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Abstract
A study based on geochemical and environmental isotope data was performed in two low-temperature hydrothermal systems 
in NW Portugal (Caldelas and Gerês hydrothermal systems). This study aims to demonstrate the role of integrated hydrogeo-
logical tools for developing conceptual models of groundwater circulation. The studied hydrothermal systems are ascribed to 
groundwater circulation in fractured calc-alkaline/alkaline granitic contexts, responsible for different groundwater geochemi-
cal types. Caldelas hydrothermal system is dominated by Ca/Na-HCO3 waters, while at Gerês, the hydrothermal system is 
characterized by Na-HCO3-type waters. The isotopic signatures indicate that the preferential recharge areas are located at 
very different altitudes (Caldelas around 171 m a.s.l. and Gerês between 912 and 1118 m a.s.l.). The thermomineral waters 
issue with a mean temperature of 27 °C (Caldelas) and 43 °C (Gerês). Several geothermometers were used to estimate the 
reservoir temperature and the corresponding depth reached by the hydrothermal systems. At Caldelas, the mean estimated 
reservoir temperature was 42 ± 6 °C, using only the chalcedony and  K2/Mg geothermometers, which suggests depths around 
0.93 km. In the Gerês thermal area, the chalcedony,  K2/Mg, and Na/K/Ca (β = 4/3) geothermometers gave a mean estimated 
reservoir temperature of 96 ± 5 °C, suggesting depths close to 2.8 km. In both case studies, conceptual circulation models are 
proposed, based on: geological heterogeneities, geochemical and isotopic signatures, mean preferential recharge altitudes, 
groundwater circulation paths, and mean residence time.
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Introduction

One of the main objectives in hydrogeological research is 
to establish the most likely conceptual models to explain 
observations in groundwater systems (e.g., Moore 2002; 

Baalousha 2008; Kresik and Mikszewski 2013). With this 
goal, integrated and comparative studies using hydrogeo-
chemical and isotopic determinations were performed at 
Caldelas and Gerês hydrothermal systems, located in NW 
Portugal (Fig. 1). Using interdisciplinary approaches in 
both aquifer systems will allow the development of strong 

Fig. 1  Regional geology and hydrogeological setting of Caldelas and Gerês hydrothermal systems. (adapted from Pedrosa 1999)
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conceptual hydrogeological models that can lead to practi-
cal applications like the estimation of groundwater’s mean 
residence time and preferential recharge altitudes for each 
system. This type of knowledge provides basis for future 
studies on the vulnerability of the hydrothermal systems, 
to anthropogenic effects. The thermomineral waters from 
both hydrothermal systems are used in local Spas, play-
ing an important role in the regional socio-economic 
development.

Among the techniques most frequently applied in hydro-
geological studies to characterize groundwater circulation 
and to establish conceptual circulation models, environmen-
tal isotopes, particularly 2H, 13C, 18O, 3H, and 14C, usually 
provide valuable insights to understand the aquifer systems 
dynamics (e.g., preferential recharge altitude, groundwa-
ter flow paths, and mean residence time). In fact, environ-
mental isotopes coupled with hydrogeochemical signatures 
often play an important role in the identification of mixing 
processes between different aquifer units (e.g., Sidle 1998; 
Diamond and Harris 2000; Marques et al. 2006; Ayenew 
et al. 2008). Frequently, in the case of recharge altitude esti-
mation, the environmental signals obtained through the 18O 
and 2H content represent important tools in the evaluation 
of water vapor masses moving through the continents (Gon-
fiantini et al. 2001; Carreira et al. 2009, 2014; Liota et al. 
2013; Giustini et al. 2016). The distribution of δ18O and δ2H 
mimics the topography of the continents; waters of mountain 
chains are denoted by more depleted δ values, known as 
“the altitude effect” (Dansgaard 1964; Rozanski et al. 1982, 
1992, 1993). The lowering of temperature with increasing 
elevation in mountain regions usually leads to enhanced con-
densation and therefore to a progressive depletion of heavy 
isotopes in precipitation with altitude. This altitude effect 
has been used in numerous hydrological studies to identify 
the preferential recharge areas and to investigate the origin 
and interconnection of water bodies (Darling et al. 2003; 
Marques et al. 2003; Galego Fernandes and Carreira 2008; 
Carreira et al. 2011, 2014).

Another tool, which is very often used in the characteriza-
tion of such type of hydrothermal systems, is tritium (3H) 
content. According to Gonfiantini et al. (1990), 3H in pre-
cipitation at most coastal stations located in the northern 
hemisphere has returned to the presumed pre-bomb values, 
and this trend has also been observed at all the stations in 
the southern hemisphere. Nevertheless, the use of 3H in the 
characterization of groundwater dynamics and identification 
of mixing between different water units can be useful. For 
example, knowing that the seasonal variations of tritium in 
the atmosphere (spring leak) can be followed in precipita-
tion, one can link for example this feature to the relative 
shallow groundwater systems; besides, the presence of 3H 
can be used to recognize an active aquifer recharge.

This work is focused on a comparative study of the ther-
momineral waters of Caldelas and Gerês. The main goal 
of the present work is to develop a hydrogeological con-
ceptual model of the hydrothermal systems, using the geo-
logical, morphotectonical, hydrogeochemical, and isotopic 
data available for each area. Furthermore, the identification 
of possible mixing processes between the hydrothermal 
systems and the local aquifers (from unconfined and semi-
confined aquifer systems) was investigated, since, in both 
regions, the intense land use for agriculture should be con-
sidered as a pollution source and risk to the hydrothermal 
systems. Furthermore, attention was put on the estimation 
of reservoir temperature and maximum groundwater flow 
depth reached by Caldelas and Gerês hydrothermal systems, 
based on the chemical composition of the discharging fluids.

The collected information allowed a better understanding 
of the thermomineral aquifers and could potentially support 
the selection of strategic sites for future drilling, as well 
as delimitation of the preferential protection areas, always 
bearing in mind that these Spas are expanding their activities 
in response to increased demand. Furthermore, a concep-
tual model for each studied system will be presented using 
a cross-section displaying the (1) tectonics and subsurface 
geology, (2) preferential distribution of recharge, (3) main 
flow path directions, and (4) discharge areas.

Geological setting

At Caldelas and Gerês, the thermomineral water circulation 
occurs mainly in calc-alkaline/alkaline granitic contexts, 
respectively, with different mineralogical compositions 
(e.g., Neiva 1993; Mendes and Dias 1996, 2004; Jaques et al. 
2016). The study sites are located in the geotectonic frame-
work of the Galicia—Trás-os-Montes Zone (Ribeiro et al. 
2007). In Northern Portugal, the following types of granitic 
rocks can be identified based on their geometric relation-
ships and internal deformation (Ferreira et al. 1987): (1) 
syn-tectonic granites with minute flakes of muscovite and 
biotite, and metasomatic assemblage, and strongly corre-
lated with migmatites (Ribeiro and Moreira 1986); (2) late-
tectonic granites (at Caldelas region), frequently associated 
with granodiorites, with abundant biotite, and muscovite 
being a secondary mineral (Moreira and Simões 1988); (3) 
post-tectonic granites (at Gerês region) characterized by the 
presence of megacrystals of potassium feldspar and biotite. 
The lack of metamorphic minerals in these granites point 
to an age younger than the last Variscan deformation phase 
(Moreira and Simões 1988).

Fluvial sandstones and conglomerates of quaternary age 
(sometimes with clay layers) constitute the most recent for-
mations in the region, particularly at the Gerês and Homem 



 Environmental Earth Sciences (2021) 80:100

1 3

100 Page 4 of 20

valley bottoms (Coudé-Gaussen 1981; Moreira and Simões 
1988; Vidal-Romaní et al. 1990).

The main fracture systems in the region are represented 
by tectonic lineaments (some of them related with strike-slip 
faults), trending NNE–SSW, NNW–SSE, ENE–WSW, and 
WNW–ESE of late Variscan age, and still active during the 
Meso-Cenozoic (e.g., Cunha et al. 2019; Azañón and Cabral 
2020). The morphology of the Gerês region shows that the 
regional fracture system of NNE–SSW direction is respon-
sible for the impressive landscape of the Gerês valley. In the 
region, the intersection of the NNE–SSW with ENE–WSW 
fracture systems is the major control of the thermal springs 
occurrence (e.g., Medeiros et al. 1975; Carvalho et al. 2005; 
Lima and Oliveira 2007).

According to Lima (2011), in the study region, the 
ENE–WSW fault system is the most important in the springs 
occurrence, since this fracture system has a wide spreading 
along hundreds of kilometers, defining also the main surface 
drainage catchments, i.e., underling the network drainage 
axes.

The studied sites have similar structural, tectonic, and 
hydrogeological features, namely: (1) the local and regional 
high-altitude lands, associated with highly fractured granitic 
rocks, play an important role in conducting the infiltrated 
meteoric waters toward the deep aquifer systems; (2) the 
discharge zones are related to the intersection of the major 
regional deep fault structures (Ribeiro et al. 2007).

Methodology: sampling and analytical 
methods

Two fieldwork campaigns were performed in Calde-
las and Gerês region, the first in 2002 and the second in 
2003 (March of each year). Groundwater samples from the 
hydrothermal systems and from the local shallow aquifers 
were collected for chemical (major cations and anions) and 
isotopic (δ2H, δ18O, and 3H) determinations. Temperature 
(°C), pH, and electrical conductivity (EC: in μS/cm) meas-
urements were performed in situ. All water samples were 
specifically treated by ultrafiltration for chemical analyses 
determinations. Total alkalinity was determined a few hours 
after collection. The thermomineral water samples were col-
lected in boreholes and in springs in the case of Caldelas 
system. The water samples from Gerês hydrothermal system, 
as well as the water samples from the local shallow aquifers 
were sampled only in springs.

The water chemical analyses were performed at the Lab-
oratório de Mineralogia e Petrologia of Instituto Superior 
Técnico (LAMPIST), Portugal, by the following methods: 
atomic absorption spectrometry for  Ca2+ and  Mg2+; emis-
sion spectrometry for  Na+ and  K+; colorimetric methods for 

 SiO2; ion chromatography for  SO4
2−,  NO3

−, nd  Cl−; potenti-
ometry for alkalinity, here referred to as  HCO3

−.
The δ2H and δ2O were determined three times for each 

sample, and isotopic composition for each sample stands 
for the mean value of these measurements. The measure-
ments were conducted on a mass spectrometer (SIRA 10, 
VG-Isogas) using the methods proposed by Friedman (1953) 
and Epstein and Mayeda (1953) for 2H and 18O, respectively, 
with a precision of ± 1‰ for δ2H and ± 0.1‰ for δ18O. The 
tritium (3H) content was determined using the electrolytic 
enrichment and liquid scintillation counting method (IAEA 
1976; Lucas and Unterweger 2000) using a Packard Tri-Carb 
2000 CA/LL. The error associated with the 3H measure-
ments [usually around 0.6 tritium units (TU)] varies with 
the 3H concentration in the sample. All isotopic determi-
nations were performed at Instituto Tecnológico e Nuclear 
(ITN), presently Centro de Ciências e Tecnologias Nucleares 
 (C2TN/IST), Portugal.

Results and discussion

Hydrogeochemical approach: Caldelas and Gerês 
hydrothermal systems

Geologic and geochemical investigations, carried out in 
granitic regions, have demonstrated that the hydrolysis of 
rock-forming silicate minerals is an important process that 
controls the chemical composition of natural waters (Bowser 
and Jones 2002; Sung et al. 2012; Cho et al. 2015).

The studied hydrothermal aquifer systems are located 
within calc-alkaline/alkaline granitic environments respon-
sible for the occurrence of two groundwater chemical types. 
A predominance of Ca/Na-HCO3-type waters is found at 
Caldelas hydrothermal system, while Na-HCO3-type waters 
characterize the Gerês hydrothermal system (Table 1).

The local shallow aquifers (Table 1) present low total 
dissolved solids (TDS—mean value of 36.09 ± 6.99 mg/L). 
The low mineralization and temperatures observed in this 
group of groundwater samples seem to indicate shallow and 
short flow paths, and slight water–rock interaction processes 
responsible for the typical Na–Cl facies.

The hydrolysis of plagioclases should be considered the 
main water–rock interaction process responsible for the 
occurrence of Ca/Na-HCO3- and Na-HCO3-type waters at 
Caldelas and Gerês hydrothermal systems, respectively. In 
fact, as referred by Medeiros et al. (1975), in the granitic 
rocks from Caldelas region, the dominant feldspar is pla-
gioclase (oligoclase–andesine) whose composition varies 
around  An25–34. More recently, Dias et al. (2010) refer that 
in the granitic rocks from Caldelas region, the plagioclase 
ranges from  An14–36, while the previous studies presented 
by Medeiros et al. (1975) indicated the presence of Na-rich 
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plagioclase  (An8) in the granitic rocks of Gerês region. 
Mendes (2001) reported the presence of Na-rich plagioclases 
from  Ab70–98 to  Ab81–99 in the Gerês granitic rocks.

Plotting the chemical composition of the thermomineral 
and of the local shallow groundwaters in a Piper Diagram 
(Fig. 2), three groups can be recognized, namely:

(1) the cold dilute groundwaters, with greater hydrogeo-
chemical variability, which could be related to anthro-
pogenic inputs; these samples were collected in differ-
ent springs, frequently in areas of intensive agricultural 
activities;

(2) the cluster of Gerês hydrothermal system, presenting 
the greatest hydrogeochemical homogeneity;

(3) Caldelas hydrothermal cluster, showing a greater het-
erogeneity, particularly in major cation content, higher 
than the Gerês thermomineral waters.

Two hypothesis can be formulated to explain the two 
hydromineral clusters, which should be ascribed to the 
mineralogical heterogeneities (mainly the plagioclases) of 
the percolated calc-alkaline/alkaline granitic rocks. In fact, 
the heterogeneity observed in the cations content of Calde-
las thermomineral waters may be related to  Ca2+ content 
of the feldspars of local igneous rocks (e.g., Mendes and 
Dias 2004; Jaques et al. 2016). According to Jaques et al. 
(2016), the albitization and quartz dissolution of Gerês gra-
nitic rocks occurred at depths shallower than 5 km induced 
by the fluids flow along the geological structures.

The different geochemical signatures, found between Cal-
delas and Gerês thermomineral waters, indicate underground 
flow paths with water–rock interaction processes where cal-
cium and sodium dissolution is controlled by the Ca- and 
Na-plagioclases’ hydrolysis present in the rock matrix, 
respectively (Fig. 2). These hydrogeochemical signatures are 
well observed when the  Na+ + K+ or  Ca2+ + Mg2+ contents 
are plotted as a function of the bicarbonate concentration 
(Fig. 3). Dissimilarities between Caldelas and Gerês hydro-
thermal systems are also found in the alkalinity.

From the observation of Fig. 3, mixing between hydro-
thermal fluids and local shallow groundwater, either at Cal-
delas or Gerês areas, appears to be unlikely. Nevertheless, 
the shift within Caldelas hydrothermal system (AC4 bore-
hole when compared with AC6 borehole or even with Bica 
de Fora spring waters) is noticed in temperature and silica 
content (see Table 1). However, this deviation cannot be 
assumed to be the result of mixing with shallow groundwa-
ters, since the silica content of the cold groundwaters does 
not support the hypothesis of a mixing pattern (Fig. 4). A 
possible explanation could be ascribed to different exploita-
tion rates, or to an analytical error.

Following the results presented previously (Figs. 2, 3, 
4), the three groups of groundwaters can also be identified 

Fig. 2  Piper diagram of the thermomineral and dilute groundwaters 
of Caldelas–Gerês region

Fig. 3  a Na + K vs  HCO3; b Ca + Mg vs  HCO3 of Caldelas and Gerês hydrothermal systems and local shallow aquifers
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(Table 1), based on electrical conductivity (EC), dry resid-
uum (DR), temperature, and pH. The water EC determined 
in the thermomineral waters of Caldelas and Gerês is corre-
lated to the DR. The DR mean values range from 105.9 ± 6.2 
(at Caldelas) to 246.3 ± 5.6 mg/L (at Gerês). The local shal-
low groundwaters in the region display a mean DR value 
of 37.9 ± 10.1 mg/L. Although mixing between the mineral 
waters and the local shallow aquifers, in overall terms, seems 
not to exist in both areas, the deviation observed in some 
physico-chemical signatures of Caldelas AC4 waters could 
be explained by mixing process with local shallow aquifers. 
This hypothesis can explain the temperature decrease and 
the increase in the nitrate content. An alternative hypoth-
esis is that the thermomineral waters from borehole AC4 
are related to another hydrothermal system ascribed to a 
different underground flow path.

According to May (2005), an indicator of anthropogenic 
contamination is the relation Ca-NO3, parameter usually 
associated with agriculture. However, in Caldelas region, 
calcium dissolution seems to be controlled by the hydrolysis 
of Ca-feldspars present in the rock-matrix silicate minerals 
and is not associated with an anthropogenic source. Further-
more, according to May (2005), the correlation between Ca 
and  SO4 can also be a fingerprint of pollution. However, 
no “positive correlation” is found between the Ca and the 
 SO4 content [rCa-SO4 = − 0.76 (n = 4)], corroborating the 
formulated hypothesis of no mixing. In fact, during the 2003 
campaign, no  NO3 was detected in Caldelas thermomineral 
waters (AC6 borehole and Bica de Fora spring).

In the study regions,  Na+ dominates in the local shal-
low groundwaters, when compared with  Ca2+ and  Mg2+. 
In addition, Caldelas NS4 and NS5 springs and, possibly, 
AC4 borehole, as well as the Gerês NS6 spring present 
signatures of probable anthropogenic contamination (e.g., 
 NO3

− concentration), maybe due to their location, downhill 
from agricultural areas.

The different chemical facies (Ca/Na-HCO3 and Na-
HCO3) found at Caldelas and Gerês hydrothermal systems, 

and the different emergence temperatures (20–31 °C and 
40–45 °C, respectively), are essentially dependent (not only 
from the plagioclase hydrolysis and the local geological het-
erogeneities), but also from:

(1) the initial  CO2 content (pH values of 6.64–7.54 for Cal-
delas waters and 8.18–8.47 for Gerês waters), indicat-
ing higher  CO2 pressure in the Caldelas system;

(2) different degrees of the water–rock (granite) reaction 
progress and of reservoir temperature (much lower 
concentrations of calcium and magnesium and higher 
concentrations of sodium and bicarbonate for Gerês 
waters indicate a major degree of water–granite inter-
action processes).

The dissolution process is a function of water pH and 
temperature, where the water–rock interaction processes will 
be faster in acidic than in alkaline waters, where the role of 
pH is strongly influenced by dissolved  CO2 in the aqueous 
system (Custódio and Llamas 1983). Na, K, Ca, and Mg 
ions have relatively weak connections within the silicate 
structure, easily passing to the water. In granitic regions, 
the Cl and  SO4 contents in the groundwater samples are 
usually low, except when in the presence of pyrite crystals 
whose presence in oxidizing media may lead to sulfates. 
With respect to Cl, the presence of this ion is usually attrib-
uted to the presence of accessory minerals such as apatite.

In Caldelas and Gerês thermomineral waters, the values 
obtained in the [rCl − r(Na + K)]/rCl ratio (Table 2) are 
always negative (except in AC6—2002). These negative val-
ues are characteristics of granitic environments, particularly 
visible in Gerês mineral waters (− 7.73 to − 5.90), where 
the hydrolysis of feldspar will result in the supply of more 
alkaline ions (Na and K) to the solution than Cl (Custódio 
and Llamas 1983). A clear difference between the thermo-
mineral waters and the local shallow groundwaters is evident 
in Gerês hydromineral system. However, this difference is 
not well marked in Caldelas thermomineral waters, probably 

Fig. 4  a  HCO3 vs  SiO2; b temperature vs  SiO2 of Caldelas and Gerês hydrothermal systems and local shallow aquifers
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due to the shorter circulation of the mineral waters when 
compared with Gerês thermomineral aquifer.

In the rMg/rCa ratio, positive values close to zero 
(0.01–0.14) were obtained for both thermomineral aquifers, 
indicating greater mobility of Ca in relation to Mg. In the 
local shallow groundwaters, this ratio increases to around 
0.7, although still minor than 1 (Table 2). Additionally, in 
Caldelas mineral waters, the ratio r (Ca + Mg)/rCl is much 
higher in Gerês hydrothermal system, probably due to the 
above-mentioned lithological heterogeneities in the geo-
logical setup, with higher percentage of minerals rich in the 
alkaline earth elements. Nevertheless, the rK/rNa ratio in 
both thermomineral systems is quite similar and comparable 
to those from the local shallow aquifers.

The origin of Cl in groundwaters may be associated 
with rock leaching. However, some authors point out that 
Cl may be often associated with a deep magmatic origin, 
similar to that proposed for other groundwaters in N of 
Portugal connected with or near deep faults (Marques et al. 
2006, 2010a, b; Carreira et al. 2008, 2010, 2014). The [r 
(Na + K)/rCl] ratios obtained for Caldelas and Gerês hydro-
thermal systems are rather unlike (see Table 2). Several 
authors (Schoeller and Schoeller 1979; Chae et al 2006; Li 
and Zeng 2017) draw attention to the fact that when the 
chloro-alkaline imbalance index values, expressed by the 

ratio [r (Na + K)/rCl], are < 4.0, the Cl diluted in the waters 
has a characteristic magmatic origin, not being the result 
of water–rock interaction processes. Regarding the ther-
momineral waters under study, they have distinct values: in 
Caldelas, the Cl content seems to be mainly associated with 
a deep origin and in Gerês mainly from the rocks leaching, 
where Cl concentration could increase through deeper and 
longer circulation paths.

Reservoir temperature: chemical geothermometers

Chemical geothermometer is an important tool used in 
the exploration of hydrothermal resources, using the 
data acquired from surface manifestations (e.g., thermal 
spring and borehole waters). During the last decades, sev-
eral chemical geothermometers have been widely used to 
estimate deep reservoir temperatures in hydrothermal sys-
tems (e.g., D’Amore et al. 1987; Gokgoz and Tarcan 2006; 
Arnórsson et al. 2000). The various chemical geother-
mometers, when applied to the same fluids, often yield a 
wide range of values for reservoir temperatures. Therefore, 
care must be taken in interpreting the estimated tempera-
tures, requiring expert knowledge of the chemical geother-
mometers to distinguish between reliable and ambiguous 
results (e.g., D’Amore et al. 1987; Arnórsson et al. 2000; 

Table 2  Hydrogeochemical index for Caldelas and Gerês hydrothermal systems and local shallow aquifers

a Stands for thermomineral groundwater
b Stands for the local shallow aquifers

Ref. [rCl − r 
(Na + K)]/rCl

rMg/rCa [r (Na + K)/rCl] r (Ca + Mg)/rCl rCl/r 
(Ca + Mg + Na + K)

rK/rNa

Caldelas
 AC4a − 0.78 0.14 1.78 4.13 0.17 0.07
 AC6a 0.16 0.05 0.84 5.87 0.15 0.32
 NM1a − 3.62 0.05 4.62 6.15 0.09 0.04
 Nasc.Sup  NS4b − 1.17 0.65 2.17 1.05 0.31 0.04
 Nasc.Sup  NS5b − 1.02 0.70 20.2 0.99 0.33 0.06
 AC4a − 0.98 0.14 1.98 3.03 0.20 0.03
 AC6a − 0.86 0.06 1.86 3.24 0.20 0.03
 NM1a − 0.80 0.05 1.80 3.26 0.20 0.04
 Nasc.Sup  NS4b − 0.30 0.50 1.30 0.80 0.47 0.06
 Nasc.Sup  NS5b − 0.72 0.55 1.72 0.72 0.41 0.03

Gerês
 NM2a − 6.62 0.01 7.62 0.38 0.12 0.02
 NM3a − 6.02 0.03 7.02 0.39 0.14 0.03
 NM4a − 6.45 0.02 7.45 0.40 0.13 0.03
 Fonta. Tanq.  NS6b 0.01 0.78 1.00 0.92 0.52 0.07
 NM2a − 5.90 0.03 6.90 0.30 0.14 0.01
 NM3a − 6.20 0.03 7.20 0.30 0.13 0.02
 NM4a − 7.73 0.04 8.73 0.39 0.11 0.02
 Fonta. Tanq.  NS6b − 0.90 0.68 1.90 0.98 0.35 0.04
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Gokgoz and Tarcan 2006). It is a good practice to compare 
temperatures indicated by different geothermometers.

Table 3 lists the geothermometers that were used to esti-
mate reservoir temperature and circulation in depth at Cal-
delas and Gerês hydrothermal systems. To obtain a clear 
visualization of the results of chemical geothermometer, 
the mean reservoir temperatures and the mean maximum 
reservoir depths for Caldelas and Gerês hydrothermal sys-
tems were plotted (Fig. 5). From the diagram of Fig. 5, it 
is possible to observe similar results of the chalcedony 
and  K2/Mg chemical geothermometers, as opposed to the 
dispersion of values resulting from the application of the 
other chemical geothermometers.

From the six different chemical geothermometers used 
to estimate the mean reservoir temperature, only chalced-
ony and  K2/Mg will be discussed; the other four geother-
mometers were dismissed based on:

(1) in the case of Na–K–Ca geothermometer, the discharge 
temperature at Caldelas boreholes is higher (≈ 30 °C) 
than the obtained reservoir temperature;

(2) concerning quartz, Na/K, and Na/Li geothermometers, 
they were not considered for discussion since, the res-
ervoir depths obtained are not compatible with the geo-
logical features in both areas, and unreliable consider-
ing the tritium content determined in the hydrothermal 
systems.

For the Caldelas thermomineral waters, the mean res-
ervoir temperature using the chalcedony and  K2/Mg geo-
thermometers is close to 44 ± 5 °C, suggesting chemical 
equilibrium reactions with chalcedony, chlorite, musco-
vite, and K-feldspars (Bowers et al. 1984; Giggenbach 
et al. 1983), at this temperature, in the hydrothermal res-
ervoir. Caldelas hydrothermal reservoir should present 
higher  CO2 pressure values than the Gerês thermomineral 
reservoir, considering the initial  CO2 content (pH val-
ues of 6.64–7.54 for Caldelas thermomineral waters and 
8.18–8.47 for Gerês thermomineral waters).

Knowing that (1) the mean geothermal gradient (gg) 
in the region is 30 °C/km (IGM 1998), and (2) the mean 
regional annual atmospheric temperature (Ta) is 14 °C at 
Caldelas, and 13 °C at Gerês, using the chemical geo-
thermometers (Table 3), the maximum circulation depth 
reached by the thermomineral waters was calculated 
through the following equation:

where Tr stands for the mean reservoir temperature.
The mean maximum circulation depth for Calde-

las hydrothermal system using chalcedony and  K2/

(1)depth = (Tr − Ta)∕gg,

Mg geothermometers varies between 0.90 ± 0.05 and 
0.95 ± 0.26 km, respectively.

Considering the geological and structural features 
(Almeida Soares 2019) of Caldelas area and the issue tem-
peratures of the thermomineral waters, a maximum circula-
tion depth for Caldelas waters in the range of 0.93 ± 0.16 km 
seems to be more realistic. Concerning the Gerês thermo-
mineral waters, we can see that the temperatures estimated 
using the Chalcedony, K–Mg, and Na–K–Ca (β = 4/3) geo-
thermometers (Table 3) are relatively close (ranging from 89 
to 108 °C, with a mean value of 96 °C ± 5 °C), except for the 
sample NM2. These estimated temperature values suggest 
similar circulation depths close to 2.8 km. For both hydro-
thermal systems, the temperature values estimated using the 
Na–K (Michard 1990) and Na–Li (Fouillac and Michard 
1981) are too high, giving reservoir depths unfitted with 
the tritium content determined in the hydrothermal systems.

Isotope hydrology

Oxygen‑18 and deuterium signatures

The deviations observed in the stable isotopic composition 
of rainfall in a given place will depend on many factors like 
seasonality, moisture source, rainfall amount, and meteoro-
logical conditions during evaporation, condensation, and 
precipitation, occurring throughout the year (Rozanski et al. 
1982, 1992, 1993; Celle-Jeanton et al. 2001; Gourcy et al. 
2005; Lambs et al. 2013; González-Trinidad et al. 2017). 
However, besides this variation, the distribution of δ18O and 
δ2H mimics the topography of the continents, and, there-
fore, the precipitation in mountain chains is marked by more 
depleted δ values, the so-called “altitude effect” (Dansgaard 
1964; Rozanski et al. 1982, 1992, 1993). The lowering of air 
temperature with increasing altitude leads to a progressive 
depletion in the heavy isotopes (18O and 2H) in precipitation 
isotopic composition. The “altitude effect” has been used 
in numerous hydrogeological studies to identify the pref-
erential recharge altitude and to investigate the origin and 
interconnection of groundwater bodies (e.g., Marques et al. 
2006, 2010a, 2017; Carreira et al. 2011, 2014). The vertical 
isotope gradient established with the δ18O and δ2H precipita-
tion values varies between − 0.15 and − 0.50‰/100 m for 
oxygen-18 and about − 1 to − 4‰/100 m for deuterium 
(e.g., Yurtsever and Gat 1981; Araguás-Araguás et al. 2000; 
Gonfiantini et al. 2001).

The δ2H and δ18O average values of groundwater sam-
ples from hydrothermal systems generally match the mean 
isotope composition of rainfall in the region (Table 4). 
This, combined with the altitude effect, makes it possi-
ble to infer the altitude of recharge of Caldelas and Gerês 
hydrothermal systems from their isotopic compositions 
(Fig. 6). The scatter of values should be ascribed to the 
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existence of different recharge altitudes. Similar dispersion 
in the isotopic data in the regional precipitation has been 
reported in other works (e.g., Diamond and Harris 2000; 
Glok Galli et al. 2017).

In this study, the evaluation of the preferential altitudes 
of the recharge areas (Caldelas and Gerês hydrothermal sys-
tems) was performed using the regional equation proposed 
by Lima (2011): alt. (m a.s.l.) = − 588 δ18O to 2734. This 
equation was obtained by measuring the isotopic composi-
tion of shallow spring waters in the region. Based on the 
δ18O values of these shallow groundwater samples, the 
author estimated the local isotopic gradient with the altitude 
(Fig. 7). Within the research region, the isotopic gradient 
obtained was 18O = − 0.17 ‰ per 100 m of altitude, using 
the shallow groundwater isotopic composition and the issu-
ing springs altitudes.

The depleted isotopic composition of Gerês thermomin-
eral waters points to a higher altitude of the preferential 
recharge area, when compared with Caldelas thermomin-
eral waters. Using the equation proposed by Lima (2011) 
the mean recharge altitude at Caldelas is around 170 m a.s.l. 
(value estimated without AC4), while in Gerês, the preferen-
tial recharge altitudes are varying between 900 and 1100 m 
a.s.l. (Fig. 7).

Tritium signatures

Groundwater samples for 3H determinations were collected 
in all sampling sites (Table 4). The tritium content found 
in the local shallow aquifers and in Caldelas hydrothermal 
system is indicating an active recharge. On the other hand, 
very low (or zero) 3H content was determined at Gerês ther-
momineral waters, which are indicating a mean residence 
time greater than 60 years.

No 3H was found in the thermomineral waters from Gerês 
(with the exception of sample NM4). Gerês thermomineral 

water samples besides of the absence of 3H present the 
highest mineralization (represented in Fig. 8c by the  SiO2 
values), suggesting a longer and deeper circulation path 
promoting more extensive water–rock interaction processes 
(Fig. 8d, e) corroborating the results from chemical geo-
thermometers. The 3H and 18O isotopic signatures of the 
Caldelas thermomineral water samples (Fig. 8b) reflect, in 
a first approach, the preferential recharge at low-altitude 
sites (18O data), when compared with Gerês thermomineral 
waters, and relatively shallow and short underground flow 
paths (3H data).

Analyzing Table 4 and Fig. 8, some important issues can 
be identified, namely:

(1) In the local shallow groundwater systems, the 3H 
content ranges from 3.5 ± 0.5 to 2.1 ± 0.5 TU, values simi-
lar to those found in the precipitation samples from the 
Portuguese Network “Isotopes in Precipitation” (Carreira 
et al. 2005). However, the AC6 borehole waters (Caldelas 
hydrothermal system) present higher 3H content (4.1 TU in 
both campaigns). In the GNIP (Global Network Isotopes 
in Precipitation) website (http://www-naweb .iaea.org/napc/
ih/IHS_resou rces_isohi s.html), the tritium variation in the 
precipitation over Portuguese mainland can be found, and a 
decrease of 3H content is observed along the years (Portu-
guese GNIP stations initiated in 1988) until the present time. 
The variation of the precipitation can be used to explain 
the higher tritium content measured in the mineral waters 
(AC4 and AC6—Caldelas) when compared with the local 
shallow aquifers.

(2) Tritium values found in regional precipitation are in 
the order of 5 TU, in two meteorological stations, in the N of 
Portugal, from the Portuguese Network Isotopes in Precipi-
tation (weight arithmetical annual mean at Porto = 4.5 TU 
and Vila Real = 6.4 TU: in Carreira et al. (2005). Therefore, 
based on the tritium input from regional precipitation data 
and considering the 3H half-life of 12.32 years (Lucas and 

Fig. 5  Mean maximum 
reservoir depth (km) vs. mean 
reservoir temperature through 
chemical geothermometry (°C) 
for Caldelas (filled symbols) 
and Gerês (open symbols) 
hydrothermal systems

http://www-naweb.iaea.org/napc/ih/IHS_resources_isohis.html
http://www-naweb.iaea.org/napc/ih/IHS_resources_isohis.html
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Unterweger 2000), one can classify these thermomineral 
waters as modern waters with active recharge.

Most of the Gerês thermomineral water samples do not 
present tritium. However, during the 2003 campaign, a 3H 
content of 1.2 ± 0.5 TU was determined at NM4 thermomin-
eral spring water. The easiest explanation is possible mixing 
with local shallow groundwaters. However, this hypothesis 
does not seem reliable since the results from the 2003 field 
work campaign showed that the Gerês thermal spring waters 
NM3 and NM4 presented almost similar chemical signa-
tures (see Table 1), being the NM3 spring waters character-
ized by very low 3H content (see Table 4). Another possible 
explanation is in situ 3H production, at depth. Moser et al. 
(1989) described this source of 3H associated with the rock 
matrix at Stripa (Sweden). These authors proposed a trit-
ium source associated with underground production in the 
granitic rocks. However, those authors also mentioned the 
importance of constant tritium content in the groundwater, 
should be observed, during several years in the groundwater 
samples. In Gerês hydrothermal system, this isotopic homo-
geneity in the tritium content is not evident (see Table 4), 
indicating a negligible tritium production at depth to justify 
the tritium measured in Gerês Bica NM4, another hypothesis 

that can be formulated is this 1.2 ± 0.5 TU is due to labora-
tory errors.

Conceptual flow models of Caldelas and Gerês 
hydrothermal systems

The usual definition of a groundwater conceptual model is 
frequently a qualitative and often a graphic description of 
the groundwater system, including an explanation of the 
hydrogeologic units, the system boundaries, inputs/outputs, 
and details of soils and rocks (Moore 2002). Preferably, 
after the conceptualization of groundwater systems, which 
should be grounded on Earth-based models, the application 
of mathematical models should be faced to outline scenarios 
using diverse integrated approaches. Useful models must 
be robust, calibrated, and supported on a permanent back-
analysis scale based on a logical understanding of the real 
hydrological functioning framework, i.e., an evaluation with 
in situ measurements, of some parameters of the rock mass 
behavior (Chaminé et al. 2015). In the same way, a con-
ceptual flow model is a simplified representation of a given 
aquifer system within a geological environment (Albu et al. 
1997; Kresik and Mikszewski 2013). These are normally 
developed based on important data sets collected in the 
scope of regional investigations.

In this study, a special emphasis has been put on the con-
tribution of a multidisciplinary approach (geology, morpho-
tectonics, hydrogeology, geochemistry, and isotope hydrol-
ogy) to the development of the conceptual flow models 
of Caldelas and Gerês hydrothermal systems. The models 
presented reflect the recharge and the discharge areas and 
identify the local/regional underground flow paths of both 
shallow and deep groundwaters, highlighting similarities and 
differences between both systems.

Concerning Caldelas hydrothermal system (Fig. 9a), the 
preferential recharge areas are located at low-altitude sites, 
around 170 m a.s.l., as indicated by the isotopic compo-
sition of the thermomineral waters (δ18O ≈ − 4.92‰ vs. 

Fig. 6  δ2H vs. δ18O. G-MWL 
stands δ2H = 8 δ18O + 10 and 
Portugal-MWL stands for 
δ2H = 6.8 δ18O + 4.5 (Craig 
1961; Carreira et al. 2009)

Fig. 7  Preferential recharge altitude of Caldelas and Gerês hydrother-
mal systems
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V-SMOW). The local meteoric waters (recharge waters) 
infiltrate at low-altitude sites along rock discontinuities 
(diaclases, fractures, and faults), percolate at considerable 
depths (about 0.93 km), interacting with the calc-alkaline 
and alkaline granitic rocks (mean reservoir temperature of 
44 ± 5 °C, using the chalcedony and  K2/Mg chemical geo-
thermometers), with relatively high  CO2 pressures, promot-
ing the development of Ca/Na-HCO3-type thermomineral 
waters. The deep circulating waters emerge along pathways 
linked to major NNE–SSW-trending faults, in a lower alti-
tude site, with issue temperatures around 30 °C (mean issu-
ing temperature 27 °C). Local shallow groundwater systems 
are ascribed to short underground flow paths as revealed 

by the related Na–Cl-type waters (similar to rain waters) 
presenting low mineralization (≈ 37 mg/L).

Gerês hydrothermal system (Fig. 9b), is characterized 
by preferential recharge areas located at high-altitude sites, 
between 900 and 1100 m a.s.l., evidencing the so-called 
“altitude effect” in the isotopic composition of the thermo-
mineral waters (δ18O ≈ − 6.42‰ vs. V-SMOW). In this 
case, the local meteoric waters infiltrates at high-altitude 
sites, also along rock discontinuities (diaclases, fractures, 
and faults), percolate at greater depths (about 2.80 km) 
interacting with the granitic rocks (mean reservoir tempera-
ture of 96 ± 15 °C, using the chalcedony,  K2/Mg and Na/K/
Ca—β = 4/3 chemical geothermometers) promoting the 

Fig. 8  a 3H vs. temperature; b 3H vs. δ18O; c 3H vs.  SiO2; d 3H vs. maximum depth reached by the thermomineral waters, using chalcedony geo-
thermometer and e 3H vs. maximum depth reached by the thermomineral waters, using  K2/Mg geothermometer
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development of Na-HCO3-type thermomineral waters. The 
deep circulating waters emerge in places where the major 
ENE–WSW and NNE–SSW faults intersect, in a lower alti-
tude site, with issue temperatures between 40 and 46 °C. 
In this case, local shallow aquifers seem to be ascribed to 
longer underground flow paths (when compared to Calde-
las local shallow groundwaters) as revealed by the evolu-
tion to Na-HCO3-type waters with rather high  SiO2 values 
(hydrolysis of the plagioclases). Although, these waters are 
presenting low mineralization (≈ 38 mg/L) due to weak 
water–granite interaction dominated by the hydrolysis of 
Na-plagioclase.

The effect of the distance to the Atlantic coast “continen-
tal effect” in this particular case study should not be very 

relevant, since the two areas of research are approximately 
50 km apart with the same water vapor masses origin.

Concluding remarks

The main goal of this study, conducted in two low-tem-
perature hydrothermal systems in the north of Portugal 
(Caldelas and Gerês hydrothermal systems), was to dem-
onstrate the applicability of combined geological, morpho-
tectonical, geochemical, and environmental isotope data as 
important hydrogeological tools to improve the conceptual 
circulation models. In both case studies, the proposed con-
ceptual circulation models were developed taking into con-
sideration the fact that local/regional geology (dominated 

Fig. 9  Schematic conceptual circulation model proposed for Caldelas (a) and Gerês (b) 
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by calc-alkaline/alkaline fractured granitic rocks) can be 
complex, heterogeneous, and that local/regional hydrogeo-
logical anisotropy would favor the development of irregular 
distribution of groundwater pathways. The main differences 
between these two thermomineral water systems are ascribed 
to the different recharge altitudes. From the geochemical 
point of view, the presence of calc-alkaline/alkaline granitic 
rocks is responsible for the evolution to Ca/Na-HCO3-type 
thermomineral waters (at Caldelas) and to Na-HCO3-type 
thermomineral waters at Gerês. However, the hydrolysis 
mechanism is influenced by the different hydrothermal sys-
tems temperatures along the groundwater flow (emergence 
temperatures 21–31 °C in Caldelas and 41–46 °C in Gerês), 
and from the initial  CO2 content (pH values of 6.64–7.54 
and 8.18–8.47 for Caldelas and Gerês thermomineral waters, 
respectively). In the case of Gerês thermomineral waters, the 
much lower concentrations of calcium and magnesium and 
higher concentrations of sodium and bicarbonate indicate a 
major degree of the granite–water reaction progress at higher 
reservoir temperatures. If the concentrations of chloride and 
sulfate are similar for both mineral waters, the r (Na + K)/rCl 
ratio obtained in Caldelas and Gerês thermomineral waters 
is rather different (see Table 2). The distinct values in this 
ratio indicate that the Cl have different origins: in Caldelas 
thermomineral waters, the Cl content seems to be mainly 
associated with a deep origin (magmatic), while in Gerês 
thermomineral waters, the Cl is mainly due to water–rock 
processes, where Cl concentration could increase through a 
deeper and longer circulation paths.

A circulation depth for Caldelas waters in the range of 
0.93 km seems to be realistic, considering the geologi-
cal and structural features of Caldelas area and the issue 
temperatures of the thermomineral waters. The mean res-
ervoir depths obtained from temperatures estimated using 
the chalcedony and  K2/Mg chemical geothermometers are 
42 ± 6 °C. Concerning the Gerês thermomineral waters, the 
chalcedony,  K2/Mg, and Na/K/Ca (β = 4/3) chemical geo-
thermometers indicate similar estimated temperatures (mean 
value 96 °C ± 5 °C), suggesting chemical equilibrium reac-
tions with chalcedony, chlorite–muscovite–K-feldspar, cal-
cite, and plagioclases at this temperature in an hydrothermal 
reservoir, located at depths close to 2.8 km. In addition, the 
maximum depth reached by the two systems will determine 
the reservoir temperatures at Caldelas and at Gerês, and the 
extension of water–rock interaction mechanisms occurring 
during groundwater flow.

The “altitude effect” represents the main factor responsi-
ble for the obtained isotopic differences (δ18O and δ2H val-
ues) in the thermomineral waters of these two case studies.

The different groundwater circuits are also responsible for 
the different 3H content, ascribed with lower (at Caldelas) 
and higher (at Gerês) mean residence time of the thermo-
mineral waters.

This study demonstrates that interdisciplinary approaches 
allow the development of strong conceptual hydrogeological 
models that can lead to practical applications like the mean 
residence time of groundwaters and preferential recharge 
areas, providing a basis for future studies on the vulnerabil-
ity of the hydrothermal systems, to anthropogenic effects. 
Some of the potential applications of conceptual models in 
hydrogeological studies are the identification of preferential 
recharge altitudes and areas for protection of water resources 
for a sustainable management. Besides, after the develop-
ment of conceptual models, the application of numerical 
models can be used as testing sensitivity of the system to 
anthropogenic effects. The visualization of the aquifer sys-
tem dynamics is extremely useful for reporting the scientific 
information, sometimes not very accessible, to Portuguese 
Directorate-General for Energy and Geology (DGEG) water 
authorities that is responsible for the promotion of proper 
management and protection of the hydromineral and geo-
thermal resources. In fact, such models promote an easier 
to visualization and better understanding of the difficulties.
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