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Abstract
Due to the need of economic development and energy structure adjustment, China intends to build a number of pumped 
storage power stations for hydroelectric storage to generate electricity. Pumped storage power stations are generally built in 
mountainous or hilly areas where sufficient water and height differences will provide the adequate head difference. Geological 
processes, such as debris flows, often occur in mountainous areas and are one of the main threats to power stations and related 
projects. In this work, the debris flows in the engineering area of a pumped storage power station in Shangyi County, Hebei 
Province were selected as a case study. The neural network model was adopted to quantitatively calculate the probability 
of debris flows. Then, risk zoning was implemented according to the probability values. Finally, the debris flow numerical 
simulation software SFLOW, which is based on the finite volume shallow water flow model, was used for high-risk gullies. 
The spatial hazard range of each debris flow was predicted for rainfall frequencies of 20, 50, 100, and 200 years. And the 
sensitivity of parameters affecting debris flow migration and the advantages of SFLOW compared with FLO-2D software 
were discussed. In general, the SFLOW model can accurately and efficiently solve the problem of fluid flow on irregular 
terrain and can be applied to similar engineering projects.
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Introduction

Some of the traditional, non-renewable energy sources are 
gradually being depleted in China due to the exponential 
increase in industrial and residential development (Lai et al. 
2019; Valero and Valero 2010). In response, the value of 
utilizing renewable energy has been consistently empha-
sized. In recent years, hydropower has been one of the pri-
mary energy sources harvested in China, due to its being 
both clean and renewable. Because southwest China is the 
main source of large rivers, many large hydropower projects 
have been established or are under construction (Zhan et al. 
2018) in the region. For cities with relatively scarce water 

resources, a new hydropower station, known as a pumped 
storage power station, has become a new option. Pumped 
storage power stations use electrical energy to pump water 
to the upper reservoir when the power supply demand is low 
and then discharges water to the lower reservoir when the 
power supply demand is high (Bao et al. 2019b). However, 
pumped storage power stations are generally built in moun-
tainous or hilly areas to obtain the necessary water quantity 
and height differences. Therefore, the debris flows that eas-
ily occur in mountainous areas threaten the safety of these 
hydropower engineering projects. Over the last few decades, 
significant damage to lives, infrastructure, and property has 
been caused by debris flows in mountainous areas (Chang 
et al. 2017; Chen et al. 2018; Huang et al. 2014; Meng and 
Wang 2015). Therefore, analyzing and evaluating the risk 
of debris flows in the study area as well as forecasting the 
extent of damage is of maximum importance. However, 
quantitative evaluation of debris flows is difficult, as they 
are complex, nonlinear geological phenomena. Currently, 
research on the susceptibility, sensitivity (Dong et al. 2009), 
and risk of debris flows (Liu 2002; Gentile et al. 2007) are 
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important directions to the study of debris flow spatial fore-
casting. In particular, the influence factor (Lin et al. 2002) 
and the selection of evaluation methods are key issues. The 
selection of factors is related to the assessment content—
mainly topography, meteorology, hydrology, soil vegeta-
tion, human activities, and debris flow history parameters. 
From a methodology perspective, quantitative and semi-
quantitative, linear and nonlinear mathematical-statistical 
methods are primarily used in the evaluation—such as the 
analytic hierarchy process (Wu et al. 2016), logistic regres-
sion method (Regmi et al. 2013; Tunusluoglu et al. 2007), 
support vector machine (Wang et al. 2016a), neural network 
(Lee et al. 2003; Liu et al. 2005) and Bayesian network algo-
rithm (Liang et al. 2012; Tien Bui et al. 2012), etc. These 
methods have corresponding advantages and limitations for 
research subjects with different geological conditions. How-
ever, the risk assessment alone cannot meet the needs of 
debris flow prevention. Therefore, the simulation of debris 
flows dynamic process and the prediction of hazard range 
are important links in debris flow evaluation.

With the continuous maturity of computer technology, a 
significant variety of numerical methods have been applied 
to the study of debris flows— e.g., shallow water flow model 
(SWM) (Lin et al. 2001), smooth particle hydrodynamics 
method (SPH) (Wang et al. 2016b; Huang et al. 2014), dis-
crete element method (DEM) (Bao et al. 2019a), discon-
tinuous deformation analysis (DDA), multiphase fluid–solid 
coupling model (Bout et al. 2018), etc. Among them, the 
SWM is widely used because it can effectively reflect the 
fluid’s physical properties and has a high computational 
efficiency. The shallow water equation obtained by inte-
grating Navier–Stokes equation in the vertical direction can 
describe the fluid characteristics in large-scale space with-
out occupying too much computer space. In order to solve 
shallow water equations, many methods such as the finite 
difference method, finite element method and finite volume 
method have been developed. Compared with the other two 
methods, the finite volume method can not only ensure the 
balance between water quantity and momentum but also 
maintain high computational performance in any computa-
tional domain. The SFLOW software was developed by Han 
(Han et al. 2017, 2018) based on Godunov-type finite vol-
ume shallow water model. SFLOW ensures the conservation 
of water volume and momentum and allows the processing 
of complex terrain data. The model not only considers the 
friction and viscosity properties but also the solid particle 
contact energy loss. Therefore, numerical simulation of the 
whole debris flow movement process during the outburst 
time can be carried out under complex terrain conditions. 
This is of great significance to the safety of engineering con-
struction and disaster prevention.

This study was conducted on several debris flows in 
the reservoir area of the pumped storage power station in 

Shangyi County, Hebei Province. The on-site investigation 
showed that many gullies in the study area are filled with 
large-scale slag debris from a mining project. The possibility 
of debris flow is very high. Therefore, a detailed assessment 
of geological conditions, such as topography and source dis-
tribution, combined with indoor analysis and experimenta-
tion, led to multiple evaluation factors being selected for 
use in the neural network algorithm, which was employed 
to carry out risk assessment and zoning of the study area. 
Then, a shallow-water model (SWM) based on the finite 
volume method (FVM) was used to simulate and forecast the 
debris flow’s scale and hazard range for the high-risk gullies 
based on rainfall frequencies of 20, 50, 100, and 200 years. 
Finally, the sensitivity of parameters affecting debris flow 
migration is analyzed, and the results were compared with 
the results calculated by the Flo-2D software. Some theory 
and advantages underlying the finite volume shallow water 
flow model were discussed.

Study area

Topography and structural conditions

The study area is located in Xiaosuangou, Shangyi County, 
Hebei Province (Fig. 1a), which belongs to the northern 
Hebei mountain area in the southern part of the Yinshan 
mountain range (Fig. 1b, c).

The terrain of the project area changes greatly, which is 
manifested as high topography on the east and west sides 
and low topography in the middle. The elevation generally 
varies from 873 to 1600 m. In the vicinity of the ridge, the 
bedrock cliffs are exposed and the slope is generally above 
45°. The terrain is relatively flat near the valley (Fig. 2). The 
geomorphologic type is classified as an erosion mountain 
and mainly manifests as a medium and low mountain region. 
In addition, the surface elevation of the Dongyang River 
flowing through the study area changes from 950 to 910 m. 
The elevation and width of the riverbed are 880 ~ 900 m and 
10 ~ 20 m, respectively. In general, the Dongyang River’s 
left bank topography is steeper than that of the right bank.

There are nine large gullies in the study area—Dong, 
Shaliangquan, Qinghutai, Pingantai, Hou, Nan, Dahu, 
Xiaohu, and Caonian gullies (Fig. 3a). The gully terrain 
changes from high and steep in the upstream to low and 
gentle in the downstream (Fig. 3b). The cross section is 
V-shaped (Fig. 3c). There are alluvial-diluvial deposits 
and artificially accumulated slag bodies in the gullies. The 
larger waste slag bodies are mostly distributed in a plat-
form shape (Fig. 3e), and are mainly concentrated in the 
middle and lower reaches of the gullies, which changed the 
gullies’ local terrain. In addition, the study area has two 
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levels of river terraces (Fig. 3d). The height of terrace I is 
5 ~ 10 m, and the height of terrace II is 15–20 m.

The study area is located in the secondary geotectonic 
unit of the North China Platform. The exposed lithology 
is mainly Archean gneiss, granulite, Proterozoic meta-
morphic monzonitic granite, and Jurassic conglomerate, 
sandstone (Fig. 4). The Quaternary lithology is mainly 
distributed in the Huai’an Basin in the southern part of 
the study area. In addition, there are two NW–SE normal 
faults in the study area, which intersect with the Dongyang 
River at a small angle. The site’s basic seismic intensity in 
the project area is VII, indicating site with poor regional 
structural stability.

Rainfall conditions

The study area is a cold, temperate continental monsoon cli-
mate with four distinct seasons, cold and dry winters and has 
less winds in spring and autumn, less rain in summer. Based 
on the Shangyi Weather Station statistics from 1960 to 2014, 
the maximum (1978) and minimum (1962) annual precipita-
tion were 646.9 mm and 217.9 mm, respectively, while the 
average annual precipitation was 414.0 mm. Precipitation 
is unevenly distributed during the year and is mainly con-
centrated in the summer. 77.2% of the annual precipitation 
occurs between June and September, while only 5.0% occurs 
from November to March (Fig. 5).

Fig. 1  The location and terrain 
of the study area

Fig. 2  Slope and aspect map of the study area
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The rainfall characteristics shown in Table  1 were 
obtained using the measured rainstorm data statistics 
from 1956 to 2016 provided by Chaigoubao hydrology 
station.

Fig. 3  Terrain condition. a Rel-
ative position and topography 
of each gully. b Highest point 
in the study area. c V-shaped 
valley. d River terraces. e Waste 
slag body in Nan gully

Fig. 4  Geological map of the 
study area
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Fig. 5  The average monthly rainfall and maximum daily rainfall of 
Shangyi County

Table 1  Rain intensity statistics provided by Chaigaobao rainfall sta-
tion

Maximum rainfall intensity Occurrence time

10 min 24.5 mm 1973.6.19
1 h 64.9 mm 1994.7.20
6 h 124.5 mm 1994.7.20
1 day 124.6 mm 1994.7.20
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Engineering geological condition

Currently, plans are to establish a pumped storage power sta-
tion in the study area to alleviate the power shortage issues 
in Hebei (Fig. 6a). The power station pivot project’s main 
buildings are composed of an upper reservoir, a lower res-
ervoir, a waterway system, and an underground powerhouse 
system. The upper reservoir is intended to be built on the 
left bank tributary in the upper reaches of Nan gully. The 
waterway system is arranged in the mountain ridge between 
Nangou and the Dongyang River. Construction of the lower 
reservoir is scheduled to take place at the Caonian gully 
mouth, and installation of a silt-trap dam is planned on the 
downstream side of the Dahu gully mouth. The project area’s 
terrain is conducive to catchment, so the risk of flooding and 
debris flows is amplified (Fig. 6b–e).

The vegetation coverage in the study area is low (Fig. 7a). 
Anthropogenic activities, and specifically extensive mining, 
have caused major changes to the gullies’ natural environ-
ment. In recent decades, Dong, Shaliangquan, Pingantai, 
Hou and Nan gullies have produced large-scale waste slag 
bodies. These waste slag bodies with no solidification and 
no reinforcement measures are scattered throughout the 
area (Fig. 7b). Obvious tensile cracks have been found on 

the surface of some accumulation platforms (Fig. 7c, d). 
In addition, the bedrock joint fissures exposed in the study 
area are relatively developed (Fig. 7e, f). The surface rock 
mass is broken due to weathering, unloading, and artificial 
excavation. New collapses and landslides can be seen on 
both sides of the gully (Fig. 7g, h). These loose deposits are 
an important source for debris flows. Furthermore, observa-
tion of debris-flow deposits (Fig. 7i, j) indicates that such 
events have historically occurred in the study area. Thus, 
debris flows may pose a threat to the storage power station. 
The analysis and forecasting of the risk and hazard range 
associated with the nine debris flow gullies are of critical 
importance.

Risk assessment

The risk assessment is used to determine the probability 
of debris flow in each gully, so as to provide the basis for 
the implementation of numerical simulation. Risk assess-
ment should be based on site surveys. However, the influ-
ence of human error is difficult to eliminate, and similar data 
values are easily classified into different levels during the 
evaluation process. In order to reduce the influence of fuzzy 

Fig. 6  Image maps. a 3D image map of the study area. b Caonian, Dahu, and Xiaohu gullies. c Nan and Hou gullies. d Qinghutai and Pingantai 
gullies. e Dong and Shaliangquan gullies
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discriminant, a neural network model was adopted so that 
multiple factors are selected to comprehensively evaluate 
the risk of each gully.

The evaluation unit

Due to the small size of the study area, each gully and the 
corresponding branch ditch were selected as the evaluation 
units. The evaluation units were obtained by hydrological 
analysis with GIS software. The study area was divided into 
117 small basin units, of which 72 are larger in area and 
depict more obvious valley form. The other 45 basin units 
are small and some are in the early stages of development.

Evaluation factor

Impact factor

The risk of a debris flow needs to be comprehensively 
determined by various impact factors. It is important to 
designate major and secondary factors from multiple 
potential factors. As such, 11 risk assessment factors were 
selected using the "Debris Flow Risk Assessment" method 

(Liu et al. 1995) in conjunction with actual site investi-
gation. The main influencing factors were L1 (Maximum 
amount of debris flows per 100-years return period) and 
L2 (Debris flow frequency); S1 (basin area), S2 (main gully 
length), S3 (maximum relative height difference), S4 (cut-
ting density), S5 (bending coefficient), S6 (Mud and sand 
recharge section length ratio), S7 (Solid loose material per 
unit area), S8 (daily maximum precipitation) and S9 (the 
population density) were secondary factors. The specific 
definitions for all factors are as follows:

 1. Basin area S1  (km2): catchment area of debris flow. The 
larger the area, the greater the amount of catchment.

 2. The length of the main gully S2 (km): the length from 
the gully source along the main gully to the gully 
mouth.

 3. Maximum relative height difference S3 (m): the eleva-
tion difference between the basin’s highest point and 
the gully mouth. It reflects the debris flow’s potential 
energy.

 4. Cutting density S4 (1/km): the ratio of the watershed’s 
relative height difference to the length of the main 
gully.

Fig. 7  Site investigation. a Vegetation conditions. b Large waste slag 
accumulation platforms in the study area. c and d Waste slag bodies 
that produce deformation and cracks. e Layered rock mass. f Broken 

rock mass with high degree of weathering. g Landslide. h Collu-
vium. i Debris flow accumulation in Pingantai gully. j Partial photo 
of debris flow
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 5. Bending coefficient S5: the ratio of the gully’s actual 
length to the straight-line length.

 6. Mud and sand recharge section length ratio S6: the ratio 
of the section length that can recharge the debris flow 
to the gully’s total length.

 7. Solid loose material per unit area S7  (104  m3/km2): 
the ratio of the total solid loose material reserve to 
the catchment area. This factor reflects the potential 
scale of the gully’s debris flow. Because this factor var-
ies greatly among different basin units, the following 
quantitative indicators were employed (Table 2).

 8. Daily maximum rainfall S8 (mm): the maximum 
amount of rainfall throughout the day. This is the direct 
factor that triggers debris flows.

 9. Population density S9: reflects, to some extent, the 
potential impact of human activities on debris flow 
incidents.

 10. The maximum outflow of debris flow L1  (104  m3): the 
maximum outflow of debris flow during a 100-year 
rainfall frequency. This factor is a direct assessment of 
the debris flow intensity, which is mainly determined 
through field surveys and indoor calculations.

 11. Debris flow occurrence frequency L2 (times/100 years): 
the number of debris flow occurrences per unit time.

Among the above impact factors, attribute value extrac-
tion of the geological parameters for each evaluation unit is 
mainly realized by the ArcGIS platform’s spatial analysis 
function. The L1, L2, and S6–S10 factors are determined based 
on field investigations combined with indoor calculations. 
Table 3 lists the impact factor parameter values of each main 
gully’s watershed unit. Because there are so many branch 
ditch watershed units, they were omitted from Table 3.

Disaster source point

Disaster source points are determined by means of field 
investigation based on the unique geological condition 
because the waste slag bodies are distributed throughout the 
study area. Debris flow activities are found in the disaster 
source points, which are represented by erosion, deforma-
tion and sliding in different degrees. Moreover, the disaster 
source point distribution is largely related to the size and 
location of the waste slag bodies (Fig. 8). The disaster source 
points with impact factor attribute values are used as the 
target factor and are calculated by the model at a later time, 
with a mark of 1. Non-disaster source points are randomly 
generated in the study area, with a mark of 0.

Occurrence probability of debris flow

Artificial neural network is an abstract mathematical model 
that addresses problems by simulating human brain neurons. 
The method has strong self-learning and adaptive ability 
(Han et al. 1996; Chang et al. 2007). There are numerous 
types of impact factors and risk classifications associated 
with a comprehensive evaluation of debris-flow risk. There-
fore, each impact factor of the same basin unit may fall into 
a different risk interval. As a result, it is more difficult to 
determine the degree of risk. Because the neural network 
is highly capable of dealing with non-linear problems that 
exhibit unclear relationships between conditions and targets, 
this model was selected to predict the probability of debris 
flow.

Neural network model

The three layers BP neural network model (input layer, 
hidden layer, and output layer) based on multi-layer per-
ceptron (MLP) was trained in this work. A highly non-
linear mapping relationship between the input and output 
layers is adaptively obtained through learning. Assuming 
that the input layer was X =

(
x1, x2, x3 … xn

)
 ; and the out-

put layer was Y =
(
y1, y2, y3 … yn

)
 . The number of hidden 

Table 2  S7 factor quantization table

S7  (104  m3/km2) > 10 5~10 5~1 < 1
Quantitative indicators 4 3 2 1

Table 3  Watershed 
characteristic parameters

Gully S1  (km2) S2 (km) S3 (m) S4 (1/km) S5 S6 S7 S8 (mm) S9 L1  (104m3) L2

Dong 7.389 5.670 542 4.056 1.29 0.4 4 125 0 8.84 0
Shalianquan 2.713 3.103 471 5.29 1.13 0.3 3 125 0 3.98 0
Qinghutai 1.397 2.832 459 6.68 1.16 0.25 1 125 0 0.92 0
Pingantai 1.976 2.438 484 4.296 1.24 0.6 4 125 0 2.73 0
Hou 2.054 2.945 394 5.90 1.186 0.6 4 125 0 3.3 0
Nan 11.108 7.587 773 4.78 1.22 0.3 3 125 0 4.43 0
Dahu 1.081 2.349 308 9.15 1.30 0.09 1 125 0 0.77 0
Xiaohu 0.418 1.327 222 6.62 1.205 0.5 1 125 0 0.34 0
Caonian 3.221 3.926 484 5.78 1.18 0.2 2 125 0 1.71 0
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layer neurons is n. Wij , Wjk ( Wij ∈ Rn×s , Wjk ∈ Rs×3 ) are the 
association weight matrices between the input layer and 
the hidden layer and the output layer and the hidden layer, 
respectively. The wij and wjk are corresponding association 
weights. R is a space concept. Θj , Θk ( Θj ∈ Rs , Θk ∈ R3 ) 
are the threshold vectors between the input layer and the 
hidden layer, and the output layer and the hidden layer, 
respectively. �j and �k are corresponding thresholds. The 
correlation between the above parameters constitutes a 
non-linear mapping from the input space Rn to the output 
space R3 . Zp is the hidden layer’s output vector. Thus, the 
relationship among the input, hidden, and output layers 
can be expressed by the following formula (Wang et al. 
2003):

where, xp is the input vector, yp is the output vector, and f  is 
the nonlinear activation function that can be expressed as a 
Sigmoid Function:

The minimum root mean square (RMS) error obtained 
by the gradient descent method was used to demonstrate 
successful completion of the training.

(1)Zp = f
(
wij × xp + �j

)
,

(2)yp = f
(
wjk × Zp + �k

)
,

(3)f (�) =
1

1 + e − �
.

where N  is the number of training samples and dp is the 
expected output value. RMS can be minimized by setting 
training times, training cycles, and achieving target accuracy.

Model building and training

The neural network model was constructed based on the 
above principles. The 11 impact factors were used as the 
input layer (Fig. 9), and the disaster source points were 
used as the target factor for model training. The maximum 
training time was set to 15 min and the overfitting limit 
was 30%. After modeling was complete, a uniform point 
cloud with a spacing of 20 m was generated throughout 
the study area, and the corresponding impact factor attrib-
ute field values were extracted. Then, these field values 
were used to import the foregoing obtained neural network 
model and calculate the probability value of debris flow 
occurrence at each point. Finally, the weighted prediction 
values (Fig. 10a) of each impact factor were obtained. 
Due to S9 and L2 both being 0, these two impact factors 
were eliminated. The weights of L1, S7, and S6 were larg-
est, followed by S2, S4, S1, S5, and S8. The S3 was of low 
importance. The probability value of debris flow in each 

(4)RMS =

√√√√1

2

N∑
p=1

(
yp − dp

)
2 = min(RMS),

Fig. 8  The material source dis-
tribution map of the study area



Environmental Earth Sciences (2021) 80:275 

1 3

Page 9 of 19 275

basin unit was between 0 and 0.9. The accuracy of the 
neural network model can be evaluated by receiver oper-
ating characteristic curve (ROC) (Sun et al. 2018, 2020). 
The ROC curve is a sensitivity (ordinate) and specificity 
(abscissa) relationship curve based on multiple different 
thresholds (impact factors). The area under the ROC curve 
(AUC) is used to quantitatively evaluate the accuracy of 
the neural network model. The closer the AUC is to 1, the 
higher the prediction accuracy of the model. In this study, 
based on the results of the neural network model, random 
points are generated in the debris flow and non-debris 
flow areas. Then the influencing factor attribute value is 
extracted to the points and the ROC curve analysis is per-
formed (Fig. 10b). The value of AUC is 0.862, the model 
accuracy is good (Sun et al. 2018, 2020).

Risk zoning

The natural discontinuity method was used to classify the 
probability values of debris flows that may occur in each 
basin unit of the study area (Table 4). The corresponding 
risk partition map was generated (Fig. 11) according to 
Table 4.

The results show that there is a high risk of debris flows 
in the upstream and left bank of the Hou gully and down-
stream of Nan gully. The risk is also high in the downstream 
of Dong and Shaliangquan gullies. The risk in the middle 
and lower reaches of Pingantai gully is medium–high. The 
results of the other debris flow risk assessment were low or 
very low.

Further analysis found that the L1, S6, and S7 were also 
larger in the high-risk basins. Therefore, these three factors 
greatly affect the risk level. In addition, there was obvious 
erosion and silting-up in high-risk basins; and the waste slag 
bodies were deformed and showed local collapse. Therefore, 
the evaluation results were reasonable and consistent with 
the qualitative interpretation of the field survey.

Numerical simulation

According to the result of the risk assessment, SFLOW soft-
ware was used to predict the hazard range of 5 high-risk 
debris flow gullies.

L1

S2

S6

S7

S4

S1

S5

S8

Deviation

Neurons 1

Neurons 2

Neurons 3

Neurons 4

Neurons 5

Neurons 6

Target probability

Neural NetworksDeviation

S3

Fig. 9  The neural networks

Fig. 10  a Histogram of each 
influence factor weight. b The 
ROC curve of neural network 
model

Table 4  Risk classification table

Levels of 
risk

Very low Low Moderate High Very high

Occur-
rence 
prob-
ability

0.02~0.16 0.16~0.33 0.33~0.52 0.52~0.71 0.71~0.90
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Numerical model

In the numerical model, SFLOW uses a finite volume 
method based on the Godunov format to solve the shallow 
water flow equation. By assuming that the fluid’s vertical 
direction satisfies the hydrostatic pressure and velocity uni-
formity, the Navier–Stokes equation can be simplified to the 
following form (Ouyang et al. 2013):

where: h is the water depth; Zb is the bed’s altitude; g is the 
gravitational acceleration; qx(= uh) and qy(= vh) represent 
the single-width flow in the x-direction and the y-direction, 
respectively; and Sfx and Sfy represent the frictional resistance 
in the x- and y-directions, respectively.

(5)
�q

�t
+

�f

�x
+

�g

�y
= s,

(6)q =

⎡⎢⎢⎣

h

qx
qy

⎤⎥⎥⎦
=

⎡⎢⎢⎣

h

uh

vh

⎤⎥⎥⎦
,

(7)f =

⎡
⎢⎢⎣

uh

u2h +
1

2
gh2

uvh

⎤
⎥⎥⎦
,

(8)g =

⎡
⎢⎢⎣

vh

uvh

v2h +
1

2
gh2

⎤
⎥⎥⎦
,

(9)s =

⎡
⎢⎢⎢⎣

0

−gh
�zb

�x
− Sfx

−gh
�zb

�y
− Sfy

⎤
⎥⎥⎥⎦
,

The rheological friction model incorporates the debris 
flow fluid’s friction properties, viscosity properties, and 
solid particles’ contact energy loss. The model is mathemati-
cally expressed as follows (Zhang et al. 2015):

where � is the yield stress (Pa); �m is the density of solid mat-
ter in the debris flow (kg/m3); K is the drag coefficient; � is 
the fluid viscosity (Pa s); and ntd is the equivalent Manning 
coefficient. The yield stress and fluid viscosity are defined 
as:

where �1 , �2 , �1 , and �2 are empirical parameters and Cv is 
the sediment volume density.

Data preprocessing

The SFLOW software needs to confirm terrain, inflow point, 
hydrology, and rheological parameters. The terrain param-
eters in ASCII code were obtained from a 7.24 m × 7.24 m 
Digital Elevation Model (DEM). When simulating the debris 
flow, it is necessary to specify the inflow point of the debris 
flow in advance. According to the risk assessment results 
(Fig. 11), the inflow points should be downstream from a 
large number of waste slag bodies and the gullies with a 
higher degree of risk.

The rheological parameters reflect the deformation and 
flow properties of the debris flow, which is related to the 
viscosity. Particle analysis experiments can be used to deter-
mine particle size (Yu et al. 2020; Zhang et al. 2020). The 
experimental curve shows that the waste slag and the early 
debris flow accumulation in the gully (Figs. 12, 13) are 
mainly medium-grained soil. The clay (< 0.005 mm) content 
is almost 0. Therefore, the debris flow can be considered of 
low viscosity (Ni et al. 2011). Based on the field investiga-
tion combined with the technical standard “Specification of 
geological investigation for debris flow stabilization (DZ/
T0220-2006) (2006),” the debris flow density of each gully 
is shown in Table 5.

The rheological parameters �1 , �2 , �1 , and �2 were deter-
mined by previous experiments (Lin et al. 2005; O’Brien 
2006) and some of the typical debris flow events (Chen et al. 
2018; Chang et al. 2017; Han et al. 2017, 2018; Bao et al. 

(10)Sfy =
�

�m
+

K�v

8�mh
+

gn2
td
v2

h1∕3
,

(11)Sfx =
�

�m
+

K�u

8�mh
+

gn2
td
u2

h1∕3
,

(12)� = �2 exp
(
�2 ⋅ Cv

)
,

(13)� = �1 exp
(
�1 ⋅ Cv

)
,

Fig. 11  Zoning map of risk assessment results in the study area
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2019a, b). The Cv parameters calculated by formula 14–17 
are 0.4 (Dong), 0.336 (Shaliangquan), 0.391 (Pingantai), 
0.381 (Hou), and 0.363 (Nan), when the density of water 
( �w ) is 1000 kg/m3, the mixture density ( �m ) is 2500 kg/m3.

Fig. 12  Particle size distribution curve of waste slag

Fig. 13  Particle size distribution curve of debris flow

Table 5  Debris flow density of each gully

Gully Dong Shaliangquan Pingantai Hou Nan

Density (kg/m3) 1600 1502 1586 1572 1544
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where, �n is the debris flow density (kg/m3); �w is the den-
sity of water (kg/m3); �m is the sediment mixture density 
(kg/m3); ds is the relative density of the solid particles; and 
f  is the ratio of solid material volume Vs to water volume 
Vw . The laminar flow retardation coefficient K and Manning 
coefficient n related to the surface condition are selected as 
2500 and 0.13 (Han et al. 2017, 2018; Chen et al. 2018; Bao 
et al. 2019b). Finally, all rheological parameters are shown 
in Table 6.

The hydrological parameters are mainly the flow and 
duration of the debris flow process curve. The flood peak 
flow can be calculated by the rain flood method, expressed 
as follows:

where Qp is the flood peak flow at design frequency  (m3/s); 
C is the multi-year average peak flow modulus coefficient 
( C = 8); Kp is the modulus coefficient at the same frequency 
as the flood peak flow (when the deviation coefficient 

(14)Cv =
Vs

Vs + Vw

,

(15)�n =

(
dsf + 1

)
�w

f + 1
,

(16)f =
Vs

Vw

,

(17)ds =
�m

�w
,

(18)Qp = CKpF
n,

Cs = 3.5Cv and the local area’s variation coefficient Cv = 1.0, 
then the Kp can be obtained by the Pearson type III Kp 
value); F is the basin area  (km2); and n is the basin area 
index ( n = 0.67 when F < 30  km2). The total flood volume 
and peak duration are determined by the following two 
equations:

where H is the gully runoff depth (cm); Then the debris flow 
peak flow can be expressed as:

where Qc is the debris flow peak flow  (m3/s); 1 + � is the 
correction coefficient; and Dc is the blockage coefficient. 
� and Dc were selected in conjunction with the “Specifi-
cation of geological investigation for debris flow stabiliza-
tion (DZ/T0220-2006).” Considering that the solid matter 
in the debris flow has a significant amplification effect on 
the flooding time, the expansion coefficient BF was used to 
determine the debris flow duration ( BF = 1∕Cv ). Finally, the 
debris flow simulation calculation parameters are shown in 
Table 7 and the hydrographs for the 20, 50, 100, and 200-
year return periods are presented in Fig. 14.

Results

Figure 15 shows the movement path, accumulation range, 
and thickness of each debris flow at the different return 
periods. The debris flow range and thickness are larger in 
Nan and Dong gullies. The debris flow depth in Nan gully 
ranges from 7 ~ 8.2 m, while that in Dong gully is from 6.1 
to 7.2 m. In the remaining valleys, the flow depth is mostly 
distributed at 4 ~ 5 m. The simulated debris flow thickness 
is generally similar to the field survey. In addition, once the 
debris flow breaks out, the area near the flow path will be 
affected on the order of hundreds of meters or possibly even 
a few kilometers. In terms of scale, Nan gully has the larg-
est impact area of 163,836  m2 and a migration distance of 
1511 m. Dong gully is second, with a maximum impact area 

(19)Vp = 0.1HF,

(20)Tp = 0.278
(
Vp∕Qp

)
,

(21)Qc = (1 + �)QpDc,

Table 6  Empirical parameters in numerical simulation

Parameters Units Values Remarks

α1 0.1 Pa s 0.6488 For viscosity
β1 – 13.72 For viscosity
α2 kPa 0.00462 For yield stress
β2 – 11.24 For yield stress
K – 2500 Resistance coefficient
n – 0.13 Manning coefficient

Table 7  The parameters and the 
duration of debris flow in the 
numerical simulation

Gully �
m
(kg/m3) τ (Pa) η (Pa s) K n T (s)

Dong 2500 414.2 156.9 2500 0.13 2017/1777/1669/1577
Shaliangquan 2500 201.8 65.2 2500 0.13 1725/1520/1428/1349
Pingantai 2500 374.4 138.6 2500 0.13 1335/1176/1105/1044
Hou 2500 334.6 120.9 2500 0.13 1388/1223/1149/1085
Nan 2500 273.3 94.4 2500 0.13 2542/2239/2104/1988
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of 71,680  m2, and a migration distance of 930 m. Due to the 
limited area of catchment and source volume, the remaining 
gullies have a smaller accumulation range— mainly ranging 
from 39,728 ~ 46,554m2; and a stacking length from 400 to 
564 m.

To further explain the relationship between the debris 
flow scale and different rainfall frequencies in each gully, the 
relationship between the simulation variables (transport dis-
tance, stacking thickness, and affected area) and the rainfall 
frequency is demonstrated in Fig. 16. Each simulation vari-
able has a nonlinear relationship with rainfall frequency—
lower rainfall frequency corresponds to a larger scale of 
debris flow outbreak, impact range, and accumulation thick-
ness. Therefore, the lower the frequency, the greater the risk.

The debris flow evaluation results using different rainfall 
frequencies were combined with the reservoir area image 
during normal water storage (Fig. 17). It can be found that 
the debris flow into the reservoir area increases gradually 
with the decrease of frequency. When the return period is 

200 years, the total volume of debris flows into the reservoir 
will reach 45,894  m3 (Fig. 18). This will raise the reservoir 
area’s water level of 81,8471  m2 by less than 0.1 m. How-
ever, the normal water level is more than 20 m from the top 
of the dam according to the design. Therefore, the debris 
flows will not pose an enormous threat to the reservoir area.

Discussion

In the simulation of debris flow, the selection of rheological 
parameters is very important. � , � , K , and n in rheological 
parameters play a decisive role in the migration of debris 
flow (Bao et al. 2019b; Chen et al. 2013). However, once 
the site conditions and material composition are determined, 
�1 , �2 , �1 , �2 , and K can basically be determined. Therefore, 
the main parameters affecting the migration of debris flow 
are the volume concentration Cv of debris flow (formula 12, 
13) and Manning coefficient n (surface roughness of gully). 

200-year return period
100-year return period
50-year return period
20-year return period

0 400 800 1200 1600

40

80

120

160
Flow hydrographs of Pingantai gully

Q
c
(m

³/s
)

Time (s)

200-year return period
100-year return period
50-year return period
20-year return period

Flow hydrographs of Hou gully

0 800400 1200 1600
Time (s)

40

80

120

160

Q
c
(m

³/s
)

600

200

400

0 1000 30002000

Flow hydrographs of Nan gully

200-year return period
100-year return period
50-year return period
20-year return period

Q
c
(m

³/s
)

Time (s)

Flow hydrographs of Dong gully

200-year return period
100-year return period
50-year return period
20-year return period

350

250

150

50

0 500 1000 1500 2000 2500

Q
c
(m

³/s
)

Time (s)

200-year return period
100-year return period
50-year return period
20-year return period

160

120

80

40

2000150010005000
Time (s)

Q
c
(m

³/s
)

Flow hydrographs of Shangliangquan gully

Fig. 14  Flow hydrographs used in the simulation

Fig. 15  Run-out result predic-
tion of flow path and depth of 
potential debris flow. a 20-year 
return period. b 50-year return 
period. c 100-year return period. 
d 200-year return period
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To further analyze the effects of these two parameters, tak-
ing Dong gully in 200-year return period as an example, 
the influence of different Cv and n values on the simulation 

results is analyzed. The two parameters are set to three lev-
els: low, medium and high (Bao et al. 2019b; O’Brien 2006), 
and the corresponding values are shown in Table 8. The 

Fig. 15  (continued)
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simulation results show that the parameters Cv and n have 
significant effects on the movement of debris flow (Fig. 19). 
The greater the Cv , the greater the viscosity of the debris 
flow, and the smaller the migration distance. The greater 
the value of n , the greater the frictional resistance, and the 
smaller the migration distance. Inspired by this, if the vol-
ume concentration of the debris flow and the roughness of 
the gully can be increased, the migration distance and scale 
of the debris flow will be effectively reduced, and the risk 
will be significantly reduced. Therefore, setting up drain-
age pipes and increasing vegetation coverage in the gully 
are economic and effective measures to prevent debris flow.

In addition, the SFLOW software used in this study is 
developed based on the finite volume shallow flow model. 
In order to test its effectiveness, Flo-2D, which has been 
widely recognized, has also been used to analyze the debris 
flow movement in Dong gully under different Cv and n values 
for 200-year return period (Fig. 20). The results show that 
the scale of the debris flow and the migration distance when 
Cv and n take different values are similar to the results of 
SFLOW analysis. But SFLOW can maintain good stability 
and higher efficiency in debris flow calculation under com-
plex terrain conditions. This is mainly attributed to three 
aspects (Liang et al. 2009; Han et al. 2017): (1) SFLOW 

Fig. 16  Statistics of the simulated variables for the different frequency of debris flows. a Accumulation thickness. b Migration distance. c 
Affected range

Fig. 17  3D image map of the 
debris flow inflow reservoir 
of each gully in the study area 
under different rainfall frequen-
cies
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only searches for the wet meshes and adjacent dry meshes 
in each time step during the computation (Fig. 21), while the 
Flo-2D model based on the finite difference method needs 
to search all the meshes. (2) The step size of each time step 
in SFLOW can be set larger than FLo-2D. (3) The HLLC 
Riemann solver can well ensure the work of the model over 
highly irregular topography at a steady state. In conclusion, 
the application of SFLOW in debris flow assessment and 
prediction is of great significance for debris flow preven-
tion in the project area, and can provide certain reference 
for similar projects.

However, the shallow water model (SFLOW) based on 
the theory of continuum mechanics cannot add mechanical 
boundaries and is only suitable for problems where the plane 
scale is much larger than the vertical scale. This means that 
the model can only analyze the movement characteristics of 
the surface fluid under gravity. Relevant information such 
as stress, strain, and features of material separation in the 
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Fig. 18  The impact of debris flow on the reservoir for the 200-year 
return period

Table 8  Classification of n 
and C

v

Level Volume concentration C
v

Manning coefficient n

Low Medium High Low Medium High

Value 0.15 0.35 0.55 0.02 0.15 0.8

Fig. 19  The flow depth cor-
responding to different n and C

v
 

values. a n = 0.02. b n = 0.15. c 
n = 0.8. d C

v
 = 0.15. e C

v
 = 0.35. 

f C
v
 = 0.55
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dynamic process cannot be obtained. The above are the limi-
tations of the model. With the continuous development of 
computer technology and numerical models, methods such 
as computational fluid dynamics (CFD) and multi-field cou-
pling will inject new vitality into debris flow research.

Conclusion

Taking the pumped storage power station as an example, 
the neural network model and the shallow water flow 
model based on finite volume were used to evaluate the 
risk of debris flow and predict the hazard range. The 
results show that the increase in the affected area as well as 
the run-out distance with debris flows frequency decrease 
is non-linear, and extremely low-frequency debris flows 
are highly likely to cause more damage. It is estimated 
that 45,894  m3 debris flow will enter the reservoir area for 
the 200-year return period. However, due to enough space 
reserved in the reservoir, this threat is limited and will 
not cause fatal damage to the reservoir area. In addition, 
parameter sensitivity analysis shows that volume concen-
tration ( Cv ) and Manning coefficient ( n ) have significant 
effects on debris flow. Debris flow can be effectively pre-
vented and controlled by increasing Cv and n values, such 
as setting drainage pipes or increasing vegetation cover-
age. In a word, the shallow water flow model based on lim-
ited volume can scientifically and effectively solve debris 
flow simulation and prediction problems under considera-
tion of complex terrain, bottom friction, dry and wet con-
trol, etc., while ensuring the accuracy and high efficiency 

Fig. 20  The flow depth cor-
responding to different n and 
C
v
 values obtained by FLO-

2D software. a n = 0.02. b 
n = 0.15. c n = 0.8. d C

v
 = 0.15. e 

C
v
 = 0.35. f C

v
 = 0.55

Fig. 21  Schematic of numerical computation domain and computa-
tion grid
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of calculations, so as to achieve disaster prevention and 
engineering design requirements.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12665- 021- 09580-z.
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