
Vol.:(0123456789)1 3

Environmental Earth Sciences (2021) 80:204 
https://doi.org/10.1007/s12665-021-09492-y

THEMATIC ISSUE

A global record of particulated metals on the southwestern Atlantic 
shelf (Argentine Sea)

Diana Mariel Villagran1  · Melisa Daiana Fernández Severini1 · Daniela María Truchet1,2 · Matias Nicolás Tártara1 · 
Jorge Eduardo Marcovecchio1,3

Received: 7 February 2020 / Accepted: 4 February 2021 / Published online: 2 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The Argentine Sea (Southwestern Atlantic) is one of the most productive ecosystem in the Southern Hemisphere. Research 
on metals in this region is scarce or null. In this study, we evaluated the concentrations of some metals in the suspended 
particulate matter (SPM), to provide baseline data that would enable us to understand the role of the SPM in the transport 
of metals in the Argentine Sea. Sampling was carried out during the austral summer 2016 at 20 stations distributed in the 
Argentine Sea. Surface seawater samples were collected and then filtered by vacuum through  Millipore® HAWP 04,700 fil-
ters (0.45 µm). The samples were acid-digested  (HNO3 and  HClO4, 5:1) and the metal concentrations were determined with 
ICP-OES Optima 2100 DV (Perkin Elmer). Significant spatial variations were detected due to the extension of the study area, 
with the highest levels of metals in the stations next to large urban centers (Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn: 13.9, 154.9, 
48.7, 54,470, 7646, 49.2, 58.6 and 509.5 μg  g−1 d.w. respectively), which was supported by the nMDS and Cluster analyses. 
According to PCA analysis, two groups of metals that could have similar behavior were stablished: one group integrated by 
Cu, Zn, Pb and Ni, and the other group integrated by Cr, Fe and Mn. Metals that act as micronutrients and the toxic ones 
were present in all the sampling stations, highlighting the need to reinforce the study of these elements in this extensive and 
productive area of the South Atlantic Ocean.
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Introduction

Continental shelves are an essential link between the land 
and ocean since they modulate the transfer of materials. To 
quantify the processes occurring at this interface, one of the 

fundamental issues is to understand the biogeochemistry of 
trace metals in the oceans. Moreover, the supply and removal 
of trace metals in coastal oceans have a direct influence on 
the structure of the oceans ecosystems and their productivity 
(Charette et al. 2016).

A global representation of reported profiles shows that the 
Mediterranean Sea, North Atlantic Ocean, North and East-
ern Pacific Ocean, and the Weddell Sea are the areas where 
metals have been most studied, while the South Indian, 
South Pacific Oceans and Southwestern Atlantic Ocean have 
been seldom studied or are unexplored altogether for some 
metals (Gonzalez et al. 2012). Particularly, the Argentine 
Sea is part of the Southwestern Atlantic Ocean and there 
is no information about the particulate metals in this area. 
This ecosystem is one of the widest in the world—with an 
area of 1.2 million  km2—and one of the most productive and 
complex in the Southern Hemisphere (Palma et al. 2008; 
Lutz et al. 2010; Matano et al. 2010). It supports high phyto-
plankton productivity with several ecosystem services (Mar-
tinetto et al. 2019) and important commercial fisheries, such 
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as hake (Merluccius australis, Merluccius hubbsi), squid 
(Illex argentinus) and shrimps (Pleoticus muelleri, Artem-
esia longinaris) (Bezzi et al. 2000; Acha et al. 2004; Carreto 
et al. 2016; Carranza et al. 2017; Martinetto et al. 2019) 
that adds economic value to this ecosystem and sustains the 
livelihoods of many families of small-scale artisanal fishers 
(Truchet et al. 2019; Truchet and Noceti 2020). Hence, the 
determination of metals in the water column gives infor-
mation about their bioavailability, which helps understand 
changes in productivity or evaluate potential risk for biota. 
These issues become essential for the management and con-
servation of marine ecosystems.

Heavy metals originate from natural sources, mainly from 
the weathering of soil and rocks, erosion, forest fires, and 
volcanic eruptions, but also from extensive human activi-
ties (Yao et al. 2016). They are continuously introduced to 
the marine environments through riverine runoffs, wastewa-
ters and aeolian processes. In coastal systems, metals can 
be introduced in the dissolved phase and rapidly sorbed to 
particles, or can also be introduced directly in the particulate 
form. Then, in the water column, the metals associated with 
suspended particulate matter (SPM) can be incorporated 
into deposited sediments, and being available for organisms 
(Stecko and Bendell-Young 2000). Most of the heavy met-
als have a high affinity to this fraction due to their high ratio 
surface/volume (Showell and Gaskin 1992; Sanders and 
Riedle 1998). Other crucial properties of the SPM are their 
reactivity, mobility, as well as the high nutritional value that 
make these particles fundamental to the transfer of chemical 
constituents between the water, food web and bed sediments 
in aquatic environments (Turner and Millward 2002; Sever-
ini et al. 2018). Also, the mobility and fate of heavy metals 
are affected by the complex dynamics of the coastal water 
which include variations in physical, chemical and biologi-
cal parameters (De Machado et al. 2016).

On the other hand, heavy metals play a fundamental 
role in the biological cycles of the ocean (Jenssen 2011; 
González et al. 2012). Some of them are considered micro-
nutrients (i.e., iron, manganese, nickel and copper) since 
they act as co-factors of many enzymes and can control the 
growth and metabolism of phytoplankton—the primary pro-
ducers—(Morel and Price 2003; Boyd et al. 2007; Moore 
et al. 2013; Twining et al. 2015) and other organisms at the 
bottom of the food webs (Monserrat et al. 2007; Truchet 
et al. 2020). However, other metals (i.e., lead, cadmium, and 
chromium) can be toxic for the biota even in a small-dose 
response (Da Silva and Williams 2001) due to their ability 
to bioaccumulate and their persistence in aquatic ecosystems 
(Van Vuuren et al. 1999; Censi et al. 2006; Ley-Quiñónez 
et al. 2011). In this sense, across a large extension of coastal 
areas of the Argentine Sea, many authors have reported the 
bioaccumulation of heavy metals in marine invertebrates 
(Severini et al. 2009, 2013; Giarratano et al. 2010, 2011; 

Bertrand et al. 2016; Buzzi et al. 2017; Marinho et al. 2018; 
Villagran et al. 2019; Truchet et al. 2020) and marine fish 
(Authman et al. 2015; La Colla et al. 2017, 2018). Also, 
worldwide information has addressed adverse effects of met-
als in marine animals, such as erratic swimming of fishes 
(Bhat and Vamsee 1993), hyperglycemic stress (Lorenzon 
et al. 2000), induction of oxidative stress and oxidative dam-
age (Kim et al. 2014; Lompré et al. 2019) and inhibition of 
reproduction (Yi et al. 2019).

Therefore, taking into account the lack of information 
about metals in one of the most productive ecosystems in the 
Southern Hemisphere and the importance of these elements 
in the biogeochemical cycles of the oceans, the main objec-
tive of this study is to provide baseline data on the levels of 
particulate Cd, Cu, Pb, Zn, Mn, Ni, Cr and Fe to elucidate 
the role of the SPM in the transport of essential and toxic 
metals to this sea.

Materials and methods

Study area

The Argentine Sea (34°–55° S and 56°–68° W), also known 
as the Patagonian Shelf Large Marine Ecosystem (PSLME) 
(Heileman 2009), cover an extensive area of about 1.2 mil-
lion  km2 along the Southwestern Atlantic (South America), 
from the La Plata River to the southern Patagonian and 
Tierra del Fuego (Fig. 1a). The continental shelf is one of 
the widest in the world, and two distinct boundary currents 
influence it: The Malvinas Current, that circulates northward 
carrying cold nutrient rich and the relatively freshwater of 
sub-antarctic origin, and the Brazil Current, that circulates 
southward, carrying warmer, nutrient-poor and saltier waters 
(Piola et al. 2000; Palma et al. 2008; Matano et al. 2010; 
Marrari et al. 2017). These currents flow in opposite direc-
tions and meet, in average, at 36° S (Acha et al. 2004), in 
a region known as the Brazil–Malvinas Confluence, which 
is one of the most energetic globally (i.e., Chelton et al. 
1990; Garzoli 1993; Piola and Matano 2001). These cur-
rents and the association with several shelf and shelf-break 
fronts controlled by the strong winds, large-amplitude tides 
and freshwater discharges, makes this ecosystem one of the 
most productive in the world (150–300  gcm−2  year−1) (Acha 
et al. 2004; Romero et al. 2006; Matano and Palma 2008; 
Palma et al. 2008; Matano et al. 2010; Marrari et al. 2017; 
Martinetto et al. 2019).

Phytoplankton shows a high heterogeneity in biomass 
and community structure with a maxim of chlorophyll-
a associated with different taxonomic groups, especially 
diatoms, dinoflagellates and the picoplankton fraction rep-
resented by Synechococcus sp (Lutz and Carreto 1991; 
Garcia et al. 2008; Sabatini et al. 2012; Segura et al. 2013). 
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The zooplankton community shows a high abundance of 
calanoid copepods, chaetognaths, salps and hydromedusa 
(Heileman 2009; Dutto et al. 2019). Also, the PSLME 
supports significant seabirds and marine mammals com-
munities as well as invertebrates and is particularly rich 

in fisheries resources (Favero et al. 2003; Veit 2008; Elías 
et al. 2011; Mandiola et al. 2015; Bigatti and Signorelli 
2018).

This study was carried out in four areas of the PSLME 
that here have been called in practical terms as Buenos Aires 

Fig. 1  Study area. a Locations of the sampling sites in the Argentine 
Sea; b Buenos Aires area, location of stations 1, 2, 3, 4, 5, 6 and 7; 
c Valdés Peninsula area, locations of stations 8 and 9; d Santa Cruz 

area, locations of stations from 10, 11, 12, 13 and 14; e Tierra del 
Fuego area, locations of stations from 15, 16, 17, 18, 19 and 20
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(BA), Valdés Peninsula (VP), Santa Cruz (SC) and Tierra 
del Fuego (TF).

The BA (Fig. 1b) extends from the Río de la Plata Estuary 
(RDP) to the area called El Rincón. The RDP is an exten-
sive, shallow, and microtidal coastal–plain estuary that 
receives freshwater from the second-largest South Ameri-
can basin (a surface of 35,000  km2 and with a freshwater 
runoff of 16,000–28,000  m3  s−1) (Bilos et al. 1998; Auad 
and Martos 2012) and it is characterized by a strong vertical 
stratification (Acha et al. 2004). Meanwhile, El Rincón is 
characterized by vertical homogeneity due to tidal forcing, 
and a coastal front separating diluted coastal water, coming 
from the Negro and Colorado rivers (960  m3  s−1 total aver-
age discharge), and shelf waters (Acha et al. 2004). Large 
urban centers are located in this area, as an example, 14.8 
million people live in Buenos Aires city and its metropolitan 
area (AMBA) laying on the RDP while ~ 800,000 people 
live in Mar del Plata city (~ 400 km south of Buenos Aires 
city). This area also supports a wide range of industries, 
including chemical industry, oil refinery, textile industries, 
tourism, fishing and agriculture. Hence, it receives perma-
nently agricultural runoff, industrial discharges and mostly 
untreated sewage effluents (Becherucci and Seco Pon 2014; 
Pazos et al. 2017; Zorzoli 2017).

The VP (Fig. 1c) presents in spring and summer a thermal 
mixing front observed between stratified (offshore) waters 
and a coastal, vertically mixed body of water (Acha et al. 
2004). The peninsula is surrounded by San José Gulf, which 
opens to the north and Nuevo Gulf and the south. Both gulfs 
are essential calving grounds for the Southern right whale 
population in the SW Atlantic Ocean (D’Agostino et al. 
2017). Nuevo Gulf is much larger than San José Gulf and 
it hosts the city of Puerto Madryn (~ 100,000 inhabitants), 
an active port, and industries (including one of the largest 
aluminum plants in the country). On the other hand, San 
José Gulf is smaller, has no nearby urban settlements, and 
it is a protected area with no activities beyond extraction of 
shellfish by coastal diving (Rosas et al. 2012).

The SC extends from San Jorge Gulf to the Deseado estu-
ary (DE) (Fig. 1d). The San Jorge Gulf is the largest coastal 
embayment of the Patagonian Shelf, one of the most pro-
ductive portions of the South Atlantic Ocean (Marrari et al. 
2017; Palma et al. 2020). In this gulf, an economically sig-
nificant fishery (Glembocki et al. 2015) and oil industries—
including production, offshore drilling and transit of tank-
ers—are developed (Silwan 2001). Furthermore, regional oil 
and fishing industries encompass substantial reproductive 
and foraging grounds of many marine birds and mammals 
(Torres et al. 2016). It has a shallow-water region (45–75 m 
depth) near 46° 48′ S, 65° 43′ W, where the formation of the 
seasonal pycnocline is restricted by intense vertical mixing 
due to high bottom friction. Besides, during the Southern 
Hemisphere warm period (October–March), net surface 

heat flux is positive, sufficient to warm the surface layer of 
the San Jorge Gulf and give rise to the southern tidal front 
(Rivas 1994; Rivas and Piola 2002; Carabajal et al. 2018).

On the other hand, the DE is a macrotidal sea inlet with 
an extensive coastal plain and a reduced freshwater dis-
charge (Piccolo and Perillo 1999). This area has a deep-
water port located on the north edge where fishing activi-
ties take place and it is also a nature reserve for vulnerable 
marine fauna (Islas et al. 2004). The Magellan Strait influ-
ences the Santa Cruz area since it is introduced as a plume 
of vertically homogeneous, low-salinity water (~ 33.2) that 
extends northwards to 42° S (Carabajal et al. 2018; Palma 
et al. 2020).

Finally, the TF area (Fig. 1e) is located in the southern-
most part of the SW Atlantic Ocean and it includes the Bea-
gle Channel (BC) that connects the Pacific and the Atlantic 
Oceans, hosting a wide range of wildlife and biodiversity. 
This area is hydrologically complex since the Antarctic and 
Sub-Antarctic waters converge and interconnect with the 
Cape Horn Current that enters the continental shelf through 
the Le Maire Strait in the eastern part of Tierra del Fuego, 
and the Antarctic Circumpolar Current (Guerrero et al. 
1999). The Antarctic Circumpolar Current is highly loaded 
with nutrients that enter the Argentine shelf and is diluted in 
part by the freshwater inputs from glacier melting through 
the Beagle Channel (Guinder et al. 2020). The central urban 
city in this area is Ushuaia that is the southernmost city of 
the world with ~ 60,000 inhabitants. In this area, there are 
also some electronic manufacturing industries and the most 
crucial port for Antarctic tourism and maritime traffic (Conti 
et al. 2019).

Sampling, laboratory procedures and data analysis

Sampling was carried out during the austral summer (Janu-
ary 2016), on board the vessel “Dr. Bernardo Houssay” that 
belongs to the Prefectura Naval Argentina (PNA), at 20 sta-
tions distributed in the four areas of the PSLME mentioned 
above (Fig. 1). The BA comprised 7 stations (1, 2, 3, 4, 5, 6 
and 7), the VP comprised 2 stations (8 and 9), the SC area 
comprised 5 stations (10, 11, 12, 13 and 14) and the TF area 
comprised 6 stations (15, 16, 17, 18, 19 and 20).

Surface seawater samples for SPM were collected, from 
a nominal depth of 5 m, with a Teflon peristaltic pump 
attached to a Teflon tube. The sampling and laboratory mate-
rials were carefully cleaned with diluted 5%  HNO3 (APHA-
AWWA-WEF 1998). 5 L of seawater were immediately fil-
tered on board by vacuum through acid-treated  Millipore® 
HAWP 04,700 filters (0.45 µm) for the determinations of 
the particulate metals. Finally, all the filters were frozen 
at – 20 °C until analysis in the laboratory. At the Labora-
torio de Oceanografía Química of the Instituto Argentino 
de Oceanografía (IADO, CONICET-UNS), the filters with 
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the SPM were dried at 50 ± 5 °C until constant weight and 
weighed in an analytical balance to obtain the dry weights 
of the samples by difference with the weights of the filters. 
Subsequently, the filters were acid-digested with  HNO3 (65% 
purity, Merck) and  HClO4 (70% purity, Merck) in a pro-
portion of 5:1 mL, respectively. Then, they were put in a 
bath of glycerin at 110 ± 10 °C to obtain a sample of about 
1 mL. Each of the extracts was carefully transferred into a 
graduated tube and completed with  HNO3 0.7% until a final 
10 mL volume. For the treatment blanks, the same diges-
tion procedure was performed for filters without particles. 
All the samples were analyzed in duplicate and the metal 
concentrations were determined with ICP-OES Optima 2100 
DV (Perkin Elmer).

The method detection limits (MDL) for Cd, Cr, Cu, Fe, 
Mn, Ni, Pb and Zn were 0.03, 0.05, 0.09, 3.00, 0.23, 0.05, 
0.04, and 0.11 µg  g−1, respectively. In addition, for each 
metal, the limit of quantification (LOQ) was calculated, 
which is the lowest concentration that can be determined 
with an acceptable level of repeatable precision and confi-
dence. The LOQ is defined as ten times the standard devia-
tion of the blank (according to IUPAC) and it was estimated 
as following, for each metal previously mentioned: 0.01, 
0.19, 0.3, 9.82, 0.76, 0.17, 0.14 and 0.37 µg  g−1.

For the analytical quality control, reagent blanks, certified 
reference materials (CRMs [Certified Reference Material 
BCR-414 (No 509), IRMM, Geel, Belgium]) and analytical 
grade reagents (Merck) were used. The recovery percentages 
for all metals in CRM were higher than 90%.

To evaluate the associations between metals and the 
concentrations of SPM, two statistical analyses were per-
formed with InfoStat V2016 software (Universidad Nacional 
de Córdoba, Argentina): Spearman correlation between the 
particulate metals and SPM concentrations, and a princi-
pal component analysis (PCA) between the metals. Also, a 

cluster analysis (Bray–Curtis similarity) and a non-metrical 
multidimensional scaling (nMDS) using Bray–Curtis simi-
larity were employed to analyze the similarity between the 
metal loadings of the sampling stations and to determine 
internally similar groups between them. These two analy-
ses were conducted with the Primer 6 software (Clarke and 
Gorley 2006).

Results

The SPM concentration did not show a remarkable spatial 
variation (Fig. 2), except for station 1 (corresponding to 
RDP) that showed a peak of 63.8 mg  L−1. Other stations 
with relatively high levels of SPM were station 14 in the 
SC (11.4 mg  L−1), station 20 in TF (10.5 mg  L−1), and sta-
tion 9 in VP (10.2 mg  L−1). On the other hand, the sites 
with relatively low SPM levels were 2 in BA (4 mg  L−1), 
19 in TF (5.1 mg  L−1), 3 in BA (5.2 mg  L−1) and 16 in TF 
(5.4 mg  L−1).

Regarding the concentration of metals, the mean con-
centrations and ranges of all metals are summarized in 
Table 1. Overall, the particulate metals showed a wide spa-
tial variation (Fig. 3). The highest concentrations of Mn, 
Ni, Cr and Fe were found at station 1 (7646, 49.2, 48.7 and 
54,470 μg  g−1 dry weight respectively), the highest values 
of Cu, Pb and Zn were found at station 2 (154.9, 58.6 and 
509.5 μg  g−1 d.w., respectively), whereas the highest con-
centration of Cd was found at station 4 (13.9 μg  g−1 d.w.). 
On the other hand, Pb was below the MDL (0.04 µg  g−1) 
in eleven of the twenty stations (7, 8, 9, 10, 12, 14, 15, 
17, 18, 19, and 20), and Ni values were below the MDL 
(0.05 µg  g−1) in fourteen of the twenty stations (4, 5, 6, 7, 8, 
9, 12, 13, 14, 15, 17, 18, 19 and 20).

Fig. 2  Distribution of sus-
pended particulate matter 
(SPM) concentrations (mg  L−1)
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According to each area, the BA showed relatively high 
concentrations of all the metals, especially at stations 1 and 
2. The VP showed relatively high concentrations of Cu, Mn 
and Cr (station 8); the SC presented relatively high values of 
Cd, Cu, Zn and Ni, whereas the TF showed relatively high 
concentrations of Cd, Zn, Mn and Cr (Fig. 3).

The Spearman correlations between heavy metals and the 
SPM are shown in Table 2. Significantly positive correla-
tions were found between Pb and Zn, Ni, Cr and Fe, whereas 
Ni correlated positively with Cu, Mn and Cr, and negatively 
with Cd. Cr correlated positively with Cu, Zn, Fe and Cu, 
and Fe correlated positively with Mn. SPM concentrations 
only correlated negatively with Cd.

With almost 60% of similitude, the cluster analysis 
(Fig. 4a) clustered together all the stations except for sta-
tion 1 (RDP). Stations 2, 3 and 16 showed more similarity 
between them, as well as 10, 9 and 13. The other stations 
were grouped with almost 85% of similitude. The nMDS 
(Fig. 4b) exhibited the same pattern and determined three 
groups (80% similarity) including a group with station 1 
(RDP), another one with 2, 3 (BA) and 16 (BC), while the 
remaining stations grouped sites corresponding to the south 
of BA, VP, SC and TF.

The results of the PCA of metals in SPM are shown in 
Fig. 5. The two first components (F1 and F2) explained 
89.3% of the total variability. Cu, Zn, Pb and Ni are clustered 
together and contributed to F1 and F2 with high positive 
loadings. On the other hand, Cr, Fe and Mn are clustered 
together and contributed to F1 with high positive loadings 
and F2 with significant negative loadings.

Discussion

The spatial distribution of SPM concentrations along the 
study area showed some fluctuations according to the loca-
tion of the sample. The stations located far from the coast 
presented the lowest concentrations of SPM, while the sta-
tions near to the coast presented the higher ones. In coastal 
areas, sediments and seston are suspended in the water col-
umn either in a state of exchange with bed sediments and 
intertidal flats (Jonge and Beusekom 1995). The origin of 
SPM and associated organic material in these environments 

could come from autochthonous primary production of 
pelagic and benthic algae, erosion and sedimentation of 
channel beds, intertidal flats, and salt marshes (de Jonge 
2000). External sources like the particulate matter derive 
from freshwater runoff, water mass intrusion from the open 
sea, and accumulation of mud from the coast (Velegrakis 
et al. 1997) also contribute to the SPM pool.

On the other hand, SPM concentrations at sea are very 
variable: minimum concentrations have been observed in oli-
gotrophic areas of the open ocean (1 µg  L−1 or even lower), 
while in coastal waters, the concentrations can exceed 50 mg 
 L−1 (Helmers 1996), as is the case of the RDP.

The concentration of particulate metals in the Argentine 
Sea shows a wide spatial variation, which might be expected 
in a very complex and large area with more than 4000 km of 
coastline. Overall, all the metals, except for Pb and Ni, were 
detected at all the sampling sites.

The BA presented the highest levels of all the heavy met-
als, especially the stations 1 and 2. The highest concentra-
tions of Mn, Ni, Cr and Fe were found at station 1—located 
on the mouth of the RDP—with a corresponding relatively 
high value of SPM that was between 6 and 16 orders of 
magnitude above the concentrations of the rest of the sta-
tions. The riverine runoffs might explain these high con-
centrations from RDP, since about 160 million tons of sedi-
ment are discharged into this estuary every year with SPM 
concentrations between 10 years 1000 mg  L−1 (FREPLATA 
RLA 99/G31 2005). This sediment load is composed of 
56% silt, 28% clay and 16% sand, and 90% of the load is 
transported in suspension (Drago and Amsler 1988; Amsler 
1995). According to a study about the hydro-sedimentolog-
ical dynamics of the Río de la Plata (Proyecto FREPLATA 
RLA 99/G31), the finest sediments carried by this river 
are the primary source of transportation of various types 
of pollutants, mainly heavy metals, towards the estuarial 
environment. In the zone of maximum turbulence (ZMT), 
accumulation occurs in the bottom of the sediments and, 
consequently, of their contaminants, associated by physi-
cal–chemical flocculation processes. Then these sediments 
are resuspended by turbulent processes mainly induced by 
tidal currents, waves and wind. Dredging activities can also 
participate in the resuspention of bottom sediments and con-
tribute to the metal pool in the SPM. However, no significant 

Table 1  Summary of means 
and ranges of particulate heavy 
metals in the Argentine Sea (μg 
 g−1 dry weight)

Min minimum concentration, Max maximun concentration, Mean mean concentration
SD standard deviation, < MDL values below the method detection limit

Cd Cu Pb Zn Mn Ni Cr Fe

Min 0.9 15.4  < MDL  < MDL 7.9  < MDL  < MDL 263
Max 13.9 154.9 58.6 509.5 764.6 49.2 48.7 54,470
Mean 2.6 36.1 14.5 94.4 91.7 20.6 10.2 4166
SD  ± 2.8  ± 31  ± 21.5  ± 158.8  ± 166.7  ± 21.4  ± 10.6  ± 11,876
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Fig. 3  Spatial distribution of heavy metals (μg  g−1dry weight) in the suspended particulate matter (SPM) in the Argentine sea
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Table 2  Spearman correlation 
matrix

R critic (threshold value of the correlation coefficient to declare a correlation r as significant with an error 
probability of 5%) = |0.44|
Significant correlations are shown in bold (p = 0.05)

Cd Cu Pb Zn Mn Ni Cr Fe SPM

Cd 1
Cu − 0.16 1
Pb − 0.4 0.7 1
Zn − 0.02 0.75 0.64 1
Mn − 0.42 0.42 0.27 0.15 1
Ni − 0.89 0.77 0.6 0.43 0.77 1
Cr − 0.43 0.58 0.71 0.52 0.22 0.6 1
Fe − 0.03 0.43 0.73 0.3 0.44 0.43 0.48 1
SPM − 0.47 − 0.13 − 0.42 − 0.21 0.39 0.41 − 0.03 − 0.3 1

Fig. 4  a Cluster analysis based 
on the Bray–Curtis similarity 
between the particulate metals 
of the sampling stations b 
non-Metrical Multidimensional 
Scaling (nMDS) (Bray–Curtis 
similitude) between the total 
particulate metal loading of the 
sampling stations of the differ-
ent areas. RDP Río de la Plata 
Estuary, BA Buenos Aires, VP 
Valdés Península, BC Beagle 
Channel in Tierra del Fuego 
(TF), SC Santa Cruz



Environmental Earth Sciences (2021) 80:204 

1 3

Page 9 of 17 204

correlations were found between these metals and the SPM. 
It is important to remark that Buenos Aires city, the capital 
city of Argentina and the largest city in the country, and its 
metropolitan area (AMBA) are located along the coast of 
the RDP, which together concentrates 40% of the country’s 
population. In these areas, most of the sewage waters are 
untreated before being discharged into the Río de la Plata 
(Lombardi et al. 2010; Zorzoli 2017), and they also contain 
around 60% of the chemical, rubber and plastic industries, 
and 46% of the textile, leather and footwear industries in the 
country (INDEC 2005). Moreover, the second economically 
important ports of Argentina are here. Thus a high degree of 
urbanization and industrialization affects this area and gen-
erates inputs of contaminants—including nutrients, organic 
matter, metals (mainly Cr and Pb), pesticides, hydrocarbons, 
suspended solids, and pathogenic agents (Licursi and Gómez 
2013).

According to Zorzoli (2017), the heavy metal inputs in the 
RDP are indirect since the industrial effluents are discharged 
into the different tributaries that flow into the estuary. Some 
studies have reported concentrations of heavy metals in the 
water, SPM, sediments and several fish in the Río de La 
Plata (Bilos et al. 1998; Marcovecchio 2003; Ronco et al. 
2001, 2008; Lombardi et al. 2010; Avigliano et al. 2015; 
Zorzoli 2017; Muniz et al. 2019). Bilos et al. (1998) found 
higher levels of particulate Cu and Cr than those recorded in 
this study, but similar levels of Mn, which probably implies 
that the concentration of Mn might have persisted over time 
(Table 3). Avigliano et al. (2015) reported values of Pb, Cd 
and Zn for the dissolved phase above the recommended lev-
els based on the Argentinean National Guidelines for the 
Aquatic Biota Protection (ANGABP) and for the Canadian 

Guidelines for the Aquatic Biota Protection, and high con-
centrations of Pb in the muscle of silverside (Odontesthes 
bonariensis), a human-consumed species. On the other hand, 
Zorzoli (2017) reported lower mean values of Cd, Cu and 
Pb in dissolved phase and sediments and higher mean values 
of Cr in sediments. Meanwhile, Muniz et al. (2019) found 
lower mean levels of all metals in the sediments in the Mon-
tevideo coastal zone (Uruguay) (Table 3) and suggest that 
this area of the RDP can be considered from low to mildly 
polluted by metals. From all this data, it is suggested that the 
RDP is a metal contamination hotspot, and it is highly prob-
able that the particulate and dissolved metals might reach the 
bottom sediments and become absorbed by them. Also, they 
could be bioaccumulated by the biota, causing enzymatic 
dysfunctions and with risks for human health in those com-
mercial and consumed species.

South of BA, station 2 showed the highest levels of Cu, 
Pb and Zn, but the lowest levels of SPM concentrations and 
there was no significant correlation between these vari-
ables. This sampling station is close to Mar del Plata, which 
has more than half a million inhabitants, being the most 
populated coastal city in Argentina (CIEM 2010; Pon and 
Becherucci 2012). This city also supports a wide range of 
industries, including tourism, fishing, and cereal industries 
with large cargo ships sailing its shores. Moreover, it is con-
sidered the oldest and most popular seaside resort in the 
country (Juárez and Mantobani 2006), receiving between 2 
and 3 million tourists during the summer months (Decem-
ber–March) (Bouvet et al. 2005; Pon and Becherucci 2012). 
Mar del Plata is also the most important commercial fishing 
harbor of the country. In this context, Marcovecchio et al 
(2006) found two primary sources of heavy metals: Mar del 
Plata harbor and the area affected by the treatment plant for 
the urban and industrial sewage disposal of the city.

At the north of the station 2, it is located Mar Chiquita 
Coastal Lagoon, an estuarine environment with an area 
of ~ 60  km2 and a drainage basin of 10,000  km2 character-
ized by intensive agricultural activities, that is connected to 
the sea through an elongated inlet channel of approximately 
6 km (Marcovecchio et al. 2006). Beltrame et al. (2009) 
reported higher levels of particulate Cu, Pb and Zn for this 
lagoon than those found in our study (Table 3). Hence, if 
the relative proximity of this lagoon to the sampling station 
is considered (~ 50 km,) it could be suggested that the Mar 
Chiquita lagoon has significant influence through under-
ground transport of particulate metals to the ocean.

Still, in BA, station 4 presented the highest concentration 
of Cd. This metal was the only one that correlated negatively 
with SPM concentrations. This result could indicate that low 
concentrations of SPM were favorable for the enrichment of 
metals in the particulate phase. The possible reason is that 
the particle size is generally smaller in a low concentra-
tion of SPM and shows a stronger absorption capacity for 

Fig. 5  Principal component analysis (PCA) loading plots of heavy 
metals
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pollutants in water body (Zhang et al. 2018). This is one 
of the reasons of the particle concentration effect (p.c.e.) 
(Benoit and Rozan 1999). Another of the causes of this 
effect is that the SPM is heterogeneous and can exist in 
morphologically complex forms, and trace components can 
dominate surface composition if they occur as coatings on 
more abundant substances. As a consequence, SPM pos-
sesses a variety of complexation sites characterized by a 
range of stabilities with various metals, with sites with lower 
constants (weak sites) and more abundant than those with 
higher constants (strong sites). If reversible reactions are 
assumed, at equilibrium, metals should occupy the strongest 
available sites. Thus, at low sorption densities, metals would 
occupy the few strongest sites, whereas at high values of 
sorption densities, metals are complexed at progressively 
weaker sites. In this sense, periods of high SPM would be 
associated with greater dissolved metal concentrations and 
lower partition coefficients.

In VP, relatively high concentrations of Cu, Mn and Cr 
were detected, especially at station 8. Previous studies on 
trace metals in different matrices, such as sediments, seston, 
algae, invertebrates and marine mammals, are available for 
the San José Gulf and Nuevo Gulf (Harvey and Gil 1988; 
Gil et al. 1989, 2015; Rosas et al. 2012; Giarratano et al. 
2014) but not for the external zone of the peninsula. In the 
present study, it was considered that there is a tidal mixing 
front in VP, a thermal front observed in spring and sum-
mer, that defines the boundary between stratified (offshore) 
waters and a coastal, vertically mixed body of water which 
could have an effect on the fraction of the particulate metals. 
The front is formed because the stratification of shelf waters 
is induced by surface warming during spring and summer 
periods, and the mixing of the coastal water is forced by ver-
tical shear induced by tidal currents at particular topographic 
shoals southeast and northeast of the peninsula (Acha et al. 
2004). Even more, the tidal energy drives the lower layer—
rich in nutrients—towards the well-lit upper layer, creat-
ing the optimal conditions for phytoplankton blooms and 
zooplankton (Derisio 2012). The structure of the front is 
maintained until autumn when stratification of shelf waters 
decays (Acha et al. 2004). So, it is possible that the concen-
tration of heavy metals changes over the seasons due to the 
dynamic of this front.

The SC showed relatively high levels of Cd, Cu, Zn and 
Ni, although the latter metal was only detected at stations 
10 and 11. During the austral spring–summer, a southern 
tidal front takes place in the San Jorge Gulf: a tongue that 
comes from the Magellan Strait of vertically homogeneous, 
low-salinity water that extends northwards that comprises 
the vertically homogeneous portion of the front, and in con-
trast, mid-shelf waters that are stratified during the warm 
period and comprise the vertically stratified portion of the 
front (Matano and Palma 2008). Carabajal et al. (2018) have 

revealed that the front has a dynamically complex three-
dimensional frontal structure. It exhibits a horizontal sub-
surface intrusion from the mixed region to the pycnocline of 
the stratified side that is rich in nutrients, and which possibly 
causes a subsurface chlorophyll-a peak. The relatively high 
concentration of some particulate metals in SC could suggest 
that those nutrient-rich waters are also rich in metals that are 
essential for the phytoplankton (e.g., Cu and Zn), which is 
why there is an increase in primary production that causes 
the chlorophyll-a peak described by these authors. However, 
more studies on the availability of the essential metals for 
the phytoplankton and their seasonal variation are necessary 
to corroborate this hypothesis. In this sense, some studies 
detected essential and toxic heavy metals in Seaweeds in the 
northern and central parts of the San Jorge Gulf (Muse et al. 
1999; Perez et al. 2007), revealing that heavy metals are 
available for the planktonic organisms. On the other hand, 
Marinho and Esteves (2013) detected higher levels of Pb, 
Mn, Cr and Fe, and lower levels of Ni and Zn in the sedi-
ments than those reported in the particulate fraction of our 
study in the north of the San Jorge Gulf (Table 3), indicating 
that the distribution of heavy metals in this is area is subject 
to spatial and seasonal variation.

Relatively high values of Cd, Zn, Mn and Cr were 
detected in TF, whereas Pb and Ni were only found at sta-
tion 16. Some studies have reported heavy metals in inverte-
brates, the dissolved phase and sediments in several coastal 
sites of the Beagle Channel and Ushuaia Bay (Conti et al. 
2011, 2012, 2019; Duarte et al. 2011; Giarratano et al. 2010, 
2011), but to our knowledge, there are no metal records in 
the sector of the shelf that belongs to this area. Higher levels 
of Pb, Zn, and Fe, and lower levels of Cd and Cu have been 
reported in the sediments of the BC (Duarte et al. 2011) 
(Table 3), than in the particulate fraction in the present 
study. The Antarctic Circumpolar Current enters the Argen-
tinian shelf as the Malvinas Current highly loaded with 
nutrients (Amin et al. 2011), and, therefore, the relatively 
high concentration of some particulate heavy metals in this 
area suggests that this current is also enriched with heavy 
metals, especially those considered as micronutrients (e.g., 
Cu, Zn, Mn). This means that possibly the micronutrients 
have similar behavior to the nutrients, but the data collected 
in this study are insufficient to corroborate this hypothesis.

The cluster analysis defined three groups of stations but 
utterly different from the areas proposed in this study. The 
only coincidence was that station 1 did not join any of these 
groups, which reinforces the idea that the RDP is a heavy 
metals contamination hotspot. Meanwhile, the nMDS formed 
three groups, including the station belonging to RDP formed a 
distinct group, the northern sites 2 and 3 of BA and the station 
16 of BC. This could be explained by the anthropogenic dis-
turbances from these areas that include large urban settlements 
with untreated sewage waters, industrial and port activities. 
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Group three included the southern stations of BA, VC, SC 
and the remnants of TF in BC. The physical, geological and 
oceanographic variables are different over the area from the 
last group (Martinetto et al. 2019); therefore, studies covering 
more significant numbers of stations along the PSLME are 
necessary to elucidate the spatial distribution of heavy metals 
and the SPM loadings.

According to the PCA analysis, it was possible to establish 
two groups of heavy metals: on the one hand Cu, Zn, Pb and 
Ni, and on the other hand Cr, Fe and Mn. This could suggest 
that the metals that conform to these two groups have similar 
behavior. Cd was not associated with any of these groups and 
was the only metal that showed a negative correlation with 
the concentration of SMP, meaning that possibly Cd has a 
different behavior from the rest of the metals in the Argentine 
sea. The group of Cr, Fe and Mn is generally associated with 
each other. Under reducing conditions, Cr(VI) may convert to 
Cr(III), which is insoluble, strongly adsorbed onto solid sur-
faces (Loyaux-Lawniczak et al. 2001), Cr(VI) can be removed 
from solution naturally by reductants such as aqueous Fe(II), 
dissolved humic acids, and Fe(II)-bearing minerals. Moreo-
ver, Cr(III) is oxidized into Cr(VI) in sediments or suspended 
particulate spontaneously by manganese oxide  (MnO2) (Jobby 
et al. 2018). Nevertheless, it is necessary to carry out more 
detailed studies to assess the real behavior of each metal. Also, 
the presence of Ni and Pb below the MDL in almost all sta-
tions may indicate that these metals could be associated with 
other phases, such as the dissolved and sedimentary, rather 
than the particulate.

Comparing with the baseline data on sediments of pristine 
Patagonian rivers proposed by Gaiero et al. (2002), higher val-
ues of Cu, Zn and Ni were found in our study. These authors 
concluded that the South Atlantic coastal areas located in the 
nearby outlets of rivers, such as the Negro, Chico and Santa 
Cruz, receive around 90% of the total trace metals produced 
by the Patagonian rivers. High proportions of metals are trans-
ported to the ocean in the suspended load, and evidence indi-
cates that Fe oxides and organic matter are essential phases 
controlling their distribution in the non-residual fraction of 
sediments. However, in some rivers (especially the Colorado, 
Coyle and Gallegos), the dissolved load might play an impor-
tant role in delivering Ni, Cr, Co, Pb and Cu to the coastal 
areas in a biologically available form. Therefore, most of the 
pollutants that are released to the marine system become asso-
ciated with the suspended matter and bottom sediments, with 
high risks to the biota.

Finally, in comparison with other worldwide works, we 
found higher mean levels of particulate Cd, Cu, Pb, Zn Ni, and 
Fe than those reported by Prego et al. (2013) in the Northeast 
Atlantic Ocean, and higher levels of particulate Cu, Pb, Mn 
and Ni than in the study carried out by Demina and Nemirovs-
kaya (2007) in the White Sea.

Conclusions

This framework provides novel, baseline data of particulate 
metals and the suspended particulate matter from a scarcely 
explored region of the Southwestern Atlantic Ocean. Large 
spatial variations were detected due to the extension of the 
area that is influenced by different factors, like weather, vari-
ous shelves and shelf-break fronts, riverine runoff, and dif-
ferent anthropogenic pressures. The highest concentration 
of heavy metals was found at the station located in Río de la 
Plata estuary, a station influenced by anthropogenic activi-
ties like large urban centers, ports and industries. Statistical 
analysis showed that this station differs from the rest of the 
stations, and, therefore, it is possible to define it as a hotspot 
of heavy metals pollution.

Two groups of heavy metals were detected: one of them 
is integrated by Cu, Zn, Pb and Ni, and the other one is 
integrated by Cr, Fe and Mn, indicating that the metals that 
integrate each group have different behaviors. Cd is not part 
of either of these groups since it may have completely dif-
ferent behavior. However, to understand the real behavior of 
each metal in the Argentine sea, it is necessary to carry out 
more studies that involve other matrices, such as dissolved 
phases and the sediments. It was not possible to establish 
a spatial pattern in the study area, which might be due to 
some gaps in the sampling stations. Hence, to elucidate the 
spatial distribution of heavy metals, it is necessary to gener-
ate more information that covers a more significant number 
of stations along the Argentine Sea, including seasonal and 
oceanographic data.

Some essential metals (Fe, Mn, Zn and Cu) were detected 
in all the sampling sites indicating that these micronutrients 
are available for primary producers. Along with essential 
elements, some toxic metals (Cd and Cr) were also detected 
in all the stations. We consider that integral studies about 
heavy metals in different matrices are necessary to fulfill 
the gaps in knowledge of the biogeochemical cycles of 
heavy metals in the Argentine Sea. Finally, it is necessary 
to continue studying the role of metals as micronutrients and 
their trophic transfer from primary producers to consumers 
throughout the food web, which are critical to evaluate the 
productivity and ecological cycles for the conservation of 
the biodiversity of the coastal and shelf areas in the South-
western Atlantic.
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