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Abstract
Stability charts present a graphical approach for the estimation of factor of safety (FOS) of a finite slope with uniform soil 
properties which are routinely used by geotechnical engineers. They provide a way for quick and efficient determination of 
stability of slopes sidestepping the need for carrying out actual analysis. In the present work, authors have developed stabil-
ity charts of rock mass to determine global minimum FOS for rock slope stability problems. The rock mass is modelled by 
incorporating generalized Hoek–Brown strength criterion proposed by Hoek et al. (Hoek–Brown criterion—2002 edition, 
2002). Limit equilibrium technique based Morgenstern and Price (Géotechnique 15:79–93, 1965) method is used to deter-
mine the value of factor of safety of the rock slope against failure. An evolutionary optimization method i.e. Particle swarm 
optimization (PSO) is used to search for the minimum FOS values and the associated critical failure surface out of all possible 
slip surfaces. A MATLAB code has been developed for this purpose. The charts have been developed for the entire range of 
Geological Strength Index (GSI) values ranging from 0 to 100 for intact rock mass characterized by the disturbance factor 
D = 0 for both static and seismic loading conditions. The seismic slope analysis is performed by an equivalent static method 
using a horizontal seismic coefficient (kh) with values ranging from 0.10 to 0.30. Stability charts contain stability numbers 
which are inversely proportional to FOS value of the slope. In the present work, stability numbers are plotted for different 
inclination angles ( � ) equal to 15°, 30°,45°, 60° and  75+°, respectively, for both static and seismic conditions considering the 
variations of other material parameters such as m

i
 and GSI . Stability numbers are observed to increase with an increase in 

angle of inclination ( � ) of the slope and correspondingly FOS values follow a decreasing trend. However, stability numbers 
follow a decreasing pattern with increasing values of material parameters m

i
 and GSI designating improved rock quality with 

corresponding increase in FOS values of the rock slope.
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Introduction

In previous decades, different strength criteria were sug-
gested by various researchers to calculate the shear strength 
of the rock mass based on Hoek–Brown strength crite-
rion (Hoek 1983; Londe 1988; Hoek and Brown 1997; 
Kumar 1998; Hoek et  al. 2002; Carranza-Torres 2004; 
Priest 2005; Shen et al. 2012b, a). The nonlinear general-
ized Hoek–Brown failure criterion (Hoek et al. 2002) is 
famous among the scientist for determining the strength of 
rock mass. This criterion became widely popular among 
the researchers for estimating the shear strength of vari-
ous types of intact and fractured rock mass (Priest 2005). 
Amongst other popular strength criterion for expressing 
soil/rock mass behavior such as Mohr–Coulomb criterion, 
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more than one input parameters i.e. cohesion, angle of inter-
nal friction, dilation angles are needed. On the other hand, 
Hoek–Brown criterion uses uniaxial compressive strength 
( �ci ), mi and GSI as input parameters. Also, the initial con-
dition and damage state of the material can be simulated in 
the criterion. When rock samples are tested in triaxial set 
up, their normal stress vs shear stress behavior shows a non-
linear pattern (Hoek 1983). Mohr–Coulomb failure criteria 
states that the relationship between normal and shear stress 
is linear. Hoek–Brown (1983) failure criteria and Gener-
alized Hoek–Brown failure criteria (Hoek et al. 2002) are 
able to represent the nonlinear nature of the normal stress vs 
shear stress pattern of rock material. Because of nonlinear 
nature of normal stress vs shear stress behavior, it is neces-
sary to determine instantaneous cohesion and instantaneous 
angle of internal friction while dealing with rocks. For lin-
ear Mohr–Coulomb criteria, cohesion and angle of internal 
friction will always remain constant over the entire range of 
failure envelop. Therefore, if Mohr–Coulomb failure criteria 
is used for representing rock material, the nonlinear normal 
stress vs shear stress pattern will not be properly modelled. 
The changing nature of both cohesion and angle of internal 
friction can be better evaluated from Hoek–Brown (1983) 
and generalized Hoek–Brown (Hoek et al. 2002) yield crite-
ria over the entire range of failure envelop. Also, Mohr–Cou-
lomb failure criteria gives a larger value of tensile strength 
compared to the tensile strength predicted by Hoek–Brown 
criteria (1983). Triaxial test results reveal that the tensile 
strength of rock predicted by Hoek–Brown criteria is nearer 
to the actual values. Furthermore, generalized Hoek–Brown 
(Hoek et al. 2002) introduced a disturbance factor D which 
could be used to represent the initial damage state of the rock 
material in a very simple manner by considering the values 
of disturbance factor ranging from 0 to 1. This ability of 
considering initial damage state of the material is not avail-
able with Mohr–Coulomb failure criteria. Shi et al. (2016) 
developed modified form of Hoek–Brown failure criterion 
for anisotropic rock mass. Such flexibility obviously puts 
Hoek–Brown criterion in an advantageous position for 
expressing properties of rock materials. Ismael et al. (2014) 
suggested a simplified approach to directly consider intact 
rock anisotropy in Hoek–Brown failure criterion. Zuo et al. 
(2015) developed a different approach for theoretical deriva-
tion of the Hoek–Brown failure criterion for rock materials. 
In recent time, Hoek and Brown (2019) have demonstrated 
the practical application of the failure criterion using the 
parameter Geological Strength Index (GSI).

Recently, many researchers have performed the stabil-
ity analysis of rock mass based on Hoek–Brown strength 
criterion. In geotechnical engineering, the stability analysis 
of the rock slope is an important problem and plays a major 
role when designs of tunnel, dam, road and other civil engi-
neering structure are carried out. Sari (2019) analyzed the 

stability of cut slopes using empirical, kinematical, numeri-
cal and limit equilibrium methods.The problem of rock slope 
stability is a challenging task and engineers have concen-
trated on assessing the slope stability of rock mass (Hoek 
and Bray 1981; Goodman 1989; Wyllie and Mah 2004; 
Basahel and Mitri 2017). Analysis of rock slopes requires 
evaluation of factor of safety (FOS) for the sliding mass. 
Limit equilibrium techniques (Fellenius 1936; Janbu 1954; 
Bishop 1955; Lowe and Karafiath 1960; Morgenstern and 
Price 1965; Spencer 1967) are most famous among research-
ers for determination of FOS of any slopes against failure. 
In this context, stability charts have become a convenient 
way of determining the stability of any slope problem with-
out carrying out extensive calculations. Taylor (1937) had 
developed first stability charts for soil slope based on limit 
equilibrium technique. Afterwards, many investigators have 
tried to develop stability chart for rock slope based on rock 
mass strength criteria, but it has proven very demanding 
task due to the difficulty involved in assessing the strength 
of rock mass. Many researchers have given idea to overcome 
the problem of estimating rock slope strength and analysis of 
rock slope stability such (Jaeger, 1971; Goodman and Kief-
fer 2000). For rock masses, the stability charts developed 
by Hoek and Bray (1981) serve the purpose of quick esti-
mation of factor of safety of rock slopes for different slope 
geometries. Zanbak (1983) had developed stability charts 
for rock slopes susceptible to toppling. Lyamin and Sloan 
(2002) and Krabbenhoft et al. (2005) have developed finite 
element upper and lower bound technique for true stability 
solutions for geotechnical problem. Furthermore, stability 
charts were presented by Siad (2003) based on the upper 
bound approach which is useful for estimating FOS of rock 
slopes under seismic excitations.

Later, Li et al. (2008) developed stability chart-based 
solution based on Hoek–Brown criteria using numerical 
limit analysis. Li et al. (2009) also suggested stability chart 
solution based on limit analysis methods considering seismic 
effects on rock mass. In their work, pseudo-static method 
for determining the rock slope stability was adopted. More 
recently, Belghali et al. (2017) performed the pseudo-static 
stability analysis of rock slopes reinforced by passive bolts 
using the generalized Hoek–Brown criterion. Sun et al. 
(2019) performed experimental and numerical investigations 
of the seismic response of a rock–soil mixture deposit slope.

Furthermore, most of the earlier works on rock slope sta-
bility charts were based on limit analysis methods (Lyamin 
and Sloan 2002; Krabbenhoft et al. 2005; Li et al. 2008, 
2009). It is a well-known fact that the upper bound limit 
analysis of slope will overestimate the factor of safety (FOS) 
of the slope; whereas, the lower bound limit analysis usually 
underestimates the FOS value unless the solutions are not 
exact. True or exact value of FOS will only be obtained if 
both upper and lower bound analysis show true convergence 
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(Huang et al. 2013). That is why, traditional limit equilib-
rium approach with an appropriate optimization algorithm 
to find out the lowest FOS value and associated critical 
failure surface is deemed more reliable. Little efforts have 
been made to develop rock slope stability charts based on 
limit equilibrium techniques involving a proper optimization 
approach to arrive at the minimum FOS value and the corre-
sponding critical failure surface incorporating GHB strength 
criteria. It is further observed that limit equilibrium-based 
approaches of rock slope analyses had used the concept of 
circular failure surfaces during slope analysis (Deng et al. 
2017). The consideration of circular shape of failure sur-
face may not represent the actual shape of failure surface. 
In this regard, a failure surface composed of piecewise lin-
ear segments is deemed more suitable for representing the 
actual shape failure surface as it has the ability to represent 
any general shape of failure surface. Recently, Kumar et al. 
(2019a, b) carried out rock slope analysis based on limit 
equilibrium method where failure surface was assumed to 
be composed of piecewise linear segments.

In this paper, authors have developed stability charts of 
rock mass to determine the global minimum FOS for rock 
slope stability problems. An appropriate nonlinear strength 
criterion is used in the form of generalized Hoek–Brown 
(GHB) criteria proposed by Hoek et al. (2002). Limit Equi-
librium technique based Morgenstern and Price (1965) 
method is utilized to determine the value of factor of safety 
of the rock slope against failure. The method was developed 
specifically for any general shape of failure surface, includ-
ing circular as well as non-circular shape, and it satisfies 
both force and moment equilibrium of all slices inside the 
failure mass. In the present work, trial failure surfaces are 
generated using piecewise linear segments which is con-
sidered suitable for representing any general shape of the 
failure surface. An evolutionary optimization method i.e. 
Particle Swarm Optimization (PSO) is used to search for 
the minimum FOS values and the associated critical failure 
surface out of all possible slip surfaces (Kumar et al. 2019a; 
Himanshu et al. 2020). Stability charts have been developed 
for both static and seismic loading conditions of intact rock 
slopes with different angle of inclinations ( �) = 15°, 30°, 45°, 
60° and 75°. A MATLAB code has been developed for this 
purpose. The charts have been developed for entire range of 
Geological Strength Index (GSI) values ranging from 0 to 
100 for intact rock mass characterized by the disturbance 
factor D = 0. Both static and seismic analyses have been 
carried out while developing the stability charts for intact 
rock mass. Different values of horizontal seismic coefficients 
have been used while developing the charts considering seis-
mic loading.

Methodology and modelling

Generalized Hoek–Brown failure criterion

To model the failure characteristics of different types intact 
and fractured rock mass, Hoek and Brown (1980, 1997) pro-
posed the nonlinear failure criterion which gained popularity 
amongst researchers all over the world. Recently, a General-
ized Hoek–Brown failure criterion (GHB) was proposed by 
Hoek et al. (2002) after modifying the originally proposed 
yield criterion. The GHB criterion is expressed as follows:

where �1 = major effective principal stress at failure.
�3 = minor effective principal stress at failure.
�ci = uniaxial compressive strength of the intact rock 

material.
Here, s , mb and a are Hoek–Brown material parame-

ters. The parameter mb depends on its initial value mi . The 
parameters s and a depend on the characteristics of the rock 
mass. These parameters are further expressed as functions 
of Geological Strength Index (GSI) of the rock mass and a 
disturbance D. The GSI values usually range from 0 to 100. 
A GSI value of 0 represents a rock mass of very poor qual-
ity; whereas, a value equal to 100 signifies intact rock with 
very good strength. The degree of interlocking of constitu-
ent blocks inside any rock mass is expressed using the term 
GSI. Hoek et al.(2002) introduced a disturbance factor D to 
express the presence of initial disturbance in the rock mass 
caused by stress relaxation and damage. The expressions of 
s , mb and a are as follows:

where,mi is the Hoek–Brown constant for intact rock. 
Thus, Eqs. (3)–(4) cover the whole range of GSI values 
(0–100) in a very effective way. The generalized expres-
sion of the Hoek–Brown failure criterion in Eq. (1) can be 
represented as follows:

where

(1)�1 = �3 + �ci

{(
mb�3

�ci

)
+ s

}a

,

(2)mb = mi exp
(
GSI − 100

28 − 14D

)
,

(3)s = exp
(
GSI − 100

9 − 3D

)
,

(4)a = 0.5 +
e

(
−GSI

15

)
− e

(
−20

3

)

6
,

(5)�1 = �3 + �ci
(
mf

)a
,
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In the Hoek and Brown (1997) failure criterion, the 
parameter s was considered equal to zero for GSI less than 
25. In GHB criterion proposed by Hoek et al.(2002), the 
parameter s is modified to assume a very low positive value 
for low values of GSI. The GHB criterion with non-zero s is 
adopted in the present work to model the rock mass.

Equation (5) expresses the relationship between major 
and minor principal stresses of any rock mass as per GHB 
criterion (Hoek et al. 2002). A relationship proposed by 
Balmer (1952) may be utilized to express Eq. (5) in terms 
of normal and shear stresses. The procedure is as follows:

Differentiating Eq. (1) with the respect of �3 , we get

After substituting Eq. (9) into Eqs. (7) and (8), respec-
tively, the GHB criterion can be modified as follows:

From the nonlinear shear stress (�) vs. normal stress 
(
�n
)
 

failure envelop, the instantaneous angle of internal friction 
�i can be expressed using general formula suggested by 
Balmer (1952):

Finally, to calculate an instantaneous angle of internal 
friction �i , the following expression can be used (Shen et al. 
2012a):

(6)mf =

(
mb�3

�ci

)
+ s.

(7)� =
(
�n − �3

)
√

��1

��3
,

(8)�n = �3 +
�1 − �3
��1

��3
+ 1

.

(9)
��1

��3
= 1 + amb

(
mb�3

�ci
+ s

)a−1

.

(10)� =
(
�n − �3

)
√

1 + amb

(
mb

�ci
�3 + s

)a−1

,

(11)�n = �3 +
�ci

(
mb�3

�ci
+ s

)a

2 + amb

(
mb�3

�ci
+ s

)a−1
.

(12)tan�i =
��

��n
.

(13)�i = arcsin

⎛⎜⎜⎜⎝
1 −

2

2 + amb

�
�3

�ci
mb + s

�a−1

⎞⎟⎟⎟⎠
.

The instantaneous cohesion can be calculated by solving 
the Mohr–Coulomb strength equation:

The instantaneous Mohr–Coulomb strength parameters 
(i.e. ci and �i ) are determined using Eqs. (7)–(14). Solving 
Eq. (11) is a challenging task since it is a nonlinear expres-
sion involving the term �3 which itself is initially unknown.

Solution of 2D Hoek–Brown yield criterion

Numerous triaxial tests on intact rocks of different types have 
revealed that the normal stress vs. shear stress behaviur is 
nonlinear (Hoek 1983). Therefore, it would be inappropriate 
to consider constant values of cohesion and angle of inter-
nal friction along the range of failure envelop as is done in 
case of linear Mohr–Coulomb failure criteria. Hoek (1983) 
stated that it would be more logical to estimate instantaneous 
effective cohesion 

(
c′
)
 and instantaneous effective angle of 

internal friction 
(
�′
)
 for rock materials under any applied 

normal stress 
(
�n
)
 . Equation (11) shows the GHB criteria as 

a function of normal stress 
(
�n
)
 , minor principal stress 

(
�3
)
 

and known GHB material parameters s,mb and a . While solv-
ing the generalized Hoek–Brown (GHB) strength criterion, 
the minor principal stress 

(
�3
)
 is determined from Eq. (11) 

for any known value of applied normal stress 
(
�n
)
 . After 

obtaining the value of minor principal stress 
(
�3
)
 , Eqs. (13) 

and (14) are used to calculate the instantaneous values of 
Mohr–Coulomb shear strength parameters (i.e. �i and ci ). 
Many researchers (Kumar 1998; Priest 2005; Shen et al. 
2012a, b) proposed their own expressions to obtain the value 
of minor principal stress 

(
�3
)
 from Eq. (11) and subsequently 

calculate the instantaneous Mohr–Coulomb shear strength 
parameters (i.e. �i and ci ). Recently, Kumar et al. (2019b) 
developed a numerical procedure using Newton–Raphson 
method to solve Eq. (11) for minor principal stress 

(
�3
)
 

which is used in the present work for slope analysis and 
development of stability charts.

Generation of trial failure surface

Slope analysis using limit equilibrium technique starts with 
an assumption of any failure surface with a predetermined 
shape. It may be circular, logarithmic spiral or any other 
general shape. Different methods of trial failure surface 
generation and their performances have been reported ear-
lier. Various researchers (Malkawi et al. 2001; McCombie 
and Wilkinson 2002; Cheng et al. 2007a, b; Kumar et al. 
2019a) have discussed about different methods of gener-
ating trial failure surface and their performance in slope 
analysis. The trial failure surface must satisfy the condition 
of kinematic admissibility and should be concave upward. 

(14)ci = � − �n tan�i.
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These requirements are fulfilled by satisfying the following 
equation:

where �i = angle of inclination of the base of the ith slice.
A simple technique for generating failure surface com-

posed of piecewise linear segments is discussed in detail 
by Kumar et al. (2019a) and Himanshu et al. (2019). This 
method is used in the current work. The non-circular failure 
surface with discrete number of slices is characterized by 
three control variables 

(
xl, xr, �l, �r

)
 . The variables (xl, yl) 

and (xr, yr) describe the coordinates of initial and final inter-
section points of the slip surface with the ground surface. 
The angles �l and �r represent the vertical inclination angles 
of the base of initial and final slices, respectively. The pro-
cedure is depicted in Fig. 1 for any general slope and a trial 
failure surface composed of piecewise linear segments. The 
ordinates of two end points yl and yr are actually obtained 
using the equation of top surface of the slope ysurf

1
(x) for 

known values of 
(
xl, xr

)
 and therefore are treated as depend-

ent variables. That is why, 
(
xl, xr, �l, �r

)
 are treated as the 

controlling variable while generating the trial failure surface. 
Readers are requested to refer to the works of Kumar et al. 
(2019a) and Himanshu et al. (2019) where more details of 
the generation process of the non-circular trial failure sur-
face can be found.

The objective function of PSO

Analysis of any slope, as per limit equilibrium method, 
depends on the mobilized downward force aiding the move-
ment and the resisting shear force acting against it. The 

(15)𝛼1 < 𝛼2 < ⋯ < 𝛼nsls−1 < 𝛼nsls,

factor of safety (FOS) is defined as the ratio of the resisting 
force and the mobilizing force

Here, 
∑

Sri is the summation of the shear resistance and ∑
Smi is the summation of the mobilized shear. Zhu et al. 

(2005) presented an algorithm implementing Morgenstern 
and Price (1965) method for calculating FOS of any slope. A 
Matlab code was developed by Kumar et al. (2019a) imple-
menting the algorithm presented by Zhu et al. (2005). In 
the present work, same code has been used for calculating 
the FOS of the rock slope implementing Morgenstern and 
Price (1965) method. A brief description of the algorithm 
is presented below:

Here, c′
i
 and �′

i
 are effective cohesion and effective angle 

of internal friction applicable for the ith slice. Also, li and 
N′
i
 are the length of the base of the ith slice and the effec-

tive normal force on it, respectively. Also, F is the factor 
of safety applied to obtain developed or mobilized shear 
strength.

Morgenstern and Price (1965) method considers both 
inter-slice normal force (En) and inter-slice shear force 
(Es = f n� En) with variable force function f n along the slice 
as shown in Fig. 2. Here, � is defined as scaling factor. In the 
present work, author uses a half-sine force function for f n 
while evaluating FOS.

(16)f = FOS =

∑
Sri∑
Smi

.

(17)
Shear strength (resistance) of slice: Sri = c�

i
li + N�

i
tan��

i
,

(18)
Shear stress (mobilized) ofslice: Smi = (c�

i
li + N�

i
tan��

i
)∕F.

Fig. 1  Trial non-circular failure surface. (Source: Kumar et al. 2019a)
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Figure 2 shows a typical slice (i) having width wi , height 
hi and base angle �i . The base–normal N′

i
 is obtained by 

observing the equilibrium of all vertical forces acting on 
the slice as follows:

In Eq. (19), Wi , Ui and kh are the weight, pore pressure 
and horizontal seismic coefficient for the ith slice. From the 
consideration of equilibrium of all horizontal forces on ith 
slice, the expression of mobilized shear force Smi can be 
obtained as follows:

Using the relationship Es = f n� En and substituting 
Eq. (19) into Eq. (20), following expression can be obtained:

The forces Sr′
i
and Sm′

i
 represent the total shear resistance 

and mobilized shear for any particular ith slice. The expres-
sions of Sr′

i
and Sm′

i
 are as follows:

Equation (21) is rearranged in a modified form as follows:

(19)
N�
i
= (Wi + Esi+1 − Esi) cos �i + (−kh Wi − Eni+1 + Eni) sin �i − Ui.

(20)

Sm
i
= (c�

i
l
i
+ N

�
i
tan��

i
)∕F

i
= (W

i
+ Es

i+1 − Es
i
)

sin �
i
− (−k

h
W

i
− En

i+1 + En
i
) cos �

i
.

(21)

Eni+1[(sin �i − f n
i+1

� cos �i)tan�
�
i
+ (cos �i + f n

i+1
� sin �i)F] − Sr�

i

= Eni[(sin �i − f n
i
� cos �i)tan�

�
i
+ (cos �i + f n

i
� sin �i)F] − Sm�

i
.

(22)Sr�
i
= (Wi cos�i − kh Wi sin�i − Ui)tan�

�
i
+ c�

i
li,

(23)Sm�
i
= Wi sin�i + kh Wi cos�i.

In Eq. (24a), the inter-slice normal forces should meet 
the boundary conditions i.e. boundary values for two end 
slices at left and right of the failure surface. The boundary 
values are: En1 = Ennsls+1 = 0 . Using the conditions of force 
equilibrium, the factor of safety (FOS) can be obtained as:

The readers are requested to refer to the work of Zhu et al. 
(2005) for more detailed description for solving Eq. (25).

Particle Swarm Optimization method to search 
for the critical failure surface

It is important to find out the critical failure surface with 
minimum FOS out of all possible failure surfaces. For this 
purpose, Particle Swarm Optimization (PSO) is used in the 
present work. While generating a segmented piecewise lin-
ear failure surface in the present work, four control variables 
are involved. The left most coordinate (xl) and rightmost 
x-coordinate (xr) of the trial failure surface constitute first 
two variables/particles. The angles made by the leftmost 
slice ( �l ) and the rightmost slice ( �r ) with the horizontal 
form the next two variables/particles. Any particle in the 
swarm is defined as:

The position ( Xk
i
 ) and velocity ( Vk

i
 ) are constantly 

updated as the particles move inside the search space A. 
Here k represents the number of iteration steps in PSO algo-
rithm. Therefore,

In the early form of PSO, each particle employs Eq. (29) 
to update their velocity (Eberhart and Kennedy 1995; Ken-
nedy and Eberhart 1995; Eberhart et al. 1996)

(24a)Eni+1 �i+1 �i+1 = Eni �i − F Sm�
i
+ Sr�

i
,

(24b)
�i = (sin �i − f n

i
� cos �i)tan�

�
i
+ (cos �i + f n

i
� sin �i)F,

(24c)
�i+1 = (sin �i+1 − f n

i+1
� cos �i+1)tan�

�
i+1

+ (cos �i+1 + f n
i+1

� sin �i+1)F,

(24d)
�i+1 = [(sin �i − f n

i+1
� cos �i)tan�

�
i
+ (cos �i + f n

i+1
� sin �i)F]

/
�i+1.

(25)FOS = F =
Sr�

1
+
∑i=nsls

i=2

�
Sr�

i

∏j=i

j=2
�j

�

Sm�
1
+
∑i=nsls

i=2

�
Sm�

i

∏j=i

j=2
�j

� .

(26)Pi = (xil,xir,�il,�ir)
T ∈ A; i = 1, 2, 3, 4,… ,N.

(27)Xk
i
=

(
xk
i1
,xk
i2
, xk

i3
, xk

i4

)
∈ A, i = 1, 2, 3, 4,… ,N,

(28)Vk
i
= ( vk

i1
,vk
i2
, vk

i3
,vk
i4
)T i = 1, 2, 3, 4,… ,N.

Fig. 2  Forces acting on ith slice
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The early PSO variants (Shi and Eberhart 2008) are 
plagued by the problem of premature convergence and thus 
were unable to find the optimized solution. To alleviate this 
problem, another parameter ( � ), the inertia weight coeffi-
cient is introduced to original equation resulting into new 
velocity Eq. (30) of PSO (Eberhart and Shi 1998; Shi and 
Eberhart 1998)

The inertia weight ( � ) can be assumed to follow a linearly 
decreasing pattern between maximum ( �max ) and minimum 
( �min ) values as follows:

Later, contemporary standard PSO (CS-PSO) version was 
developed by Clerc and Kennedy (2002) in which velocity 
of the particles is updated as follows:

For all the above cases-mentioned, particle’s positions 
are updated as follows:

The constriction coefficient (�) is determined as suggested 
by Clerc and Kennedy (2002):

where � = c1 + c2.
The cognitive (c1) and social (c2) parameters in Eq. (34) in 

CS-PSO variant are considered equal to 2.05. In this present 
work, contemporary standard PSO with velocity clamping 
is used. This is required so that the modified velocity does 
not make the particle jump out from the domain of interest. 
A bound is applied as follows:

(29)
Vk+1
i

= Vk
i
+ c1 × rand1 × (Xk

pbest
− Xk

i
)

+ c2 × rand2 × (Xk
sbest

− Xk
i
).

(30)
Vk+1
i

= �k × Vk
i
+ c1 × rand1 × (Xk

pbest
− Xk

i
)

+ c2 × rand2 × (Xk
sbest

− Xk
i
).

(31)�k = �max − (�max − �min)
k

kmax

.

(32)
Vk+1
i

= � × Vk
i
+ c1 × rand1 × (Xk

pbest
− Xk

i
)

+ c2 × rand2 × (Xk
sbest

− Xk
i
).

(33)Xk+1
i

= Xk
i
+ Vk+1

i
.

(34)� =
2

���2 − � −
√
�2 − 4�

���
,

(35)
|||V

k+1
i

||| ≤ Vmax i = 1, 2, 3, 4,… ,N.

Restriction is also applied on the updated value of parti-
cle’s position so that it will also not move beyond the search 
space A. A bound is applied as follows:

The upper and lower bound of particle posi-
tion are expressed as Xmax =

(
xub
l
, xub

r
, �ub

l
, �ub

r

)
 and 

Xmin =
(
xlb
l
, xlb

r
, �lb

l
, �lb

r

)
 , respectively.

Formulation of stability chart

Stability charts present a series of graphs which are useful 
for estimation of the factor of safety (FOS) of any slope 
with known geometry and material properties. These 
graphs eliminate the need for carrying out actual stability 
analysis of the slope and provide an alternative way for 
quick and efficient analysis of any slope. Ever since Taylor 
(1937) introduced stability charts for clayey slopes, many 
researchers embraced the idea to develop stability charts 
for rock slopes (Michalowski 2002, 2010; Gao et al. 2013; 
Eid 2014; Sun et al. 2017). The effects of the seismic load-
ings (Yang et al. 2004; Yang 2007) and pore pressure (Yang 
and Zou 2006) on the rock slope stability were considered. 
Li et al. (2008) suggested stability chart-based solution 
based on Hoek–Brown criteria using numerical limit analy-
sis. Li et al. (2009) also proposed stability chart solution 
based on limit analysis methods consider with seismic 
effect for rock mass. In this analysis, Li et al. (2009) had 
adopted Pseudo-static method for determining the rock 
slope stability.

It is desirable to build such charts for rock slopes based 
on generalized Hoek–Brown strength criterion of rock 
mass (Hoek et al. 2002). In the present study, stability 
charts for rock slopes have been developed incorporating 
generalized Hoek–Brown material parameters. The FOS 
of the slope is determined using limit equilibrium method 
based Morgenstern and Price (1965) formulation. Particle 
Swarm Optimization (PSO) technique is used to determine 
the critical failure surface with global minimum FOS for 
rock slope stability problems. The associated material 
properties of rock mass are: uniaxial compressive strength 
( �ci ), Geological Strength Index (GSI), intact rock mass 
parameter mi, unit weight of rock mass ( � ), height of slope 
(H) and slope angle ( � ). In this article, stability charts have 
been prepared for slope angles ( �) = 15°, 30°, 45°, 60° and 
75°. Considering a FOS F for any slope, the stability num-
ber is defined as:

(36)
|||X

k+1
i

||| ≤ Xmax i = 1, 2, 3, 4,… ,N.
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Results and discussion

In this paper, authors have strived to develop stability charts 
of rock slopes incorporating GHB criterion proposed by 
Hoek et al. (2002). Morgenstern and Price (1965) method 
based on limit equilibrium technique is adopted to determine 
the value of factor of safety of the rock slope against failure. 
An evolutionary optimization method i.e. Particle Swarm 
Optimization (PSO) is used to search for the minimum FOS 
values and the associated critical failure surface out of all 
possible slip surfaces. A MATLAB code has been developed 
for this purpose. The charts have been developed for entire 
range of Geological Strength Index (GSI) values ranging 
from 0 to 100 for intact rock mass characterized by the dis-
turbance factor D = 0. The associated material properties of 
rock mass have been taken from the works of Li et al. (2008). 
The corresponding values of minimum FOS are presented in 
Table 1. The results presented in Table 1 show that minimum 
factor of safety (FOS) values decrease with increasing slope 
angle (�) . It can also be observed that calculated stability 
numbers obtained from Eq. (37) decrease with increasing 
GSI and mi.

Figure 3a–e present the rock stability charts for the rock 
slope angles � = 15°, 30°, 45°, 60° and 75° for range of GSI 
values and mi mentioned in Table 1. The figures reveal that 
the stability numbers increase with increasing inclination 
angles of rock slope for given GSI and mi . Correspondingly, 
factor of safety (FOS) will tend to decrease with increas-
ing slope angle � . However, if any individual stability chart 
for any given slope angle is studied, it can be seen that the 
stability number N follows a decreasing pattern if the param-
eters GSI or mi increase.

It is desirable to check the type of slope failure (i.e. base 
failure, face failure or toe failure) which will take place for 
the stability charts developed and presented in Fig. 3a–e. 
Figure 4a presents the critical failure surface (CFS) for the 
parameters GSI = 50, mi = 25 and slope angle � =  150. It is 
seen that the induced slope failure corresponds to deep-
seated base failure. For other values of material proper-
ties (i.e. GSI and mi ), base failures have been observed at 
the same slope angle (i.e. � = 15°). Figure 4b shows the 
CFS for the chosen rock parameters GSI = 50, mi = 25 and 
� = 30°. However, in this case, toe failure is found to take 
place. Similarly, for � = 45°, 60° and 75°, toe failures hap-
pen as observed in Fig. 4c–e, respectively. Furthermore, if 
the material parameters are altered for any give slope angle 
� (i.e. for either of 30°, 45°, 60° and 75°), the observed 

(37)N =
�ci

�HF
.

failure mode only corresponds to toe failure. Therefore, it 
may be inferred that base failure is the most likely mode 
failure for low value of slope angle � . If the slope angle 
increases (i.e. � ≥ 30◦ ), the mode of failure gradually shifts 
from base to toe failure. From this study, it is also observed 
that the value of factor of safety increases with decreasing 
slope angle of rock mass. For all the charts presented in 
Fig. 3a–e and CFS shown in Fig. 4a–e, Particle Swarm 
Optimization (PSO) method has been used to search the 
CFS. In the present study, the calculated values of stability 
numbers are very close to those obtained by Li et al. (2008, 
2009) where limit analysis technique was used to perform 
slope analysis.

Stability charts for seismic loading conditions

Next, the stability charts have been developed for the 
rock slope considering the effect of seismic loading. Dur-
ing rock slope stability analysis, the intact rock mass has 
an uniaxial compressive strength 

(
�ci

)
 , intact rock yield 

parameter 
(
mi

)
 , unit weight (�) and geological strength 

index (GSI) . These values are usually considered constant 
throughout the slope. The effect of seismic excitation is 
incorporated by considering the presence of an equivalent 
pseudo-static horizontal force equal to khW  acting on the 
slope mass. Here, kh is the horizontal seismic coefficient 
and W  is the weight of any slice. The limit equilibrium-
based Morgenstern–Price method has been utilized to cal-
culate the value of FOS of the rock slope. PSO is used to 
search for the CFS out of all considered failure surfaces 
along with the corresponding minimum FOS value of the 
slope.

In this study, the stability charts are developed consider-
ing for horizontal seismic coefficient kh = 0.1, 0.15, 0.20, 
0.25 and 0.30 with different slope angles � = 15°, 30°, 
45°, 60° and 75°, respectively. The stability charts shown 
in Fig. 5a–e correspond to the case kh = 0.1 for different 
values of slope angle. If the stability charts are compared 
with those presented in Fig. 3a–e for non-seismic case, 
it is observed that the stability number N increases. Cor-
respondingly, the FOS values for seismic case decrease 
compared to the non-seismic case. The stability charts 
presented in Fig. 5a–e follow similar trends with those 
presented for non-seismic case with respect to change in 
material parameters (i.e. GSI and mi ) and slope angle � . 
The stability number N  follows a decreasing pattern with 
increasing values of GSI and mi . On the other hand, if the 
slope angle � increases, the stability number N  is found 
to increase with corresponding decrease in FOS value of 
the slope.

The stability charts shown in Fig. 6a–e correspond to the 
case when kh = 0.15 for different values of slope angles. If 
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Table 1  Analysis of rock 
slope stability and develop 
the stability chart based on 
limit equilibrium M–P method 
(material properties as per Li 
et al. 2008)

Slope 
angle ( �)

Geological 
Strength Index 
(GSI)

Hoek–Brown yield 
parameter ( m

i
)

�
ci
∕�H FOS values from non-

linear GHB criterion
Stability number 
(N) N = �

ci
∕�HF

15 100 5 0.026 1.280 0.0203
15 100 15 0.009 1.297 0.0069
15 100 25 0.005 1.252 0.0039
15 100 35 0.004 1.318 0.0030
15 70 5 0.078 1.296 0.0601
15 70 15 0.026 1.298 0.0200
15 70 25 0.015 1.277 0.0117
15 70 35 0.011 1.293 0.0085
15 50 5 0.158 1.295 0.1220
15 50 15 0.052 1.302 0.0399
15 50 25 0.031 1.305 0.0237
15 50 35 0.022 1.306 0.0168
15 30 5 0.334 1.301 0.2566
15 30 15 0.101 1.304 0.0774
15 30 25 0.058 1.306 0.0443
15 30 35 0.040 1.304 0.0306
15 10 5 0.994 1.325 0.7496
15 10 15 0.211 1.326 0.1591
15 10 25 0.103 1.328 0.0775
15 10 35 0.064 1.327 0.0482
30 100 5 0.070 1.005 0.0696
30 100 15 0.026 1.020 0.0254
30 100 25 0.016 1.027 0.0155
30 100 35 0.011 1.011 0.0108
30 70 5 0.218 1.010 0.2157
30 70 15 0.075 1.015 0.0738
30 70 25 0.045 1.015 0.0443
30 70 35 0.032 1.014 0.0315
30 50 5 0.461 1.013 0.4549
30 50 15 0.153 1.016 0.1504
30 50 25 0.091 1.017 0.0894
30 50 35 0.065 1.020 0.0636
30 30 15 0.323 1.018 0.3170
30 30 25 0.185 1.019 0.1815
30 30 35 0.129 1.021 0.1262
30 10 5 4.363 1.016 4.2909
30 10 15 0.943 1.020 0.9245
30 10 25 0.460 1.020 0.4506
30 10 35 0.286 1.020 0.2801
45 100 5 0.135 0.984 0.1371
45 100 15 0.058 0.996 0.0581
45 100 25 0.036 0.998 0.0360
45 100 35 0.026 0.998 0.0260
45 70 5 0.469 0.990 0.4734
45 70 15 0.176 0.999 0.1760
45 70 25 0.108 1.005 0.1074
45 70 35 0.077 1.004 0.0766
45 50 5 1.046 0.993 1.0529
45 50 15 0.369 1.003 0.3678
45 50 25 0.222 1.006 0.2205
45 50 35 0.158 1.007 0.1568
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Table 1  (continued) Slope 
angle ( �)

Geological 
Strength Index 
(GSI)

Hoek–Brown yield 
parameter ( m

i
)

�
ci
∕�H FOS values from non-

linear GHB criterion
Stability number 
(N) N = �

ci
∕�HF

45 30 5 2.593 0.997 2.6008
45 30 15 0.829 1.005 0.8242
45 30 25 0.480 1.008 0.4757
45 30 35 0.334 1.010 0.3305
45 10 5 13.585 0.999 13.5918
45 10 15 3.155 1.007 3.1301
45 10 25 1.552 1.010 1.5364
45 10 35 0.969 1.010 0.9584
60 100 5 0.232 0.974 0.2379
60 100 15 0.130 0.987 0.1317
60 100 25 0.088 0.989 0.0889
60 100 35 0.066 0.991 0.0665
60 70 5 0.946 0.985 0.9604
60 70 15 0.435 0.989 0.4394
60 70 25 0.276 0.992 0.2781
60 70 35 0.200 0.992 0.2015
60 50 5 2.337 0.987 2.3662
60 50 15 0.953 0.991 0.9610
60 50 25 0.584 0.993 0.5880
60 50 35 0.419 0.994 0.4213
60 30 5 6.439 0.989 6.5050
60 30 15 2.317 0.994 2.3306
60 30 25 1.356 0.995 1.3619
60 30 35 0.945 0.996 0.9486
60 10 5 38.926 0.988 39.3879
60 10 15 11.734 0.998 11.7559
60 10 25 5.928 0.999 5.9308
60 10 35 3.729 1.0003 3.7277
75 100 5 0.36 0.986 0.3650
75 100 15 0.278 0.968 0.2870
75 100 25 0.228 0.976 0.2336
75 100 35 0.194 0.980 0.198
75 70 5 1.703 0.949 1.80
75 70 15 1.169 0.977 1.196
75 70 25 0.89 0.981 0.907
75 70 35 0.717 0.984 0.7280
75 50 5 4.98 0.972 5.120
75 50 15 2.988 0.980 3.046
75 50 25 2.156 0.985 2.187
75 50 35 1.668 0.987 1.688
75 30 5 15.011 0.970 15.467
75 30 15 8.576 0.984 8.7103
75 30 25 5.824 0.988 5.8923
75 30 35 4.327 0.990 4.369
75 10 5 93.721 0.970 96.523
75 10 15 53.362 0.986 54.082
75 10 25 35.186 0.991 35.489
75 10 35 24.994 0.993 25.155
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the stability charts are compared with those presented in 
Fig. 3a–e for non-seismic case and Fig. 5a–e for seismic 
case with kh = 0.10, it is observed that the stability number N 
increases. Correspondingly, the FOS values for seismic case 
kh = 0.15 decrease compared to the non-seismic case and for 
seismic case with kh = 0.10.

The stability charts presented in Fig. 6a–e follow similar 
trends as those presented for non-seismic case and seismic 

case for kh = 0.1 with respect to change in material parame-
ters (i.e. GSI and mi ) and slope angle � . The stability number 
N follows a decreasing trend with increasing values of GSI 
and mi . On the other hand, if the slope angle � increases, the 
stability number N increases with corresponding decrease 
in FOS value of the slope.

Figure 7a–e show the stability charts with kh = 0.20 for 
different values of slope angles � = 15°, 30°, 45°, 60° and 

Fig. 3  Stability number from limit equilibrium M–P method at different GSI values for different slope angles a � = 15◦ , b � = 30◦ , c � = 45◦ , d 
� = 60◦ , e � = 75◦
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75°, respectively. In all these cases, the stability number N 
is found to increase with corresponding decrease in FOS 
values as the slope angle � and the horizontal seismic 
coefficient kh increase. The nature of the stability charts 
is found to follow similar pattern with respect to change 
in material parameters i.e. GSI and mi . If the values GSI 
and mi increase signifying better-quality rocks, the stability 

number N  decreases with corresponding increase in FOS 
values.

In a similar manner, stability charts have been devel-
oped considering the value of horizontal seismic coef-
ficient kh = 0.25 which have been presented in Fig. 8a–e. 
If the stability charts for kh = 0.25 are compared with 
previous cases, it can be seen that the stability number 

Fig. 4  Critical failure surface (CFS) for GSI = 50 and  mi = 25 at different slope angles a � = 15◦ , b � = 30◦ , c � = 45◦ , d � = 60◦ , e � = 75◦
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shifts upwards indicating corresponding fall in the value 
of factor of safety of the slope. However, the trends of 
Fig. 8a–e resemble the charts developed for lower values 
of kh.

Also, stability charts have been developed for kh = 0.30 
for slope geometries with varying slope angles. These 
charts are presented in Fig. 9a–e. The nature of the stability 
charts again follows similar trend as previously discussed 

up to angle � = 15°, 30°, 45° and 60° in Fig. 9a–d. But the 
nature of the stability chart for angle � = 75° and kh = 0.30 
has been found to be different in Fig. 9e. It is found that 
for mi ≥ 15 and GSI ≤ 50 , the trend of variation of stability 
number becomes flatter with increase in mi . Similar trends 
were reported by Li et al. (2009) for slope angle � = 75° and 
kh = 0.30. Generally, it is expected that FOS values should 
increase with corresponding improvement of material 

Fig. 5  Stability number from limit equilibrium M–P method at different GSI values with k
h
 = 0.10 for different slope angles a � = 15◦ , b 

� = 30◦ , c � = 45◦ , d � = 60◦ , e � = 75◦
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parameter mi signifying better rock quality, a trend that did 
not emerge from Fig. 9e. Therefore, the results shown in 
Fig. 9e (for � = 75° and kh = 0.30) should be considered with 
caution. Hence, further investigations are necessary when 
rock slopes are analyzed for high slope angles and high lat-
eral seismic coefficients considering Hoek–Brown strength 
criterion.

It would be interesting to investigate the nature of vari-
ation of stability number N with material parameter mi 

with changing values of horizontal seismic coefficients kh . 
The other material parameter (i.e. GSI) is considered to be 
constant while developing the plots shown in Fig. 10a–e 
for different slope angles � = 15°, 30°, 45°, 60° and 75°, 
respectively. From Fig. 10a–e, it is observed that the sta-
bility number (N) of rock mass increases as the kh value 
increases. Therefore, the FOS values of the slope will 
decrease correspondingly.

Fig. 6  Stability number from limit equilibrium M–P method at different GSI values with k
h
 = 0.15 for different slope angles a � = 15◦ , b 

� = 30◦ , c � = 45◦ , d � = 60◦ , e � = 75◦
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The variation between normalized major principal 
stresses 

(
�3

�ci

)
 and minor principal stresses 

(
�1

�ci

)
 has been 

calculated using Eq. (1) and presented in Fig. 11 for seismic 
loading case with (kh = 0.10 and 0.30) for the entire extent 
of the failure surface. The material parameters considered 
are Geological strength index (GSI) = 100, mi = 15 and 35 
and slope angle ( �) =  600. It is observed that the range of 
principal stress values of intact rock mass at GSI = 100, 
mi = 35 and kh = 0.10 fall more in compression zone 

compared to GSI = 100, mi = 35 and kh = 0.30. Similar 
behavior is observed for intact rock mass with GSI = 100, 
mi = 15 with kh = 0.10 and 0.30. But the portion of principal 
stress is found to extend more towards tensile region when 
kh is increased from 0.10 to 0.30. It is also found that the 
range of principal stress in the tension region is more for 
rock mass with GSI = 100 and mi = 15 than GSI = 100 and 
mi = 35.

Fig. 7  Stability number from limit equilibrium M–P method at different GSI values with k
h
 = 0.20 for different slope angles a � = 15◦ , b 

� = 30◦ , c � = 45◦ , d � = 60◦ , e � = 75◦
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Conclusions

In the present work, rock slope stability charts have been 
developed after incorporating the generalized Hoek–Brown 
strength criterion suggested by Hoek et al.(2002). Mor-
genstern and Price (1965) method has been used to deter-
mine the FOS of the rock slopes with failure surfaces 
assumed to be composed of piecewise linear segments. 

An evolutionary optimization method i.e. Contemporary 
Standard Particle swarm optimization (CS-PSO) has been 
used to search for the minimum FOS values and the asso-
ciated critical failure surface. The charts have been devel-
oped for entire range of Geological Strength Index (GSI) 
values ranging from 0 to 100 for intact rock mass charac-
terized by the disturbance factor D = 0. It is observed that 
the stability numbers follow an increasing pattern as the 

Fig. 8  Stability number from limit equilibrium M–P method at different GSI values with k
h
 = 0.25 for different slope angles (a) � = 150 , (b) 

� = 300 , (c) � = 450 , (d) � = 600 , (e) � = 750
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slope inclination increases. Also, the stability numbers fol-
low a decreasing trend as the Hoek–Brown material param-
eter mi and GSI increase.

Both static and seismic analyses have been carried out 
while developing the stability charts for intact rock mass. 
The charts have been developed for slopes with inclination 
angles � = 15°, 30°, 45°, 60° and 75°, respectively. When 
the slope angle is less (i.e. � ≤ 15◦ ), the mode of failure 

is identified as base failure. The mode of failure gradu-
ally shifts towards toe failure as the slope angle increases. 
Five values of horizontal seismic coefficient i.e. 0.10, 0.15, 
0.20, 0.25 and 0.30 have been used while developing the 
stability charts for seismic loading condition. As the slope 
inclination increase, the stability numbers increase with 
corresponding reduction in associated factor of safety 
for both static and seismic case. Furthermore, it is also 

Fig. 9  Stability number from limit equilibrium M–P method at different GSI values with k
h
 = 0.30 for different slope angles a � = 15◦ , b 

� = 30◦ , c � = 45◦ , d � = 60◦ , e � = 75◦
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Fig. 10  Stability number for different horizontal seismic coefficient ( k
h
 ) at different slope angles a � = 15◦ , b � = 30◦ , c � = 45◦ , d � = 60◦ , e 

� = 75◦

observed that the stability of the slope is adversely affected 
when higher seismic loading is applied. These results into 
increase in stability numbers compared to non-seismic 
case. It is observed that the nature of stability charts 
become flattish for high angle of inclination ( � ≥ 75◦ ) and 
horizontal seismic coefficient kh ≥ 0.30 with increasing mi 
values, a trend which does not quite fit with general notion. 
A decreasing trend of stability number N  with improving 
mi values would have more in the line with expectation. 

Therefore, this particular aspect deserves further attention 
from the researchers.

If the nature of principal stresses along the failure surface 
is observed, it can be found that the stresses increasingly 
shift towards tensile region as the magnitude of seismic 
loading and the slope inclination are increased. On the other 
hand, if the Hoek–Brown material constants i.e. GSI and mi 
values are increased, the pattern of principal stresses along 
the failure surface shift towards compression region.
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