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Abstract
Coal mining is bound to destroy the underground aquifer structure, which will lead to mine water inrush disaster. An accu-
rate and rapid identification of water inrush sources is the crux of preventing the recurrence of water inrush incidents. In 
this regard, 37 training water samples and 14 verification water samples were extracted from three types of aquifers in the 
Xieqiao coal mine, China. Na+, K+, Ca2+, Mg2+, Cl−, SO4

2− and HCO−
3 were used as the evaluation variables. The principal 

component analysis was used to eliminate the redundant ion variables in the training samples. The grey situation decision 
method combined with the entropy weight was used to establish the recognition model. The ion variables of the verification 
samples were substituted into the model calculations, and the comprehensive accuracy of the model was found to be 85.71%. 
The proposed method has the advantages of accuracy and speed compared to other contemporary recognition methods. The 
grey situation decision-making method overcomes the problem that single-factor evaluation cannot identify water inrush, 
and the entropy weight method can reflect the degree of difference between the variables. Based upon this recognition model, 
it provides a new method for recognizing water inrush sources, which would also be beneficial to prevention and control of 
mine water hazards.

Keywords  Mine water inrush source · Principal component analysis · Grey situation decision · Linear half-order reduction 
function · Bayesian discriminant

Introduction

Mine water inrush is one of the extraordinarily severe coal 
mine accidents in China, and the main reason for these kind 
of accidents is the absence of in-depth research on the hydro-
geological conditions of collieries. According to some statis-
tics from China’s State Administration of Coal Mine Safety, 
there are about 905 mines with complex hydrogeological 
conditions in China (Zhang et al. 2020; Wang et al. 2020; 
Sun et al. 2015; Xu et al. 2020). The variation characteristics 
of the hydrochemical parameters in the underground multi-
aquifer system are a direct reflection of mine water inrush 
(Yin et al. 2019; Qian et al. 2017). Therefore, accurate and 
rapid identification of water inrush source in the multi-aqui-
fer system is very important in protecting the lives of miners 
and maintaining safe production of collieries.

Mining would cause changes in the level of groundwater, 
temperature and hydrochemical components, which can be 
analyzed using various techniques, including water tempera-
ture and water level method, hydrochemical analysis and 
mathematical analysis. Based upon the geothermal gradi-
ent theory, aquifer temperature shows differences at certain 
depths. Sui et al. (2010) compared the water temperature at 
the water inrush point with that of the aquifer with hidden 
water inrush potential, which can preliminarily predict the 
source of mine water inrush. Lin et al. (2014) conducted a 
dewatering test on the aquifer, and discovered the recharge 
channel through the change of water level, and identified 
the potential source of mine water inrush. Wang and Shi 
(2019) used Piper, Durov, and Stiff diagrams to identify 
the four types of water sources. Li et al. (2016) obtained 
the conventional ion concentration through field sampling 
tests, and determined the seawater infiltration channel and 
water inrush source by combining these test results with 
multivariate statistical analysis to study the hydrochemi-
cal effect of the aquifer. Stable isotopes δD and δ18O play 
an important role in analyzing the origin and formation of 
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groundwater in aquifers. They can not only determine the 
relationship among groundwater, precipitation and surface 
water, but also analyze the supply source and mixing ratio 
of groundwater (Chafouq et al. 2018; Yi et al. 2018; Bou-
maiza et al. 2020; Cao et al. 2020; Liao et al. 2020). Guan 
et al. (2019) used stable isotopes to verify each other with 
hydrogeochemical analysis to accurately identify the source 
of water inrush in Mingdon mine (China), and reported that, 
due to the high cost, most coal enterprises did not use the 
method often. In recent years, the mathematical statistical 
analysis has also developed rapidly, which is widely used in 
hazard identification related to water inrush activities (Liu 
et al. 2019; Wang et al. 2020). Based upon cluster analy-
sis, Zhang et al. (2019a, b) established a multiple logistic 
regression recognition model, and identified and verified the 
water inrush aquifer in Qinan coal mine, China. Huang et al. 
(2019) established the Piper-PCA-Fisher water source rec-
ognition model, which is more accurate than the Piper dia-
gram method or Fisher discriminant method. Based upon the 
principal component analysis (PCA) and BP neural network, 
Yang et al. (2019) proposed the water source discrimination 
model of mine water field monitoring system, which was 
applied to Lijiazui mine in Huainan (China), and exhibited 
the accuracy of 91%. Dong et al. (2019) combined the Fisher 
feature extraction and support vector machine (SVM) meth-
ods, and applied this new model to the Wuhai mining area 
(China). The results showed that this new combined model 
was more accurate and efficient in discriminating water 
inrush sources than the traditional SVM model. However, 
this method requires a large number of water sample data, 
and could not identify multiple water inrush sources at the 
same time.

The mathematical analysis method has the characteris-
tics of simple operation, high discrimination efficiency, is 
objective and provides accurate results at low cost. There-
fore, based upon the mathematical theory of grey situation 
decision-making, this paper proposes a new model for water 
inrush water source discrimination based on principal com-
ponent analysis and entropy weight-grey situation decision 
method. In the model, the principal component analysis 
eliminates redundant variables, reduces the workload, and 
assigns entropy weight to each variable to characterize the 
degree of difference of variables. Finally, the gray situation 
method is used to attribute the multi-factor target evalua-
tion to single-objective decision-making, which solves the 
problem that single-factor evaluation cannot reflect the water 
quality characteristics of water inrush sources. Since the pro-
duction of Xieqiao mine in Huainan coalfield (China), there 
have been 24 water inrush accidents due to the influence 
of coal mining, which have a great impact on the safety of 
miners and the mine economy. In the water inrush potential 
areas of water trickling in the coal wall, water chemical vari-
able information samples were extracted, and put into the 

model for discrimination. This way, the predictions regard-
ing the source of water pouring samples were made. Timely 
investigation and treatment for the water filling channel and 
water filling strength of the aquifer can effectively prevent 
the occurrence of water inrush accidents. This study is only 
aimed at quantitative analysis of hydrochemical information, 
and therefore, it can also be applied to other similar mine 
water source discrimination, thus indicating a wide range 
of applicability.

Hydrogeological conditions in the study area

Xieqiao coal mine (China) is located in the northeast of 
Yingshang county, Fuyang city, Anhui province, China and 
is geographically positioned as shown in Fig. 1. The ter-
rain in the mining area is flat and belongs to the Huaihe 
alluvial plain. The study area belongs to a transitional cli-
mate, with obvious seasonality of hot summers and cold 
winters. The annual average temperature is 15.1 °C, while 
the annual average rainfall is 926.3 mm. Most of the rainfall 
falls in June, July and August, accounting for about 40% of 
that falls the whole year. The annual average evaporation 
is 1610.14 mm. The evaporation is larger than the rainfall, 
whereas the humidity coefficient is nearly 0.5.

The groundwater regime in the mining areas of Xieqiao 
consists of four subsystems, namely the loose aquifer of the 
Cenozoic, the coal-bearing sandstone fissure aquifer of the 
Permian, the limestone-karst fissure aquifer of the Carbon-
iferous and the limestone-karst fracture aquifer of the Ordo-
vician. The hydrogeological characteristics of the aquifer 
and aquifuge are shown in Fig. 1. Between the coal-bearing 
sandstone fissure aquifer and the loose layer pore aqui-
fer, there is a thick clay layer covering the coal measures. 
Besides, the average distance between the limestone aqui-
fers of the Taiyuan formation and the coal floor is 16.44 m. 
Therefore, under normal conditions, there is no direct water 
filling effect among the three aquifers.

Sampling and testing

The sample bottle was washed 2–3 times using water before 
sampling. The sample bottle should not be filled with water 
sample, and around 5–10 ml space was left at the top of 
the bottle (Huang et al. 2019; Guo et al. 2019). The water 
samples were maintained at a low temperature to prevent 
any chemical reactions (Zhang et  al. 2019a, b; Zhang 
et al. 2016). Eight variables (K+ + Na+, Ca2+, Mg2+, Cl−, 
SO4

2−, HCO3
−, pH and TDS) were tested. The pH value 

of the sample was tested using a Hanna portable pH meter 
within the 5 min of the collection of samples. The samples 
for cation analysis were acidified with nitric acid to pH ≤ 2. 
The tests were conducted within 24 h after sampling at the 
Quality Inspection Center, Anhui University of Science and 
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Technology, China. The Cl−, SO4
2−, and HCO3

− tests were 
conducted using ion chromatography, whereas K+ + Na+, 
Ca2+, and Mg2+ tests were conducted using inductively-
coupled plasma mass spectrometry. In order to review 
the reliability of test results, the anion and cation balance 
was calculated to confirm that of the standard error lied 
within ± 5%. As shown by the results presented in Table 1 
and Fig. 1, a total of 37 training water samples were col-
lected between 2005 and 2018 in Xieqiao mine, China. The 
samples included five samples from the Cenozoic aquifer, 14 
samples from the Permian aquifer, and 18 samples from the 
carboniferous aquifers. In order to show the accuracy of the 
model, 14 verifying samples were also collected. The Q, P, 
C, X1, X2, X3, X4, X5, and X6 were used to represent the Ceno-
zoic aquifer, the Permian aquifer, the Carboniferous aquifer, 
Na+, K+, Ca2+, Mg2+, Cl−, SO4

2− and HCO3
−, respectively.

Methods

Principal component analysis

The p vectors X1, X2,…, Xp of the original data matrix X 
was used as a linear combination Y = AX. The relationship 
between the original and new variables is given by Eq. (1).

where ai1 + ai2 + ai3 +⋯ + aip = 1 ; Yi and Yj are not related, 
Yi is the maximum variance of all the linear combinations of 
(X1, X2, …, Xp), and Y2 is the combination with the largest 
variance among all the linear combinations of X1,X2, …, Xp 
that are not related to Y1. Moreover, the sum of the variances 

(1)

⎧⎪⎨⎪⎩

Y1 = a11X1 + a12X2 +⋯ + a1pXp

Y2 = a21X1 + a22X2 +⋯ + a2pXp

⋯

Yp = ap1X1 + ap2X2 +⋯ + appXp

,

Fig. 1   Location of the study area, sampling sites and the aquifer profile
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of Y1, Y2, …, Yp is equal to the sum of the variances of X1, 
X2, …, Xp.

The general steps for solving the principal components 
are as follows.

The original variable data was standardized, and the 
covariance matrix Σ among the variables was calculated. 
The eigenvectors of the covariance matrix were 
λ1 ≥ λ2 ≥ … ≥ λp, whereas the corresponding unit eigenvec-
tors were T1, T2, …, Tp. The transformation matrix was given 
by: A = T′, where j is the i-th row of A and the unit feature 
vector Ti corresponded to the i-th largest root of Σ. In addi-
tion, the variance of the i-th principal component Yi was 
equal to the i-th large characteristic root λi of Σ. Then, the 
variance contribution rate of Yk was calculated for the k-th 
principal component and given by: �k =

�k∑p

k=1
�k

 . If m (m < p) 
principal components were selected, the cumulative contri-
bution rate of principal components Y1, Y2, …, Ym was 
ξm =

∑m

k=1
�k∕

∑p

k=1
�k . The main component index that made 

the cumulative contribution rate of variance reach 75% or 
more was selected (Price et al. 2006; He et al. 2016; Cloutier 
et al. 2008).

Entropy weight

According to the information theory, information is a meas-
ure of the degree of order of the system, whereas entropy is 
the measure of the degree of disorder of a system. Entropy 
value can represent the difference in the concentration of 
each ion in different water samples, whereas the weight 
value of the corresponding ion can be obtained using the 
entropy weight method (Chen et al. 2019; Fausto et al. 2019; 
Liang et al. 2019). The calculation steps are as follows.

There were m evaluation water samples and n evaluation 
ions, They formed the initial matrix R = (rij)m×n , in which 
rij represents the evaluation value of the j-th ion in the i-th 
water sample (i = 1,2,3,…,m;j = 1,2,3,…,n).

The proportion of pij was calculated using Eq. (2).

The entropy of the j-th ion was calculated using Eq. (3).

The entropy weight of the j-th ion was calculated using 
Eq. (4).

(2)pij =
rij∑m

i=1
rij
.

(3)ej = −k

m∑
i=1

∙lnpij, k =
1

lnm
.

(4)�j =

�
1 − ej

�
∑n

j=1

�
1 − ej

� .

Entropy weight and grey situation decision method

The binary combination of events and countermeasures con-
stitutes the situation. Taking an event as the core, other simi-
lar events were gathered around the core event, forming a 
gray event to study the countermeasures. This is the gray sit-
uation decision-making thought (Zu et al. 2018; Zhang et al. 
2014). In the identification of mine water inrush, the iden-
tification index was regarded as the gray element, while the 
identification object was taken as an event. Different water 
source categories were used as the countermeasures (Li et al. 
2019; Fu 2016; He and Gong 2013). The optimal situation 
was determined through decision analysis. The water source 
category corresponding to the optimal situation was the eval-
uation result. In general, there was no preference between 
different countermeasures, though different goals have dif-
ferent effects on optimization, and different decision makers’ 
preferences for different goals will also lead to inconsistent 
goal weights. In traditional gray situation decision-making, 
the equal treatment of targets could not reflect the decision 
makers’ preferences and the actual situation of the decision-
making problems. Therefore, the entropy theory was applied 
to different indices to give weights. It improved the resolu-
tion between situations and made the decision results more 
accurate and reasonable. The main steps of the mathematical 
model are as follows.

Event ai (i = 1, 2, …, n) and countermeasure bj (j = 1, 2, 
…, m) were determined. Situation was constructed s = (a, b) 
and the situation array was established. The p (p = 1, 2, …, 
q) index was given. Different situation effect measurement 
matrices were constructed according to different targets p, 
and the elements in the matrix were obtained relying on 
the membership function of each index. The situation effect 
measurement matrices were defined as given by Eq. (5).

According to the single-indicator decision effect measure-
ment value r(p)

ij
 and the entropy weight of each indicator, the 

comprehensive effect measurement value r(
∑
)

ij
 of multiple 

indicators was obtained. The r(
∑
)

ij
 value was defined and 

given by Eq. (6).

Therefore, the comprehensive decision matrix was 
defined as given by Eq. (7).

(5)D(p) = (r
p

ij
∕Sij)m×n

.

(6)r
(
∑
)

ij
=

q�
p

�pr
(p)

ij
.
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The best situation was chosen and the decisions were 
made based upon the best results. If bj∗ was the best strategy 
of the comprehensive decision matrix column, the compre-
hensive effect measurement value r(

∑
)

ij
 was defined as given 

by Eq. (8).

If aj∗ was the best strategy of the comprehensive decision 
matrix row, the comprehensive effect measurement value 
r
(
∑
)

ij
 was defined as given by Eq. (9).

Bayesian discriminant method

If n samples were taken from G matrices, each sample must 
belong to one of the G matrices (Ag). If p variables (x1, x2,…, 
xp) were measured for each sample, then each sample can be 
regarded as a point in the p-dimensional space {R}. Addi-
tionally, n samples constituted a p-dimensional sample space 
{R}. An unknown sample X (x1, x2,…, xp) was also regarded 
as a point in the p-dimensional space. If it fell in the sub-
space with the highest probability, it could be classified as 
one of the G matrixes (Yan et al. 2019; Fang et al. 2020; Du 
et al. 2020). The Bayesian discriminant model is as follows.

There are g matrices Ag (g = 1,2,…, G). The probability 
density function is given by Eq. (10).

where x =
(
x1, x2,⋯ , xp

)� . The parameters ag and 
∑

 rep-
resent the mean and covariance matrix of Ag, respectively. 
The prior probability qg and parameter of Ag were known, 
and there was no significant difference between the matrix 
covariance matrix. The discriminant function is given by 
Eq. (11).

where g = 1,2,…,G. The multivariate linear discriminant 
function under Bayes criterion can be obtained and is given 
by Eq. (12).

(7)D(
∑
) =

⎡⎢⎢⎢⎢⎣

r
(
∑
)

11
r
(
∑
)

12
⋯ r

(
∑
)

1m

r
(
∑
)

21
r
(
∑
)

22
⋯ r

(
∑
)

2m

⋮ ⋮ ⋮ ⋮

r
(
∑
)

n1
r
(
∑
)

n2
⋯ r

(
∑
)

nm

⎤⎥⎥⎥⎥⎦
.

(8)r
(Σ)
∗

ij
= max

j

{
r
(Σ)

ij

}
.

(9)r
(Σ)
∗

ij
= max

i

{
r
(Σ)

ij

}
.

(10)
fg(x) = (2�)−

p

2
|||
∑

−1
|||
1

2
exp

[
−
1

2

(
x − ag

)� ∑
−1

(
x − ag

)]
,

(11)
qgfg(x) = qg(2�)

−
p

2
|||
∑

−1
|||
1

2
exp

[
−
1

2

(
x − ag

)� ∑
−1

(
x − ag

)]
,

Mine water inrush identification and verification

Extraction of discriminant variables and entropy weights

As shown in Fig. 2, the content of alkaline-earth metal ions 
(Ca2+ and Mg2+) were significantly higher than the alkali 
metal ions (Na+  + K+). The main chemical type of Ceno-
zoic, Permian and Carboniferous aquifers were Ca·Na-
Cl·HCO3, Ca·Mg·Na-Cl·HCO3 and Ca·Na-Cl·SO4·HCO3, 
respectively.

The correlation coefficient thermograph directly 
described the degree of correlation among the variables, 
as shown in Figs. 3, 4, and 5. For the Cenozoic aquifer, 
the correlation between the variables was large and all the 
variables were positively correlated. The concentrations of 
Cl− and Na+  + K+, Ca2+ and Mg2+ were significantly cor-
related, and the corresponding correlation coefficients were 
0.99 and 0.88, respectively. For the Permian aquifer, the con-
centrations of Ca2+ and Mg2+ were positively correlated, 
with the correlation coefficient of 0.96. The concentrations 
of Ca2+, Mg2+ and SO4

2− were positively correlated, with 
the correlation coefficients of 0.75 and 0.81, respectively. 
The concentrations of Na+  + K+ and HCO3

− were also posi-
tively correlated, with the correlation coefficient of 0.79. 
For the Carboniferous aquifer, the concentrations of Cl− and 
Na+  + K+ were significantly correlated, with the correlation 
coefficient of 0.98. The correlation coefficient between these 
variables was large, which will cause information overlap 
and affect the accuracy of the water inrush discrimination 
model. In order to solve these problems, the principal com-
ponent analysis was used to extract the main variables as the 
discriminant factors of the water inrush discriminant model.

In general, the number of principal components depended 
on its cumulative variance ratio. When the cumulative vari-
ance ratio was greater than 80%, the number of principal 
components at this time can fully reflect the water chemical 
information of the sample. According to Kaiser criterion and 
the scree plot method (Fig. 6), the cumulative variance rate 
was found to be 85.91%. Therefore, the number of principal 
components was 3. As shown by the results presented in 
Table 2, the Principal component 1 reflected the informa-
tion of 36.23% of the training samples and represented Na+ 
and K+. Principal component 2 reflected the information 
of 29.15% of the training samples and represented SO4

2−. 
Principal component 3 reflected the information of 20.53% 
of the training samples and represented HCO3

−. According 
to the principal component score coefficients (Table 3), the 
relationships between the principal components P1, P2 and 
P3 and the original variables X1, X2, X3, X4, X5 and X6 were 
obtained, which are given by Eqs. (13)–(15).

(12)yg(x) = c0g + c1gx1 + c2gx2 +⋯ + cpgxp
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(13)
P1 = 0.567X1 + 0.312X2 + 0.268X3 + 0.471X4 + 0.416X5+0.339X6,

(14)

P
2
= −0.408X

1
+ 0.418X

2
+ 0.490X

3

− 0.283X
4
+ 0.495X

5
− 0.306X

6
,

(15)

P
3
= −0.018X

1
− 0.462X

2
+ 0.415X

3

− 0.451X
4
+ 0.099X

5
+ 0.633X

6
.

Fig. 2   Piper diagram of all 
water samples from different 
aquifers

Fig. 3   Heat map of the correlation coefficient for the Cenozoic aqui-
fer

Fig. 4   Heat map of the correlation coefficient for the Permian aquifer
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Construction of water inrush source recognition 
model

Substituting the ion concentration data presented in Table 1 
into Eqs. (13) (14) and (15), the scores of the three principal 
components were obtained, and the corresponding results 
are presented in Table 4. According to the characteristics of 
ionic components of the water samples presented in Table 1, 
the ionic concentration values of the same aquifer were more 
discrete, and some data have abnormal values, as shown in 
Fig. 7. Therefore, Huber’s M-estimated value should be used 
instead of the average to reflect the concentration trend to 
obtain the ionic index classification values corresponding 
to the three water sources. Taking Huber’s M estimator of 
P1, P2 and P3 as the optimal value, the ranking values of the 
game set B = {b1, b2, b3} are presented in Table 5. Accord-
ing to the entropy weight theory, the weights of P1, P2 and 
P3 were also calculated and are presented in Table 6.

According to the grading criteria of the game set pre-
sented in Table 5, the membership function was calculated 
using the linear half-order function method, and the linear 
half-order function was the half-step function. Finally, the 
membership function graphs of P1, P2, and P3 were obtained, 
as shown in Fig. 8.

According to Fig. 8, the membership function of each 
variable is as follows.

(1)	 Membership of variables P1.
	   The membership function of P1 belonging to the 

Cenozoic aquifer was defined as given by Eq. (16).

	   The membership function of P1 belonging to the Per-
mian aquifer was defined as given by Eq. (17).

(16)f
Q

P1
=

⎧
⎪⎨⎪⎩

1 x < 693.3621
933.0847−x

239.7226
693.3621 ≤ x ≤ 933.0847

0 x > 933.0847

Fig. 5   Heat map of the correlation coefficient for the Carboniferous 
aquifer

Fig. 6   Scree plot of the principal components

Table 2   Variance interpretation rate and orthogonal rotation factor 
loading matrix

The bold values reflect the contribution value of important factors

Parameters Principal components

1 2 3

X1 0.84 – 0.54 – 0.02
X2 0.46 0.55 – 0.51
X3 0.40 0.65 0.46
X4 0.69 – 0.37 – 0.50
X5 0.61 0.65 0.11
X6 0.50 – 0.41 0.70
Eigenvalue 2.17 1.75 1.23
% of variance explained 36.23 29.15 20.53
% of cumulative variance 36.23 65.38 85.91

Table 3   The principal component score coefficients

Parameters PC1 PC2 PC3

X1 0.57 – 0.41 – 0.02
X2 0.31 0.42 – 0.46
X3 0.27 0.49 0.42
X4 0.47 – 0.28 – 0.45
X5 0.42 0.50 0.10
X6 0.34 – 0.31 0.63
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	   The membership function of P1 belonging to the Car-
boniferous aquifer was defined as given by Eq. (18).

(2)	 Membership of variables P2.
	   The membership function of P2 belonging to the 

Cenozoic aquifer was defined as given by Eq. (19).

(17)f P
P1

=

⎧
⎪⎨⎪⎩

0 x < 933.0847
x−933.0847

255.5420
933.0847 ≤ x ≤ 1158.6267

1 x > 1158.6267

(18)f C
P1

=

⎧
⎪⎪⎨⎪⎪⎩

0 x < 693.3621
x−693.3621

239.7226
693.3621 ≤ x ≤ 933.0847

1158.6267−x

225.5420
933.0847 ≤ x ≤ 1158.6267

0 x > 1158.6267

	   The membership function of P2 belonging to the Per-
mian aquifer was defined as given by Eq. (20).

	   The membership function of P2 belonging to the Car-
boniferous aquifer was defined as given by Eq. (21).

(19)f
Q

P2
=

⎧
⎪⎨⎪⎩

0 x < −337.9810
x+337.9810

70.1005
−337.9810 ≤ x ≤ −267.8805

1 x > −267.8805

(20)f P
P2

=

⎧
⎪⎨⎪⎩

1 x < −619.1755
x+337.9180

−281.1945
−619.1755 ≤ x ≤ −337.9810

0 x > −337.9810

Table4   The principal 
component score

N P1 P2 P3 n P1 P2 P3

I (The Cenozoic aquifer) 26.00 1043.60 – 369.00 – 214.66
1 1231.18 – 586.24 – 298.66 27.00 887.33 – 349.93 – 130.30
2 1152.98 – 548.77 – 299.69 28.00 1239.00 – 366.32 – 417.26
3 606.17 – 230.66 – 43.40 29.00 542.81 – 45.38 120.12
4 117.95 – 68.29 – 27.68 30.00 290.26 30.03 – 25.27
5 358.53 – 66.64 159.73 31.00 1213.64 – 562.87 – 277.88
II (The Permian aquifer) 32.00 1238.89 – 544.47 – 303.16
6 1022.47 – 716.63 131.70 33.00 326.95 13.81 – 55.54
7 1018.01 – 714.39 161.74 34.00 452.79 56.61 3.92
8 402.67 – 117.03 44.36 35.00 205.80 – 102.30 127.15
9 358.67 – 41.33 65.88 36.00 491.37 – 260.90 191.47
10 1341.07 – 196.33 866.58 37.00 388.55 – 97.08 138.76
11 264.68 23.20 63.18 IV (Verification samples)
12 1233.04 – 647.32 – 263.35 V1 379.01 – 53.43 73.75
13 1214.47 – 639.13 – 283.11 V2 335.75 – 192.51 238.74
14 1208.48 – 733.60 – 194.49 V3 272.85 – 82.67 146.08
15 1851.33 – 1113.28 953.35 V4 1239.10 – 909.12 316.54
16 1984.32 – 1185.52 984.12 V5 1352.80 – 1023.71 636.08
17 1535.66 – 1088.21 564.10 V6 820.64 – 570.48 – 17.36
18 544.66 – 317.74 305.64 V7 974.75 – 601.88 61.40
19 1405.98 – 1037.44 434.47 V8 652.44 – 210.37 350.73
III (The Carboniferous aquifer) V9 1332.07 – 1029.71 972.07
20 1297.16 – 572.66 – 276.78 V10 1269.20 – 704.65 15.34
21 1298.41 – 574.58 – 278.23 V11 1132.60 – 547.58 – 302.92
22 1299.42 – 573.76 – 277.50 V12 1101.67 – 288.73 76.70
23 1399.89 – 358.51 – 611.57 V13 1028.10 – 419.43 – 270.66
24 1024.68 – 575.76 – 235.89 V14 955.94 – 332.01 – 339.70
25 1015.28 – 550.47 70.74
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Fig. 7   Scatter plots of anion and cation water samples

Table 5   Rating standard table of countermeasures set

Aquifers P1 P2 P3

Cenozoic 693.3621 − 267.8805 − 101.9429
Permian 1158.6267 − 619.1755 221.8392
Carboniferous 933.0847 − 337.9810 − 137.8058

Table 6   Entropy weight table of principal components

Principal components P1 P2 P3

Weights 0.179 0.385 0.436



Environmental Earth Sciences (2021) 80:157	

1 3

Page 11 of 14  157

(3)	 Membership of variables P3.

The membership function of P3 belonging to the Ceno-
zoic aquifer was defined as given by Eq. (22).

The membership function of P3 belonging to the Permian 
aquifer was defined as given by Eq. (23).

The membership function of P3 belonging to the Carbon-
iferous aquifer was defined as given by Eq. (24).

(21)f C
P2

=

⎧
⎪⎪⎨⎪⎪⎩

0 x < −619.1755
x+619.1755

281.1945
−619.1755 ≤ x ≤ −337.9810

X+267.8805

−70.1005
−337.9810 ≤ x ≤ −267.8805

0 x > −337.9810

(22)f
Q

P3
=

⎧
⎪⎪⎨⎪⎪⎩

0 x < −137.8058
x+137.8058

35.8629
−137.8058 ≤ x ≤ −101.9429

221.8392−x

323.7821
−101.9429 < x ≤ 221.8392

0 x > 221.8392

(23)f P
P3

=

⎧
⎪⎨⎪⎩

0 x < −101.9429
x+101.9429

323.7821
−101.9429 ≤ x ≤ 221.8392

1 x > 221.8392

(24)f C
P3

=

⎧
⎪⎨⎪⎩

1 x < −137.8058
x+101.9429

−35.8629
−137.8058 ≤ x ≤ −101.9429

0 −101.9429

Fig. 8   Membership function of principal components

Table 7   Results of 
discriminating water samples

The bold values represent the maximum membership in  grey situation decision-making method

n Membership 
of P1

Membership 
of P2

Membership 
of P3

Comprehensive 
membership

Discriminant results

QP1 PP1 CP1 QP2 PP2 CP2 QP3 PP3 CP3 QS PS CS Discriminant Actual

V1 1 0 0 1 0 0 0.46 0.54 0 0.76 0.24 0 1 1
V2 1 0 0 1 0 0 0 1 0 0.56 0.44 0 1 1
V3 1 0 0 1 0 0 0.23 0.77 0 0.67 0.33 0 1 1
V4 0 1 0 0 1 0 0 1 0 s0 1 0 2 2
V5 0 1 0 0 1 0 0 1 0 0 1 0 2 2
V6 0.47 0 0.53 0 0.83 0.17 0.74 0.26 0 0.41 0.43 0.16 2 2
V7 0 0.18 0.82 0 0.94 0.06 0.50 0.50 0 0.22 0.61 0.17 2 2
V8 1 0 0 1 0 0 0 1 0 0.56 0.44 0 1 2
V9 0 1 0 0 1 0 0 1 0 0 1 0 2 2
V10 0 1 0 0 1 0 0.64 0.36 0 0.28 0.72 0 2 2
V11 0 1 0.12 0 0.75 0.25 0 1 0 0 0.90 0.12 2 2
V12 0 1 0.25 0.70 0 0.30 0.45 0.55 0 0.47 0.42 0.16 1 3
V13 0 1 0 1 0 0 0 0 1 0.39 0.18 0.44 3 3
V14 0 0.10 0.90 0.09 0 0.91 0 0 1 0.03 0.02 0.95 3 3
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Verification of water inrush source recognition 
model

The values of the principal components P1, P2 and P3 of the 
14 validation samples presented in Table 1 were substituted 
into the corresponding membership functions (16)–(24) to 
obtain the degrees of membership of P1, P2 and P3. Accord-
ing to the membership function and the maximum member-
ship principle in fuzzy mathematics, the results are presented 
in Table 7. The recognition accuracy of water samples from 
the Cenozoic aquifer was 100%. The recognition accuracy 
of water samples from the Permian aquifer was 87.50%, 
whereas the recognition accuracy of water samples from 
the Carboniferous aquifer was 66.67%. The comprehensive 
accuracy of the model was 85.71%.

Discussion

The grey situation decision-making method is used to obtain 
the optimal situation in an environment with known and 
unknown factors (Zu et al. 2018; Zhang et al. 2014). It was 
applied to the identification of water inrush resources with 
many multi-factor variables, which are attributed to a single 
target for decision discrimination. It solves the problem that 
a single factor cannot identify the source category. However, 
traditional multi-objective grey situation decision-making 
methods do not reflect the decision makers’ preferences and 
the actual situation of decision-making when dealing with 
decision-making goals (Li et al. 2019; Fu 2016; He and 
Gong 2013). By assigning entropy weight to each variable, 
which can reflect the degree of difference between the vari-
ables, the grey situation decision-making method is further 
complemented and improved. In order to evaluate the accu-
racy of this method, it has been compared with the Bayesian 
discriminant method.

On the basis of extracting the principal components, 
the classification function coefficients of P1, P2 and P3 are 
obtained using the Bayesian discriminant method, as shown 
by the results presented in Table 8. The linear discriminant 
functions of three kinds of aquifers are derived and given 
by Eqs. (25)–(27).

Substituting the data presented in Table 4 into the func-
tion Eqs. (16), (17) and (18), the discrimination results were 
obtained and are presented in Table 9. The recognition accu-
racy of water samples from the Cenozoic aquifer was 0%. 
The recognition accuracy of water samples from the Permian 
aquifer was 75%. The recognition accuracy of water samples 
from Carboniferous aquifer was 100%, whereas the compre-
hensive accuracy of the model was 64.29%. Therefore, the 
new discriminant model proposed in this paper has higher 
accuracy than the traditional Bayesian discriminant method.

Due to the small number of Cenozoic samples, the accu-
racy of the Cenozoic samples discrimination was low using 
the Grey Situation Decision method and the Bayesian discri-
minant method. Therefore, the model was based on a certain 
number of water samples. More water samples should be 
collected to improve the accuracy of the model. In addi-
tion, this model should consider the impact of temperature, 
hydrogeological conditions and human activities on the 
aquifer to further improve its applicability.

(25)yQ = 0.006xp1 + 0.005xp2 − 0.001xp3 − 2.452,

(26)yP = 0.006xp1 + 0.002xp2 + 0.003xp3 − 4.146,

(27)yC = 0.009xp1 + 0.008xp2 − 0.001xp3 − 3.613.

Table 8   Discriminant coefficient of classification function

Principal components Q P C

P1 0.006 0.006 0.009
P2 0.005 0.002 0.008
P3 − 0.001 0.003 − 0.001
Constants − 2.452 − 4.146 − 3.613

Table 9   Bayesian discriminant results

The bold values represent the maximum membership in Bayesian dis-
criminant

Verification 
samples

yQ yP yC Actual Bayesian

V1 1.91 0.65 2.50 1 3
V2 1.64 1.80 2.37 1 3
V3 1.37 2.24 1.96 1 2
V4 0.12 2.42 0.05 2 2
V5 0.09 3.83 0.26 2 2
V6 0.36 0.42 0.77 2 3
V7 0.33 0.68 0.28 2 2
V8 0.06 0.40 0.23 2 2
V9 0.58 4.70 0.83 2 2
V10 2.64 2.12 3.92 2 3
V11 0.52 1.76 0.70 2 2
V12 1.62 2.11 2.16 3 3
V13 1.89 0.37 2.56 3 3
V14 1.96 0.09 2.67 3 3
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Conclusion

Principal component analysis was used to eliminate the 
internal correlation between ionic variables. Six ions were 
combined into three principal components P1, P2 and P3, 
which comprehensively reflected the information of water 
chemistry. It greatly reduces the number of variables and the 
calculation of the model.

The recognition accuracy of water samples from the 
fourth aquifer was 100%. The recognition accuracy of 
water samples from the coal-bearing sandstone aquifer was 
87.50%. The recognition accuracy of water samples from 
the limestone-karst fissure aquifer in the Carboniferous was 
66.67%. The comprehensive accuracy of the model was 
85.71%. The entropy weight-grey situation decision model 
provides a new method for the identification of water inrush, 
and has important theoretical guiding significance for mine 
water prevention work.
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