approach
could be avoided and the problem of selecting an optimum
ANN structure could be solved.

ANN overview

ANN is not a new approach as its development began nearly
in the 1940s by McCulloch and Pitts (1943), to imitate a
brain’s way of functioning. It could be said that an ANN is
a parallel-distributed information processing system. The
information could be any raw data or a trained data. Its per-
formance characteristic resembles the neural network forma-
tion inside the human brain.

Working of an ANN could be given in the following
points:

1. The information is processed, at many single nodes, or
elements or units known as neurons.

2. Connection links are established between nodes, and
through them, signals are passed.

3. These connection links have weights assigned to them.
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4. Non-linear transformations are implemented by the
nodes to the aggregate input to get the aggregate yield
(Jalalkamali et al., 2011).

A neural system is portrayed by its design that tends to
the example of the links between the elements or neurons, its
procedure for picking activation function, and the affiliated
weights (Fausett 1994). Neural networks could be catego-
rized based on layers: single, two-layer, and multi-layer, as
well as on the basis of data flow. In multi-layer, the informa-
tion flows from one layer to other layers, i.e., input for next
layer are obtained from previous layer output and weights
assigned to the connecting links, there is no relation between
nodes in the same layer; whereas in recurrent ANN, the infor-
mation runs in both ways from the input to the output as well
as from output to the input side using the node (Bhattacharya
et al. 2007; Ajmera and Goyal 2012; Barua et al. 2010).

The non-linear processes are mapped due to the use of SF
in the network. SF is a non-decreasing, monotonic function.
The simplicity of this function is obvious due to its deriva-
tive result; hence, it is easy to use during the testing proce-
dure of ANN. The network of these above-defined nodes
forms an ANN.

Training algorithms of ANN

The BP At Harvard University, an algorithm was proposed
by Werbos (1974) in his PhD thesis known as BP algorithm.
However, it was popularized when Rumelhart et al. (1988)
trained the hidden layer neurons for a complex non-linear
mapping problem. To train the ANNs, BP is the most popu-
lar algorithm which was used by many researchers.

BP is an algorithm which minimizes the error function.
There are two passes in this algorithm, viz., forward pass
and backward pass. It comes in the category of gradient
descent technique. Here, the initial step is the forward pass
where the accessible diverse set of input patterns is given
to the input layer and its output is passed forward through
the neural network to the hidden layer or output layer.
Hence, the outcome acquired from the output layer is com-
pared with the target output in focus and error between
both these outputs is calculated (Govindaraju 2000). Now
in the second step, i.e., backward pass; this error propa-
gated back to the network, passing through every node and
the weighted connections are updated accordingly as per
the given equation:

Aw,, (m) = —n”ﬂ% + Kwapq(m -1, )
i

where Aw,, (m) as well as Aw,,,(m — 1) is the accretion in
the weights between the nodes i and j in m™ and (m — 1)
pass.

n° and 7 are learning rate as well as momentum,
respectively.

A learning rate helps in reducing the likelihood of being
caught in the local minima for the training procedure, and the
momentum factor can accelerate the training procedure (Sahoo
and Ray 2006; Freiwan and Cigizoglu 2005; Agarwal et al.
2009).

Even after the use of the learning rate the training process
could be caught in local minima. The calculation to obtain
minimum error is a slow training procedure as the solution
traverses a zigzag path. Hence, a need for another training
algorithm arose which could alleviate these factors.

The RBF In the application of neural networks, Broomhead
and Lowe (1988) introduced a new function called RBF that
could be used for training then after some years, Leonard et al.
(1992) introduced a new training method to train the ANN uti-
lizing RBF instead of the sigmoid function. As in the nervous
system, some neurons how the characteristic of locally tuned
response bounded to small range input space. RBF’s working
principle is also derived from the same concept.

This RBF neural network architecture is the same as nor-
mally used three-layer network models. In this model, a hid-
den layer is present and performing non-linear transforma-
tions without adjusting parameters. This hidden layer contains
a parameter vector called ‘centre’. This center could be cal-
culated in many ways, one of the simplest ways is to pick it
randomly from the available training samples, or it could be
determined through the k-means clustering method, i.e., select-
ing the center of the different group’s as the center or it could
be adjusted through error correction training by considering
it as a network parameter. For every node exist in the hidden
layer, the Euclidean separation amongst center and the input
vector is estimated and this Euclidean distance is changed via
a non-linear function which decides the yield of concealed
layer hubs, which are inputs to the output layer. At the output
layer, these inputs are combined linearly to determine the ANN
output for the ANN. Of an RBF-ANN, the output z could be
calculated using the equation:

2=f0) = ) WR(x) + w. 3)
i=1

In Eq. (3) w;=weights assigned to the connections between
neurons of the hidden layer and the output layer, x =the input
vector, w,=bias

R; : R" = Ris an RBF which could be given as:

R =olv =

As it could be seen that the function ¢(.) will have the high-
est value at origin and decrease very quickly as its parameter
goes to infinity, and it is also a requirement that ¢(.) should
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approach zero. Generally, the class of RBF is narrated by
Gaussian function given as:

n 2
xX—g
——exp<—2{%>, )
i= i

where gT = [gll Ciyr o G, ] vector denotes the midpoint of the
hidden layer, ;; denotes the width needed for Gaussian function.
The main d1fference between BP and RBF is the function
used to tackle the associated nonlinearity in the available prob-
lem. In error propagation, the fixed-function sigmoid is used to
implement the non-linearity, whereas the RBF uses the train-
ing dataset to implement the non-linearity, where it tries to
find all hidden layer basis functions by itself and then in linear
fashion summing all of them at output layer to give output.
Other algorithms are also available such as the cascade
correlation algorithm. However, due to the unavailability of
their application to predict SSL, they are not discussed here.
Advantages of ANN

1. Ability to learn by themselves and produce the outputs
that are not limited to the provided input.
2. Fault tolerance.

Disadvantages of ANN

1. Unexplained network behavior
2. Determination of appropriate network structure (Mijwel
2018).

The GRNN

GRNN is an ANN algorithm in which there is no require-
ment of the iterative training procedure and there is no
problem of local minima as encountered in feedforward
backpropagation (FFBP) (Yin et al. 2016). The physically
implausible estimates are mainly not generated by GRNN.
To model rainfall-runoff, Cigizoglu et al. (2004) used three
neural networks out of which one was GRNN. To forecast

fd.p)=

(27[)(6] + 1)/20-(q+1) i

c [ U—Pfu—ﬁq [
Zexp ———— | exp |—

- 202
i=1

(P— Px)2]

202

1 1 I-IHT'{I -1
N Z [ 2072

Jes |-

and estimate the intermittent flow, Cigizoglu et al. (2004)
applied the GRNN again to model river sediment yield. They
applied the GRNN and compared its performance with MLR
as well as SRC and showed that GRNN performance is the
best among the three. Adnan et al. (2019) applied a novel
dynamic evolving neural-fuzzy inference system (DENFIS)
and proved its applicability in SSL prediction.

The model

Specht (1990) proposed a general regression neural system
which does not need any iterative preparing method as in the
BP model. In this model, an arbitrary function is approximated
amid the input vectors and output vectors and is specifically
evaluated from the training information. There is leverage
appeared by GRNN that the error in estimation approaches to
zero with the expansion in training set size by incorporating
some mild limitations on the function. GRNN indicates pre-
dictable behavior and is fundamentally utilized in estimation
issues of continuous variables as ordinarily standard regression
strategies are utilized. GRNN follows the standard statistical
methods. These methods are normally called kernel regression
methods. Given a preparation set and the independent value
i, it assesses the estimation of dependent variable p which is
most likely and diminishes the mean squared error. The GRNN
calculates the joint probability density function of i and p for
a given training set.
The regression of p on I could be expressed as

[ yfd,p)dp
Elp|ll = —5— ©)
[ fU.p)dp

where f(I, p) denotes the known joint pdf of vector 7 and
p;I denotes the vector random variable; and p denotes the
sample random variable.

In case, when density function f(Z, p) is not known, then
through the observations samples of i and o, is estimated.
A probability estimator f(I, p) could be computed based on
sample values of i and p denoted by I* and P*, respectively.
It could be given as:

(P — PY)?
202

)
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In (16) g represents the dimension of the random vector
variable i;

N represents the number of inspections for samples.

Each sample /* and P* have the sample probability of
width o which is assigned by the probability estimator
fI,p). The estimate for probability could be calculated as
the aggregate of these probabilities (Specht 1990).

A scalar function Zi2 could be written as:
Z=1-M"A-1). 8)

Hence, substituting the values of Zf and performing the
given integration, it yields the following expression:

nopi z
Z,’:]Pexp<_ z)

20
S ex A\
i=1 p 2062

This equation could directly be applied to the available
arithmetic data. The initial layer of GRNN is the input layer
where input quantities present. However, in the next layer,
the pattern units or neuron elements are present which pass
its outputs to the additional units in the summation layer.
This summation layer is the third layer. The outputs of the
summation layer are passed to the final layer, i.e., output
layer. Here, output units calculate the final output for the
GRNN (Kisi 2008).

Advantages of GRNN

P(X) = )

1. Ability to handle noisy datasets.
2. Single-pass learning, no backpropagation required.

Disadvantages of GRNN

1. Big size.
2. Computationally complex (Marecek 2016).

Wavelet transform

The conjunction of wavelet analysis with the soft comput-
ing techniques had seen a rise in its use in the last decade.
Numbers of studies were carried out by applying wavelet
analysis and ANN in environmental engineering problems.
The wavelet transform was developed nearly in the 1980s,
but its utilization spread in recent years. To deal with non-
linear data, the existing conventional approaches were not as
good as for linear data, and hence, the need for the conjunc-
tion of wavelet analysis with the traditional models arose.
To predict droughts, Kim and Valdés (2003) introduced a
wavelet ANN (WANN). Similarly, the conjunction of wave-
let analysis with ANN in some other studies was studied by
Tantanee et al. (2005) and Cannas et al. (2005) to predict
annual rainfall and monthly rainfall-runoff, respectively in

Italy. WANN models and ANN models were also compared
in different studies based on their performance in prediction.
In the estimation of monthly streamflow, the two models
WANN and ANN were compared by Cigizoglu and Kisi
(2006) and concluded that WANN over performs the ANN.
The ANN model performance was checked and evaluated
with pre-processed data and without pre-processed data by
continuous and discrete wavelet transforms again by Cannas
et al. (2006), and it was concluded that ANNs with pre-
processed data performed much more efficient way than
the raw data. To estimate the SSL in waterways, Partal and
Cigizoglu (2008) proposed a model with the conjunction of
wavelets and neural networks. The un-decomposed raw data
were measured and decomposed into wavelet components
through the use of discrete wavelet transform (DWT), now
on these wavelets components sum is performed selectively
to result in a wavelet series. This wavelet series acted as an
input vector for the ANN. It was shown that WANN predic-
tions conveyed much more accurate results in comparison to
traditionally used models, i.e., ANN and SRC. A model with
the conjunction of wavelet and ANN was proposed by Nou-
rani et al. (2009) to estimate the precipitation for 1 month
ahead in Lingvanchai watershed situated in Tabriz, Iran. In
this study, first, primary rainfall time-series was taken and
the time-series was decomposed through the utilization of
the wavelet analysis. After decomposition, the time-series
for primary rainfall was converted into several multi-fre-
quency time-series and this multi-frequency time-series was
taken as the input vector to the ANN model. It was shown
that the prediction of precipitation events may be for long
term or short term can be done successfully because of the
usage of several multi-frequency time-series as an input vec-
tor. Wavelet analysis was also combined with approaches
like neuro-fuzzy (NF) and it was portrayed that it performed
significantly better than the conventional approach, i.e., NF
model. Rajaee (2010) predicted the daily SSL at a hydro-
logical station of gauging located in the United States by
applying a model in which wavelet conjunction with NF
model was taken and known as Wavelet NF (WNF) model,
in which the daily river discharge and time-series generated
through suspended sediment was decomposed into num-
bers of time-series through the DWT function at different
scales. Again, it was shown that WNF outperformed NF
(Adamowski 2008; Rajaee 2011) combined wavelet with
NF and found that WNF is an effective approach for river
SSL prediction. Li and Cheng (2014) suggested a hybrid
model which is the conjunction of ELM and WANN. They
discovered that ELM gives better performance compared to
SVM and the proposed WANN-ELM gives a more precise
prediction compared to ELM and SVM.

A wavelet could be defined as a function in a mathemati-
cal form which is used to decompose the given continuous-
time signal function into several scale components different
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to each other where for every single scale component, a
frequency range could be assigned. Each scale component
will have different frequency range implying correspond-
ing different resolutions; hence, each component could be
studied with corresponding different resolutions. An oscil-
lating waveform which is fast decaying and is of finite length
known as mother wavelet. The mother wavelet is translated
into multiple copies or scaled into different wavelets which
are called daughter wavelets, and when a function is rep-
resented by wavelets, this is known as wavelet transform
process. In the representation of functions that have disconti-
nuities in their form and sharp peaks, the wavelet transforms
show advantages over the traditionally used Fourier Trans-
forms in the case of suspended sediment load prediction and
reconstruction or deconstruction of the varying signals, non-
periodic, or of discrete nature. There are two types of wave-
let transforms such as discrete wavelet transform (DWT) and
continuous wavelet transform (CWT).

The CWT

It is a tool or an analytical formula used for dividing contin-
uous-time signal or continuous-time function into daugh-
ter wavelets. Several wavelets can be reconstructed using
the mother wavelet (MW). Let us consider y(x) be the MW
function which wavelet function can be obtained by the
temporal translation z and with dilation,d. The CWT of a
continuous-time signal x(s) may be expressed as (Ateeq- Ur-
Rahman et al. 2018; Antoine 1998):

(s

1 S—7T
Cla,7) = —/x(s))(*( )ds, a> 0. (10)
Va a

a o0
Here, * denotes the complex conjugate of y(x) and y(x)
is the mother wavelet function. CWT seeks for correlation
between the signal and wavelet.
To be classified as wavelet three criteria may be fulfilled
by y(x). They are:

1. E= [T |x(9))ds < oo,
where “I I” indicates the modulus operator that gives the
magnitude of y(x). If 7(f) indicates the Fourier transform of
x(f), then the following condition must satisfy

_ [ or
2. T, = f_oo Tdf < 0.

T, is the admissibility constant. The value of 7, depends
on the chosen wavelet. To reconstruct the signal, the inverse

CWT can be applied for the signal reconstruction as (Addi-
son 2018; Zhang et al. 2020):

@ Springer

x(s) = le / ) /0 Cla,7) 1) 2, (1)

a

where () represents the dual function for @(f).
The DWT

In practical applications, the discrete-time signal is taken
into account due to unavailability of the continuous-time
signal. Here, the continuous-time signal is discretized with
the use of the trapezoidal rule as mentioned above. If the
data set of length is taken, then the DWT will produce coef-
ficients. As the coefficients produced are square of the length
of the taken dataset, it means that there is some redundant
information present in the coefficients. Now, based on the
problem, this redundant information could be utilized or may
not be utilized. It is good to have redundant information,
but sometimes it provides extra complexity. Occasionally,
logarithmic uniform spacing (LUS) is used to tackle this
redundant information problem. In this LUS, the resolution
of B considered is coarser as compared to « scale discretiza-
tion which results in N coefficients for length N. The DWT
could be represented as:

(= - g % 1
(pr,s - \/a—(;(p ag ’ ( )

where r is an integer used to control the dilation in the wave-
let, s is an integer used to control the translation in the wave-
let, §, denotes the location parameter which takes its value
always greater than 0

@, denotes a step finely dilated taking its value always
greater than 1

Mainly, the values are taken in practice for a;, and g, are
2 and 1, respectively. For both the steps i.e., dilation and
translation, if we take the power of two logarithmic scales,
then it could be represented as:

0,40 = 27 221~ ). (13)

This is normally known as the ‘dyadic grid’ arrangement.
Here, the above-mentioned equation for dyadic grid wavelet is
taken in a compact form. Generally, the discrete dyadic wave-
lets are orthonormal to each other. There is no redundancy
present in the signal which is regenerated from the wavelet
transformed signal as the information stored in all the wavelet
coefficients is not repeated. For a discrete-time-series,w;, the
articulation for the dyadic wavelet change could be given as:

N-1
X(r.s) =272 Y y@ i - sy (14)
i=0
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For the wavelet of discrete scale a = 2", here,X(r, s) rep-
resents the wavelet coefficient. In Eq. (14), x; represents a
finite time-series where i =0, 1, 2, ...., n — 1 and n repre-
sents an integer power of 2, where n = 2. Hence, this dis-
plays the range for the variables r and s as fyand1 < r < M,
respectively. It is enough and sufficient to use one wavelet to
cover the time interval, and when the wavelet scale which is
largest (i.e.,2” where r = m) and creation of only one coef-
ficient is needed. Hence, the same condition is applicable
r=1Atr=1,4 could take the value as 2!, this infers that
to convey the signal creation, 2”~! or "/, coefficients will
occur at the same scale. It implies that if a discrete-time-
series for above function having its length n = 2"} is taken,
and then, the summation of wavelet coefficients is given by
142+4+8+...+2" ' =n-1.

A component X remains the known smoothed component
of the signal, which could be denoted by the mean of the sig-
nal. Hence, a time-series having its length » = m is taken and
is decomposed into » = m components having no redundant
information present in them.

The inverse discrete wavelet transform could be formu-
lated as:

2M=p 1

> X2 2y i) (s)
Or simply, it could be formulated as:

M
0 = X(0) + Y, W, (0. (16)
r=1

where ?(t) represents the approximate value of a sub-signal
at any level m.

W, (t) denotes the coefficients for wavelet where
m=1,2,...M.

These wavelet coefficients offer the details for sub-sig-
nals. Now, with these sub-signal details have the property
to capture the small or it can be said that fine features in the
values of data interpreted.

Here,X(7) is a residual term providing the information of
the background for the available data. Due to the easiness
quality of the W,(¥), W,(?), ...., Wm(t),f(t), the number of
properties can be easily considered using these components.

Advantages of WT

1. Shows simultaneous localization in time and frequency
domain.
2. Fast computation while using fast WT.

Disadvantages of WT

1. Shift sensitivity.
2. Lack of phase information (Fernandes et al. 2003).

Decision

Perceptron as NI

Fig. 1 The initial model of the fuzzy neural system (Fuller and Fullér
2000)

The NF

Neural networks perform excellently in recognizing patterns,
but could not convey how these neural networks are reaching
their decision. On the other hand, systems with the applica-
tion of fuzzy logic efficiently explain the decisions taken by
them, but do not have the property to automatically gain the
rules to reach the decisions. Then, there are complex prob-
lems where there could be the presence of reasoning task as
well as processing task which could be accomplished with
fuzzy logic and neural network respectively. Therefore, it is
better to use the hybrid model which could reason as well as
the process in one single model, so that the complex prob-
lem could be solved with less effort. Hence, the need fora
hybrid model such as NF approach has flourished which has
the advantage of both the neural networks for processing as
well as the fuzzy logic for decision-making and conveying.

There are numerous investigations performed to develop
artificial intelligence techniques to simulate the problems
available with inadequate physical knowledge of the systems.
During the last decade, the use of fuzzy logic gained growth
in the application of simulation problems like environmental
uncertainties, river engineering, etc. As it is already men-
tioned, the application of ANN models in these non-linear
problems shows its success widely. Still, we could not always
rely only on one model; there is always a need for a different
model about the chances of more accurate results. Hence,
fuzzy logic (FL) is used to combine with these neural net-
work learning algorithms in different estimation problems.
This application of neural network learning algorithms on
fuzzy modeling is normally known as NF modeling (Brown
and Harris 1994). This model was implemented in many
problems belonging to different areas like environmen-
tal engineering, financial trading, medical diagnosis, etc.
Ocampo et al. (2007) applied a fuzzy model to model the
ecological status in surface waters. Studies had been con-
ducted to employ the neural network models with FL to
arrive at a single hybrid model to evaluate the estimation of
the SSLs. The fuzzy inference system (FIS) model is also
applied in modeling the suspended sediments. The forecast
of SSL was done by Tayfur et al. (2003) with the use of FL
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K based

NI
NN > FLI

NO/P Decisions

| LA

L )

Fig.2 The second model of the fuzzy neural system (Fuller and
Fullér 2000)

on slope data and rainfall intensity from exposed soil sur-
faces. They concluded that the fuzzy approach provides better
results over different slopes with various rainfall intensities
and performed better for steep slopes. Lohani et al. (2007)
compared the rating curve method with FIS for the perfor-
mance in the simulation of a relationship for stage-discharge
sediment concentration. The simulation was performed in a
couple of gauging stations in a river called the Narmada in
India. As expected, outcomes concluded that fuzzy method
over performs the rating curve method. The accuracy in the
estimation of monthly suspended sediments using different
models was studied by Cigizoglu and Kisi (2006). The study
was done in Salur, Koprusu, and Kuylus stations in Turkey.
They compared ANN and SRC models with ANFIS for accu-
racy in estimation of suspended sediments, and the results
exposed that NF System outperforms the other two models in
estimation. Rajaee et al. (2009) compared MLR, ANN, NF,
and SRC models for estimating the daily SSC. The exami-
nation was carried out in two hydrometer stations in USA.
The data for sediment concentration and daily river discharge
belonging to both stations had been implemented to train the
models. The outputs showed that the NF model outperforms
the other three models in predicting daily SSL.

Model

To model the fuzzy neural network in its computational pro-
cess basically, these three steps are followed:

1. The fuzzy neural model is developed based on the work-
ing process of biological neurons.

2. The synaptic connections or the connection between
neurons in each layer are modeled with fuzziness.

3. The adjustment of synaptic weights pertaining to the
development of the needed learning algorithm.

There are two models which could be considered for NF
modeling. In the first one, the fuzzy interface responds to the

@ Springer

linguistic statements given and as output provides a quantity
having direction as well as the magnitude to the multi-layer
neural network, as shown in Fig. 1. Then this neural net-
work (NN) tries to adapt itself to achieve the desired results
through a learning algorithm. In the second model, first, the
NN tune the membership functions which are used by the
fuzzy system in the decision-making process, as shown in
Fig. 2. The FL itself tune the membership functions directly
using the required rules with linguistic statements, but it is
computationally expensive. Hence, the performance could
be improved with the use of neural network learning algo-
rithms which would automate the tuning process.

In the above two figures.

FLI=fuzzy logic interface, NN =neural network,
NI=neural input, NO/P =neural output, K based =knowl-
edge-based, LA =learning algorithm, LS = linguistic
statements.

The ANFIS and FL

Here, the model for adaptation of the second model (Fig. 2)
is taken in a detailed manner which is also known by the
name of ANFIS. This algorithm is an extraordinary instance
of the second kind of modeling for NF-based models which
were presented by Jang and Sun (1995). ANFIS follows the
Sugeno-type fuzzy (SF) models. In this model, the reasoning
mechanism attempts to determine the resultant function f
for the provided input vector [i, j].

Here, an FIS having two inputs i ;j and f as respective
output is considered. In the initial order of the SF model, the
knowledge used in the model has a form of if-then rules of
FL, which can be shown as:

Regulation 1 : Ifis X1 and jis Y1, thenf; =i + mj + r,
a7
Regulation 2 : Ifis X2and jis Y2, thenf, = l,i +m,j + r,.
(18)
In (17) and (18),X,,X, and Y, , Y, are the membership
functions for inputs i and j, respectively;/,, m,,n, as well as
I, , m,, n, are the parameters of the resultant function (Fira-
tand Gungor 2008).
The ANFIS functions are given as:
Layer I: In this node, outputs are defined hence the output
OP! could be given as

OP!

uUX(i) forx=1,2 or (19)

oP.

va—z(l') forx = 3,4, (20)

where i or j are the input nodes.U, or (V, —2) are the
language statements or labels (high or low) which are
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associated with the given node. These labels to the node
are characterized as the membership functions from which
it is true for any continuous and piecewise differential
function, viz., triangular-shaped functions, Gaussian func-
tions, generalized bell-shaped or normal distribution func-
tion, and trapezoidal-shape. Generally, the membership
functions are given by normal distributed or bell-shaped
functions for A and B. The output OPg, at the node, could
be calculated as:

1
Tt (= Cfy 1)

OP} = uy (i) =

In (21), a,, b,, c, is the set of parameters.
Layer II: Here, the incoming signal is multiplied at each
node:

OP} = py (Dpy, (), x=1, 2. (22)

Layer III: Here, the normalized firing strength is com-
puted for the i node which could be expressed as:
w
OPP=w, = —= .
N w4 w, (23)
Layer IV: Here, for every node /, the benefaction of x"
rule is computed toward the output of the model:

OP! = D' Wf, =W + qj +7). 24)

In this equation,w, is known as the output of layer III as
well as {p,, q,. r,} is the collection of parameters.

Layer V: There is only 1 node present in the layer which
computes the total outcome of the ANFIS model (Jang and
Sun 1995; Nayak et al. 2004; Aqil et al. 2007) which could
be shown as

_ X
OP’ = ) Wf ="—.
E Z ofx >, (25)
The learning algorithm used in the model is a hybrid algo-
rithm in which two approaches, such as gradient descent and
least squares, are encompassed and combined. This model
takes a premise and consequent optimization parameter.
In the first phase, the consequent parameter is established
through node outputs in forwarding pass till the layer IV by
the use of the least square approach. In the second phase,
the errors are propagated backwards in the backward pass,
and hence, through the use of gradient descent, the basic
parameters are established accordingly (Jang and Sun 1995;
Aqil et al. 2007; Zounemat-Kermani and Teshnehlab 2008).
Advantages of ANFIS

1. Compared to ANN, more transparent to the user.
2. Causes low memorization errors.

Disadvantages of ANFIS

1. Curse of dimensionality.
2. High computational cost.

The SVM

In recent times, an advanced approach in regards to com-
puterized reasoning, known as SVM, has numerous imple-
mentations in learning strategy machines. This technique
effectively has been utilized as a part of data arrangement
and lately in regression issues. Cortes and Vapnik (1995)
introduced SVM for problems related to binary classifica-
tions, and later, it has been applied in regression problems.
Most of the studies on SVM tried to optimize the dual opti-
mization problem, and it is very effective on both linear
and non-linear datasets. Few SVMs show great results even
if the data size is very large. This model was utilized for
water management initially by Sivapragasam et al. (2001),
Dibike and Solomatine (2001), and Zhao et al. (2002), and
the novel model is known as SVM (Cristianini and Shawe-
Taylor 2000; Chapelle 2007; Fung and Mangasarian 2003).

The SVR

SVR is also known as SVM for regression which is a regres-
sion method based on the support vectors, introduced by
Vladimir Vapnik and his team in AT&T labs (Drucker et al.
1997). Mainly, SVR tries to minimize the generalization
error using the SRM principle.

Suppose, the calibrating data
{(i1.j1)s e (infy) } © AX R, where A denotes the input
patterns count. The goal here lies in seeking a function f(i)
which has the highest € deviation. This model is also known
as e-support vector regression:

f@) =(w,i) +zwherew € 4, z € R. (26)

The primal problem of SVR may be stated as:

1 5
min 2||w||

| 0= (w,i) —z <€ @7)
subject to ) .
(w,i,)+z—o0, <€

Sometimes errors are allowed, and therefore, slack vari-
ables & and &* are introduced:
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I
1 2 *
minZlhvl” +2 2, 6+ &)

0, —(w,i,) —z <€ +¢, (28)
subject to § (w, i) +z—0, <E +&7.
£.8 20

The constant z > 0 determines the flatness trade-off
between f and the maximum toleration of €. This deals with
|€|c is known as e- insensitive loss function (Noori et al.
2015):

iflé] <e

[ o
€le = |E|— € otherwise (29)

In practice, generally, the dual problem is solved rather
than the primal problem. The dual formation can be
inscribed as:

l 1
L= 2IwlP 42 Y G +E) = Y 0né + €D
x=1 x=1
I}
= D d(€+&— 0.+ (w,i) +2) (30)
x=1

1
= Y A€+ 0, + (i) +2)
x=1

subject to,d™, n* > 0

Partially deriving with reference to the Lagrangian vari-
ables (w, & cf;‘) and substituting them in (39) give the dual
optimization problem:

(d, = ) (dy = & )iy
1
(de+d;)+ Yo ld~d7)  (BD)

1 i=1

N =

M- LM~

max imize

— €

X

I
subject to Y (d,—d’) =0 and 0<d,.d' < C.

x=1
Implementing the non-linear function using a kernel
which is:

k(i i7) = ¢@i) ), (32)

where k(...) is a kernel function (Smolaand Scholkopf
2004). For any input space y € R, its prediction is shown
as:

l

fl)y =Y (d,—d) k(x.x0) + z. (33)

x=1

Advantages of SVM/SVR
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Fig.3 Architecture of the LSSVM model (Suykensand Vandewalle
1999; Nourani and Andalib 2015a)

1. High generalization ability.
2. It scales relatively well with high dimensional data.

Disadvantages of SVM/SVR

1. Sensitive to noise and outliers.
2. High computational complexity (Hazarika and Gupta
2020).

The LSSVM

To take care of the non-linear classification and regression
issues, SVM was updated and the new model was devel-
oped known as LSSVM. This model was first introduced
by Suykens and Vandewale (1999) which has been vastly
applied to the problems of work prediction and density pre-
diction. The non-linear function of LSSVM could be written
as:

@) =w'p(p) + v, (34)

where fis the association between the streamflow and SSL,
w is called the weight vector with m dimension, and v is the
bias factor (Nourani et al. 2017).

Due to the complicated nature of function error as well
as fitting error, the regression issue might be offered by the
basic minimization guideline as:

. 1 m
minJ(w,e) = EWTW + g ijl ef. 35)

In (35), p represents the margin parameter.
The equation has the constraints:

Qi =wo(P) +v + ¢(j=1,2,....m). (36)
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In (36).¢; represents the negligible variable for P;. This
equation represents the optimization problem but with the
constraints. Hence, to get the solution to the problem, these
constraints can be converted into unconstrained problems in
the objective function with the use of the Lagrange multipli-
ers a; as (Nourani and Andalib 2015a, b):

Lw, u e, a)=Jw, &) = Y a{w'$p(P) + v + ¢, = O;}.
j=1

(37

¢ denotes the mapping function. This function takes P and

maps it into the m-dimensional feature vector. In Eq. (37),

the partial derivatives could be taken with respect to w, u, e,

and a;, respectively, to reach the optimal conditions (Suyken-
sand Vandewale 1999). It could be given as:

-

w= 2 ad(P)
j=1

J=
) Zaj =0 . (38)
7

o = Pe;

wip(P) +v +¢; — Q

Hence, the linear equations for (38) could be written as:

0o -0f v 0
0zz" + 3| |a|l T 1| (39

In (39)

R = ¢®P)Qp, .. ,HP,D'0,,

After using the kernel func-
tionK (P,P;) = ¢pP) HP), j= 1,..ccccc.. ,m,the LSSVM
regressor becomes:

f)=) aK(P, P) + v. (40)
J=1

The RBF is generally utilized as a part of regression
issues. The RBF kernel function is utilized as a part of the
study as:

k(P,P;) = e<_ HP:;HZ) (41)

s

here, 6 represents the parameter for RBF kernel. The
estimation of this parameter is done through the network
procedure itself. The universal architecture of LSSVM is
illustrated in Fig. 3.

Here PV-Prediction vector, SV-Support vectors,
KF—Kernel function, PR—Prediction results, NF-Non lin-
ear function.

Advantages of LSSVM

1. Good generalization performance.
2. Low computational cost.

Disadvantages of LSSVM

1. Sensitive to noise.
2. Sensitive to outliers.

The GA

Several new methodologies have been implemented to mini-
mize the error rate in ANN, and eventually, they showed
better performance. Among them, one of the most powerful
methods is called the genetic algorithm. Although the algo-
rithm consumes more time for training as compared to ANN,
it achieves less erroneous results.

GAisthe types of computational models which are
inspired by the functionality of genes. Though there are
various applications of genetic algorithm, they are mainly
viewed as function optimizers. GA provides different advan-
tages to existing machine learning methods. For example,
a GA.

i. Can be utilized by data mining for the field/attribute
choice, and

ii. Can be attached with neural systems to decide ideal
weights and design.

GA goes through three steps:

i. Build a population (typically chromosomes) of solu-
tions and maintain it.
ii. Opt for better solutions for recombination among
them.
iii. Use their offspring for replacing poorer solutions.

The general genetic algorithm operates as:
i. Initialization of a group of individual populations.

ii. Calculation of the fitness of each individual.
iii. Reproducing till a ceasing condition is not met.
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Reproduction comprises of the following steps (Whitley
1994; Vankatesan et al. 2009):

i. Take at least one parent to reproduce.
ii. Make a mutation for selected individuals by making
changes in a random bit of a string.
iii. Creating a new population.

Finally, one can conclude that the GA-based models are
very effective for predicting the SSL.
Advantages of GA

1. Ability to avoid being trapped in a local optimum.
2. Use probabilistic selection rules rather than determinis-
tic rules.

Disadvantages of GA

1. Computationally expensive
2. Low convergence (Aljahdali et al. 2010).

The GEP

GEP analogous to GA utilizes the individual popula-
tion. Ferreira (2002) developed GEP which utilizes major
standards of GA and genetic programming. Initially, it was
developed for computer program generation. GEP is an
evolutionary approach that emulates natural headway pro-
gress for influencing the PC platform to program stage and
further to create a model (Baylar et al. 2011). The issues
are encrypted in straight chromosomes of the same length
as a PC program. GEP utilizes a large portion of the GA
operators to perform the emblematic operation. However,
some distinguishable dissimilarity can be noticed between
GEP and GA. In GA, any numerical formula involves a
symbolic representation of similar length (chromosomes)
or components of non-linear nature. These components
vary in their shapes and sizes, which are represented in the
form of parse trees. Furthermore, this mathematical expres-
sion is encoded and represented in the form of expression
trees (ET) in GEP. These expression trees consist of very
simple fixed-length strings and are of various shapes and
sizes. The encoding is done on these strings present in
the mathematical expression (Ferreira and Gepsoft 2008;
Cevik 2007). The algorithm of GEP starts by taking five
segments. These segments are based on the arrangement
of the functions, terminals, fitness function, controlling
parameters, and stopping condition. In the following steps
of the algorithm, a comparison is performed for estimated
values and the original values. When the coveted outcome
is accomplished, i.e., the taken criterion for the error is
achieved, GEP stops. Few chromosomes are mutated to get
new chromosomes by utilizing roulette wheel sampling if
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the desired error criterion could not be accomplished. The
program stops and the chromosomes are decoded to get
the best outcomes when the desired outputs are achieved
(Teodorescu and Sherwood 2008).

Usually, the principal components in a GEP algorithm
are the symbolically fixed-length strings of a mathematical
formula known as chromosomes and the ET which carries
relevant information. This information could be translated
using conclusive language (e.g., Karva language) into
expression trees which are the valuable features that per-
mit to accurately deduce the genotype (Kayadelen 2011).

Gene comprises of two components, viz., head and tail.
These components are mathematically expressed using some
parameters alternatively known as variables, present in the
head of gene. However, these parameters fall short of encod-
ing mathematically, which give rise to the parameters used
in the tail. The tail is present with required variables or con-
stants to determine the difficulties to encode expressions as it
is present with extra terminal symbols that help in encoding.
The head usually consists of the arithmetic functions like
addition (+), subtraction (—), multiplication (X), and division
(+), etc., while the tail consists of the independent variables
or the constants like (1,2,3,...,a,b,c,x,y,....). The length
of the gene plays a vital role in the algorithm. Hence, it is
decided at the starting of the analysis to define the total num-
ber of symbols present in both the head and tail. The ETs in
the Karva language are read from left to right in a line and
from top to bottom for whole of ET.

Advantages of GEP

1. Able to solve relatively complex problems using small
population sizes.
2. Good generalization ability (Ferreira 2002).

Disadvantages of GEP

1. The conventional GA uses the method of fixed-length
coding that performs poorly while facing complex prob-
lems (Cheng et al. 2018).

2. Low convergence.

The multiple regression (MLR and MNLR)
The MNLR

In MNLR, nonlinearity and multiple regression are the basic
components for estimations of factual information. Linear
regression (LR) in logarithmic space is generally used to
decide the parameters of the derived equations:

InZ=InK + aylnly +a;Inl,+a,In I, +...4+a,In I,
42)
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To make (42) non-linear in linear space, we can rewrite
it as:

a, a a
Z= KIO"XIJIZ2 ............. 1%, (43)

Equation (43) does not consist of intercept and various
components, i.e., Iy v I(Tsykin 1984; Karim and Ken-
nedy 1990). This method has been successfully implemented
by a few researchers for SSL prediction.

The MLR

MLR models have influenced and controlled various fields
for time-series estimation. MLR is generally utilized for
modeling. For example, urban overflow toxin load, wash
load silt concentrations, suspended sediment release, and
the probability of swell capability of clayey soils. The main
difference between MLR and simple LR (SLR) is that SLR
has one predictor variables, whereas MLR has two or more
predictor variables. In MLR, the dependent variables are
dependent on p independent variables. These variables are
often called explanatory variables. The equation for MLR
could be given as:

y = Poxo+ Bixp + o +Bx, + €. (44)

In (44),8y, B, By oo s ﬂp are the coefficients for the p
independent variables representing the change in mean val-
ues (Rajaee et al. 2010; Toriman et al. 2018).

X0y X1 s Xgs eevenne , X, represent the p explanatory variables or
independent variables.y explains the variable to be predicted
or the dependent variable.e denotes the error. It follows the
normal distribution with parameters = 0 and ¢>.

The model fitting for MLR is considered with the addi-
tion of independent variables. The explained variance for
the dependent variables will also increase when, i.e.,R?
increases.

Hence, the model may lead to over-fitting. Least square
error criterion is the simplest choice to calculate the devia-
tion between the desired value and the observed value.
Hence, the model of MLR is said to be fit, only when the
least square error is minimum. Different values of the coef-
ficient g, are taken to minimize the error.

This could also be represented in matrix form showing
a more efficient structure of the model as there are a large
number of predictor variables used in learning the model.
Let us take a simple linear equation similar to Eq. (53), that
is:

yi = B+ Bix; + €. (45)

Fori=1,2.......... ,n,in (45), they could be written as:

yi = Byt Bxy + g
Yo = Byt Bixy, + &

Yn = ﬂ0+ ﬂlxn + Ep-

These equations could be written in matrix form as:

_)’1 1N X ] _51 1
2 I x| &
=|. . IBO +|.
LB
EAE &, | (46)
Y=XG+¢

Hence, n number of equations in (45) could be repre-
sented by just a simple Eq. (46), which is given above. The
modeling of MLR can be used for prediction of SSL.

Advantages of multiple regression (MLR/MNLR)

1. Ability to determine the relative impact of one or more
predictor variables on the value of the criterion.
2. Ability to identify outliers.

Disadvantages of multiple regression (MLR/MNLR)

1. Poor prediction performance (Maxwell 1975).
2. Sensitive to design anomalies in data (Akkaya and Tiku
2008).

The CART
Model

In the past, decision trees were proposed to work on the
empirical examples to understand their performance on SSL
prediction. However, this approach became popular with no
strong theoretical foundations, because the CART model
that is much more sophisticated and offers technical proofs
for the results obtained. The merit of the CART model is
that it could process both continuous as well as nominal
attributes in both forms of the target and predictor variables
as compared to other DT algorithms. In machine learning,
data mining, and non-parametric statistics problems, CART
outperformed the other traditionally used algorithms for
classification. The CART is applied in many domains such
as medical science, marketing research, river engineering,
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and prediction problems. Besides, it is also applied in SSL
prediction (Talebi et al. 2017).

The CART model applies a binary recursive partitioning
procedure to the raw data. CART model was proposed by
Breiman et al. (1984) to refer to both procedures, i.e., clas-
sification and regression. When the output to be predicted
is a class, then it comes in classification category, and when
the predicted output is any real number (like the price of a
vehicle, age prediction), then it comes in the category of
regression; it could be also said that if the predictor vari-
able is of categorical form then CART gives classification
and numerical form, then CART produces regression tree.

In this decision tree model, the tree initially grows with-
out any stop to its maximum size and then pruning is per-
formed split by split to the root, such that the model com-
plexity could be minimized. The procedure of splitting and
determining describes the procedure discrimination as clas-
sification and regression. In this model, as pruning is done
split by split, hence the next split pruning will be the one
which has the least complexity in tree performance for the
available data for training. Trees produced will be invari-
ant for any predictor attribute transformation. This model
creates a grouping of nested trees. These all pruned trees
are themselves candidate optimal trees. The calculation of
predictive performance for each pruned tree is done and the
tree with the best performance is taken as an honest tree. The
tree selection is done based on independent test data depict-
ing tree performance and not on any internal measurements.
In case of unavailability of data or any cross-validation of
data, the CART model would not give its fixed decision on
the best tree selection. Instead, the CART model provides
an automatic handle of missing values, balancing of class
formation of dynamic features etc. (Breiman 2017). The split
rule followed in CART is given by

If CONDITION TRUE
THEN go left
Else
go right

where the CONDITION could be represented as X; <= C
and for a nominal attribute for continuous attributes and it
expresses the membership in a definite set of values for a
nominal attribute.

The CART mainly follows the Gini rule of impurity for
classification over miss classification error and entropy index
are included symmetrised costs if extended. It forms a set
arandomly chosen element is arbitrarily labeled; following
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the label distribution given in the subset the measure of Gini
impurity tells how often this element is labeled mistakenly.
If the target value is binary (i.e., 0/1), the Gini measure of
impurity could be given as

g =1-\c@)’ — (1 - c()*. 47)

For class 1,c(¢) represents the relative frequency inside
the node in (47). And the gain produced due to the split of
the parent node C could be given as

G(C) = g(C) — ag() = (1 = a)g(r). (48)
In (48)
[ and r represents the left and right children of C
respectively.

a represents the fraction of instances which are going to
the left children node (Timofeev 2004).

Two common impurity calculations are least squares and
least absolute deviations for regression trees (Moisen, 2008).

Advantages of CART

1. Data normalization not required.
2. Intuitive.

Disadvantages of CART

1. High computational cost.
2. The small change of data can cause a large change in a
tree structure.

The M5 Model Tree

MS5 Model Tree type models were actualized in different
hydrological implementations (Bhattacharya et al. 2007;
Shrestha and Solomatine 2006). Quinlan (1992) states that
the methods involving model trees represent the data in a
structured form for a class and give the piecewise linear
fit. Hence, generalizing the regression trees having constant
leave values. Their structure is similar to the traditionally
used decision tree structure. These model trees use linear
regression functions at the leaves in place of discrete labels
for different classes. This makes it perform well even for
continuous several numbers of attributes. As it is normally
done in the learning of decision tree models, M5 also learns
similarly by dividing the available data in a tree-structured
form based on the values of the predictive attributes. As the
dimensions of the data set increase the computations require-
ment grows at a rapid rate. However, M5 could tackle the
problems of a very huge amount of computations involving
a large number of attributes. These are much smaller than
the conventional regression trees which have less number
of variables with clear decision strength (Frank et al. 1998;
Singh et al. 2010; Goyal and Ojha 2011).
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M5 model does not choose its attributes by the informa-
tion-theoretic metric; instead, it tries to choose those attrib-
utes which could reduce the intra subset difference in the
values. These values are the class values of the instances,
and each branch of the tree goes downwards. When these
values going downwards from the root to the leaf node, at
each node, the attribute values of that node are tested for
the expected reduction in the error. Furthermore, the value
which maximizes this error is selected to calculate the stand-
ard deviation (SD) in the values. This SD is the measurement
of the variability of the values. This splitting or division of
data is stopped if the instance values reaching node have a
very slight difference or the number of instances remained is
very less in number (Goyal 2014; Goyal et al. 2013; Witten
and Frank 2016).

The standard deviation reduction (SDR) could be evalu-
ated as expressed below:

SDR = SD(T) — Z; x sd(T,) . (49)

i

In (49) T represents the example set reaching the given
node; T, represents the example set delivering the output for
the given set (Rejaie-balf et al. 2017).

Sometimes, there could be the formation of over-elaborat-
ing structures which needs to be pruned back due to unrelent-
ing structures. It could be done by placing a leaf instead of
a subtree. At these leaves which created after pruning, there
could emerge some sharp discontinuities between neighbor-
ing straight models in a model where less number of train-
ing examples are utilized. Subsequently, the smoothening is
performed in the conclusive stage. The update of adjacent
conditions (linear) is performed, so that the outputs which are
anticipated for the input vectors in correspondence to various
conditions turn out to be about same in terms of value.

Advantages of CART

1. Can handle both numerical and categorical data.
2. Intuitive and easy to visualize.

Disadvantages of CART

1. Constrained to make only binary splits.
2. A small change in the dataset can make the tree structure
unstable.

The CHAID

CHAID is a white box decision tree-based model that is used
to search for the algorithms between a categorical response
variable and another categorical predictor variable. This
model was proposed by Kass (1980). This creates a deci-
sion tree using Chi-square statistics. It has the capability

of creating non-binary trees which implies that few splits
achieve at least three branches, unlike the CART model.
CHAID is successfully implemented in data mining, direct
marketing, and medical diagnosis et cetera (Haughton and
Oulabi 1997; Hill et al. 1997). Recently CHAID has been
successfully implemented to predict the SSL along with
SVM and ANN (Pektas and Dogan 2015). The obtained
results revealed that the CHAID model was a better per-
former compared to SVM.
CHAID model proceeds stepwise:

i. First, the most favorable subset is taken for each pre-
dictor available in the decision tree.

ii. The second step follows with a comparison done
between these predictors with their results, of which
the best is taken.

iii. In the third step, the available data are further divided
into subsets as per the chosen predictor.

iv. Finally, all these divided subsets are again analyzed
without any dependency between them to get further
subdivisions which are analyzed iteratively according
to the above steps (Kass 1980).

Advantages of CHAID

1. Low computational cost.
2. Not constrained like CART to make binary splits.

Disadvantages of CHAID

1. To get reliable results, larger quantities of data are
required.

2. Before analysis, real variables are forced into categorical
bins (Nisbet et al. 2009).

The ELM

In machine learning, ANN is a great performer in terms of
prediction as well as classification. It has been successfully
applied in several fields that include hydrological forecast-
ing. Compared to the traditional machine learning algorithm
SLFN, ANN portrays satisfactory outcomes. However, ANN
faces the problem of local minima and gives low generaliza-
tion performance. The primary reason behind these issues
is that moderate gradient descent algorithms are widely
used and each parameter of the systems is tuned iteratively.
Consequently, Huang et al. (2006) proposed another model
called ELM to vanish these issues. Here, the weights and
biases are arbitrarily relegated to the input layer and hid-
den layer separately. The output is estimated by utilizing
the Moore Penrose generalized inverse of the hidden layer

@ Springer



346 Page280f39

Environmental Earth Sciences (2021) 80:346

output network. ELM gives better generalization perfor-
mance and is fundamentally quicker than the ANN.

Suppose, a set is considered for training samples
{(i,, ox)}le ’’’’’’ . and for each input example
i, = (ixl ,om) "€ R". Let o, € R are the corresponding
target values. For the arbitrarily allocated qualities of the
learning parameters a, € (dg, g, veneenens a,) € R"and b,
€ R for the nodes present in the hidden layer, algorithm
ELM computes its output function f(.) as:

flip) = Y wE@a,.b,.i) = opfork=1,....m. (50)

In (50),E(a, b, i) represents the output function of the hid-
den layer. This output function is a piecewise continuous
function showing the non-linearity in its nature and fulfills
the states for all the inclusive estimate ability theorems.

w= (W, .w;) € R"indicates the weight vector for
the hidden layer connecting the nodes of the hidden layer to
the output layer nodes. This vector is obscure in the knowl-
edge of its working to the outer world, holding an ANN
model property. The Eq. (50) can be modified to represent
in matrix form as:

H= : : . (51)
)

mxn

For hidden layer,H represents the output matrix in the
network as well as o = (01, ....... om)t € R" gives the out-
put vector values which are observed. Various activation
functions can be used in ELM viz. sigmoid, multiquadric,
ReLLU, RBFetc.

If the output function, E(a, b, i) of the hidden layer, is
defined already in advance and assignment of values to the
parameters a, € R"; b, € R"is done randomly, then, to
train the SLFN will be same as it happens in a rectangu-
lar system to obtain the solution for the least squares, i.e.,
w € R!. Here, this rectangular system will be linear. The
generation of w € R'is done explicitly as the solution for
b, € R", in the form of least norm least squares. In this
generated solution,w € H*ty.H* denotes the Moore—Pen-
rose generalized matrix inverse of H(Balasundaramand
Gupta 2014). Hence, the generated solution w € R’ will
work as a fit model f(.) for ELM regression. It could be
expressed as

Fli) =) w,E(a,,b,.i). (52)
Advantages of ELM

1. Fast and efficient.
2. Parameter tuning is not needed.

Disadvantages of ELM
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1. Noise and outlier sensitivity.
2. Opverfitting problem.

The RF

RF is one of the most potent ensemble-based learning mod-
els. Breiman (2001) suggested the RF algorithm by add-
ing additional randomness layer to the bagging method. It
functions by constructing multiple decision trees and final
predictions are extracted from the averaged results.

The algorithm of RF starts by drawing n,,,, the bootstrap
sample from the data. Afterward, an unpruned classifica-
tion or regression tree is developed for each sample in the
bootstrap (Ouedraogo et al. 2019). Subsequently, a random
sample of the predictors is to be considered at each node
and the best split from among those variables (predictors) is
selected. Finally, new data are predicted by aggregating the
prediction of n,,, trees (Liaw and Wiener, 2002).

Advantages of RF

1. Good generalization performance.
2. Can handle nonlinearity.

Disadvantages of RF

1. No interpretability.
2. Overfitting problem.

The MARS

The MARS model was formulated in the early 1990s by
Jerome H. Friedman. The MARS system fits an adaptive
non-linear regression model using multiple piecewise linear
basis functions hierarchically ordered in consecutive splits
over the predictor variable space (Spline 2013). The general-
ized form of the MARS model can be expressed as:

N
y=fx)=cy+ Z enHiy &y m) s (53)

n=1

where y is the output parameter, and c, and N are the con-
stant and the number of basis functions, respectively.
The basis function Hyy(x, ) can be expressed as:

K

Hyy () = H Hyy, 54)
=1

where (x,, ) is the predictor of the k" of the m™ product.
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Table 3 Statistics of the

Dataset Mean SD Kurtosis Skewness Minimum Maximum
datasets (g/L)

Tawang Chu 0.07841 0.09939 6.92258 2.24453 0.005 0.6469

Pare 0.13451 0.07933 1.66322 1.01472 0.01736 0.41321

The ARMAX

The ARMAX model uses the linear input for prediction. The
ARMAX model can be denoted as

ARMAX (1.1 1) =(1 = ayd™ .=, d")S, = (1 = byd"... = b, d")

+ QI —cd™..7c, d™)¢,

(55
where S, and Q,_, are the predictor of the SSL and the
discharge time-series, respectively.(a;,a,....,a, ) are the
exogeneous coefficient vector. The &, denotes the series of
noise disturbance,(c, c;...., cn“) is the moving average coef-
ficient.n,, 7, and 7, are the autoregressive, exogenous input,
and moving average component, respectively.d and k are the
predictor of the delay operator and the dead time in the sys-
tem, respectively.

Advantages of ARMAX

1. Powerful model specially designed for time-series analy-
sis.
2. Accurate and reliable forecast.

Disadvantages of ARMAX

1. Captures only linear relationships among variables.
2. Complex data pre-processing.

The fuzzy c-means clustering (FCM).

The FCM sections the dataset X into C clusters by mini-
mizing the errors concerning the weighted distance of each
data point x; toward all centroids of the C clusters. Subse-
quently, the algorithm works as indicated by minimizing the
objective function that is pigeonholed as:

c N
min Jycy, Z Z wa”ui vl

=1 i=1
c
subject to Zwic, i=1,2, .., N,

c=1

(56)

where e represents the fuzzifier exponent e > 1, N is the total
number of data points, w;. represents the degree of belong-
ings to the i’ data point to the ¢ cluster which can be solved
iteratively, v and u are the center of the cluster and the of data
point that is provided as an input, respectively,

After initializing the center vectors, the centers can be
recalculated until convergence as:

N
Z (j=1 ch')c uj
N
it W

Advantages of FCM

forc=1,2, .., Cand1l <e<N. (57)

Ve

1. Fast convergence.
2. Gives the best result for the overlapped data set.

Disadvantages of FCM

1. Computationally expensive.
2. Sensitivity to noise and outliers.

The LDMR

The primal problem of LDMR (Rastogi et al. 2020) can be
expressed as:

min
w.b.£1.8,)
5.t.Y —(K(G,G)Yw+eb) <esc+ &, & >0,
(K(G,G'YWw+eb)—Y <ee+&,E >0,

v 1
SNV = (K(G.Gw+ eb) P + SCe' (wy + ) + SIIwll,

(58)

w
where €,d, v > 0 are the input parameters and u = lb ];
I 0

||w||?> = u'lyu where I, = . is an identity matrix;

0..0
C > 0is the trade-off parameter; y, and y, are the slack vari-
ables. For obtaining the solutions from (58), Lagrange’s
multipliers are introduced as:
ay = (ay, aqgy s ay,) and oy = (g, Apys s Agyy,)'
The dual formulation of (58) may be expressed as:
(a) — a,)'Zy (dly + 0Z}Z,) "

Z(’)(al

min = - a,)

(.0) 2
+ ¥ Zy(dly +vZ,Z0) " 7} (@) — ay)
—Y'(a; — ay) + € €'(a; + ay)
5.0<La; < Ceand0 < a, < Ce,

(39)
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20 where, Z;, = [ K(G,G") e] and be an augmented matrix
18 (Hazarika et al. 2020b).

e For a new instance x, the decision function ¢(.) is
g 14 B achieved as follows:
212 - =
Zw0- @x) = K&, GYw + b.
=]
-°'§ : | | Advantages of LDMR
Z
“1 1. Insensitive to noise and outliers.
21 2. Handles non-linearity.
0 2015 2016 2017 2018 2019 2020

(November)
Year

Fig.4 Number of published journal papers regarding SSL prediction
(indexed in SCI/SCIE and scopus) with respect to year of publication
to best of our knowledge

CART MARS
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FCM FL

2%

ARMAX 2% 1%

WAVELET
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Fig.5 Pie-chart showing various implemented models for SSL pre-
diction from 2015 to 2020 (November) (indexed in SCI/SCIE and
Scopus)

ERMSE BR and R2 ®Nash and Sutcliffe ®MAE BMSE BRSR @ OTHERS

Fig.6 Doughnut chart showing the applied percentage of the vari-
ous performance evaluators for SSL prediction from 2015 to 2020
(November)
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Disadvantages of LDMR
1. Computationally expensive.

In Table 3
N = Total samples

f = predicted outcome

f = predicted outcome (mean)
o = observed value

o = observed value (mean)

0 = predicted value of o

e = error

e = error (mean)

K = the number of model parameters

log —likelihood = measure of model fit.
The higher the number, the better the fit.

The year-wise publications in SCI/SCIE and Scopus
indexed journals are portrayed in Fig. 4 from January 2015
to 2020 (November). It is noticeable from Fig. 4 that there is
an increase in the number of good publications from 2018.
Figure 5 shows the Pie-Chart for various prediction models
that have been applied during the time range from January
2015 to November 2020. Figure 6 exhibits the various per-
formance measures that have been used for evaluating the
model performances. One can observe from Fig. 6 that R and
R? are the most widely accepted performance measure for
model evaluation which is followed by the RMSE. However,
all these representations are approximate.
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Table 4 Obtained RMSE for a

, Dataset SVR LSSVR TSVR ELM OB-ELM LDMR

few models using the two SSL

data from two different rivers Tawang Chu 0.04013 0.11061 0.041603 0.04418 0.03952 0.04065
Pare 0.20677 0.24652 0.20829 0.20945 0.19926 0.20703

Table 5 Obtained MAE for a Dataset SVR LSSVR TSVR ELM OB-ELM LDMR

few models using the two SSL

data from two different rivers Tawang Chu 0.01464 0.05518 0.01749 0.04743 0.01608 0.01559
Pare 0.12338 0.18945 0.12983 0.14525 0.12237 0.1246

Experimental analysis

The experiments are performed on a desktop computer
system on MATLAB 2019a software with 32 GB RAM,
3.20Ghz Intel i-7 processor on Windows 7 operating sys-
tem. The QPP problems of SVR, TSVR, OB-ELM, and
LDMR models are solved using the quadprog function in
MATLAB. The datasets are randomly split, such that 70%
are used for training and the remaining 30% used for test-
ing. The prediction errors based on RMSE and MAE are
revealed in Tables 4 and 5, respectively. The optimum val-
ues of the regularization parameter,C of the SVR, TSVR
and ILTPISVR models are chosen from a range of param-
eters {1072, 1074, .., 107 }. Moreover, for the LDMR and the
proposed MKLDMR and MHKLDMR models, the optimal
regularization parameters C, C; = C, are also chosen from
{107, 1074, .., 10°}. For all of the models, the value of the &
parameter is chosen from a range of {0.05,0.1,0.5,1,1.5,2}.
For computational convenience, the k parameter of the
LDMR is fixed to 1. The optimum values of L parameter
is considered from {20, 40,50, 100, 200, 500}. We have
performed experiments using two SSL datasets that are col-
lected from two different rivers in India, i.e., Pare river and
Tawang Chu river. The Tawang Chu river dataset contains
SSL data from January 1, 2015, to December 31, 2015,
whereas the Pare river dataset contains SSL data from
December 12, 2018, to 5 May 2019. The details of the data-
sets are expressed in Table 3.

Few conventional Al models such as SVR, TSVR, ELM,
OB-ELM, and LDMR has been applied on the two differ-
ent SSL datasets. The results obtained based on RMSE and
MAE are shown in Tables 4 and 5, respectively. It can be
noticed that the AI model shows good prediction perfor-
mance for the datasets. The observed SSL versus predicted
SSL plots are shown in Fig. 7 for the reported models.

It can be observed from Fig. 7 that the R* value is low for
the reported models. To improve the prediction performance
of the reported models, different types of decomposition
methods such as variational mode decomposition (VMD)

(Dragomiretskiy and Zosso 2013) and ensemble empirical
mode decomposition algorithms (EEMD) (Wu and Huang
2009) are suggested as a data pre-processing step. Also
embedding the DWT to the conventional Al-based models
can improve the prediction performance of the same (Zhu
et al. 2016; Hazarika et al. 2020a, b, ¢).

Summary and future projections

Sediment load prediction is one of the prime issues in
hydrology. The study of SSL characteristic is a very cum-
bersome process due to its non-linear nature. Models like
MLR and MNLR have been used to tackle the non-linearity
of the problem and succeeded in a great way. However,
these models could not give great accuracy in prediction.
However, these models could be tried in conjunction with
other learning models and needs to be checked for their
prediction accuracy. The different models applied for pre-
diction of SSL cannot be compared strictly based on their
performance. Since the different field conditions may alter
the performance of the same model with accuracy in some
condition and average in some other condition, it could
give average accuracy. Therefore, it could be inferred
that models like ANN, SVM, GEP, GA, ANFIS, and their
hybrid models like ANFIS-ANN, WANN, etc., have their
specialities and could perform better with the prevailing
conditions. It is also noticed the application of wavelet
transforms on the input available giving rise to daughter
wavelets for different time-series. These daughter wavelets
are also feasible to use.

The principal task of researchers has been to somehow
study the non-linear nature of sediment loads using a sim-
ple learning algorithm, so that the learning process could
be understandable to the outer world. However, it creates
a paradoxical situation in models like ANN. Hence, to get
better accuracy with a simplified learning process some
other algorithms are also applied, viz., ELM, GEP, and so
on. Out of these algorithms, ELM as well as wavelet-based
models have been showing great potential and could be used

@ Springer
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by integrating it with different learning models. Also, the
effectiveness of the random vector functional link (RVFL)
could be tested for SSL prediction. These hybrid models
perhaps could give better accuracy and could be tackled
much more efficiently using different learning algorithms.
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