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Abstract

Land degradation (LD) is a complex process affected by both anthropogenic and natural driving variables, and its preven-
tion has become an essential task globally. The aim of the present study was to develop a new quantitative LD mapping
approach using machine learning techniques, benchmark models, and human-induced and socio-environmental variables.
We employed four machine learning algorithms [Support Vector Machine (SVM), Multivariate Adaptive Regression Splines
(MARS), Generalized Linear Model (GLM), and Dragonfly Algorithm (DA)] for LD risk mapping, based on topographic
(n="17), human-induced (n=35), and geo-environmental (n=6) variables, and field measurements of degradation in the Pole-
Doab watershed, Iran. We assessed the performance of different algorithms using receiver operating characteristic, Kappa
index, and Taylor diagram. The results revealed that the main topographic, geoenvironmental, and human-induced variable
was slope, geology, and land use change, respectively. Assessments of model performance indicated that DA had the highest
accuracy and efficiency, with the greatest learning and prediction power in LD risk mapping. In LD risk maps produced using
SVM, GLM, MARS, and DA, 19.16%, 19.29%, 21.76%, and 22.40%, respectively, of total area in the Pole-Doab watershed
had a very high degradation risk. The results of this study demonstrate that in LD risk mapping for a region, topographic, and
geological factors (static conditions) and human activities (dynamic conditions, e.g., residential and industrial area expan-
sion) should be considered together, for best protection at watershed scale. These findings can help policymakers prioritize
land and water conservation efforts.
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As a result of human activities, such as land use change,
LD can alter hydrological conditions that are crucial for
water resources and sustainable river basin management
(Aladejana et al. 2018; Jiang et al. 2019; Haghighi et al.
2020). Therefore, efforts to prevent land degradation must
be taken by agencies and governments worldwide (Keesstra
et al. 2016; Solomun et al. 2018). To assess LD, it is neces-
sary to consider both natural and human-induced factors,
e.g., climate change, urbanization, and rising demand for
food and fuel (AbdelRahman et al. 2018; Wunder and Bodle
2019; Liniger et al. 2019). Owing to major concerns about
conserving land for ecosystem services and the impact of LD
on societies and the environment, soil, and water protection
has become an important issue for international organiza-
tions working with sustainable development (Solomun et al.
2018; Djanibekov et al. 2018). Identifying the causes of LD
is essential for its prevention. Globally, LULCC (decline in
rangeland area and conversion to farmland with low produc-
tivity) is recognized as a major driver of LD (Krkoska Lor-
encova et al. 2016). An increasing proportion of land with
low productivity and a lack of financial resources for land
managers in developing countries are exacerbating the risk
of LD and lowering resilience within rangeland landscapes
(Darabi et al. 2018; Pirnia et al. 2018; Cowie et al. 2019;
Pirnia et al. 2019).

To our knowledge, most previous studies assessing LD
conditions have used geographic information system (GIS)
and remote sensing techniques in spatial assessments of
LD risk based on the environmental conditioning variables
(Pravilie et al. 2017; Mariano et al. 2018; Cerretelli et al.
2018). Spatiotemporal patterns of land use change (anthro-
pogenic factors) are the main factor in land degradation
(Bewket and Sterk 2005; Gebremicael et al. 2018). Other
researchers have reported that direct anthropogenic distur-
bances in environments and ecosystems can increase land
degradation (Ahiablame and Shakya 2016; Davudirad et al.
2016; Aladejana et al. 2018; Schwieger and Mbidzo 2020;
Shao et al. 2020). Jaquet et al. (2015) found that outmigra-
tion has led to land degradation in a western Nepal water-
shed. Wei et al. (2020) examined the impacts of land deg-
radation on lake and reservoir water quality and showed a
clear trend for degradation, with significant adverse impacts
on lake/reservoir water quality. Yatheendradas et al. (2008)
concluded that land degradation is the result of dynamic and
complex interactions between LULCC, climate variables,
and hydrological processes in a watershed.

The environmental problems associated with LD are par-
ticularly severe in dryland regions, which poses a threat to
many people, especially in developing countries, such as
Iran (Khosravi et al. 2015; Darabi et al. 2018). During the
recent decades, land degradation in Iran (e.g., soil erosion,
such as gully development) has accelerated in Iran due to
many factors, such as increasing population, socio-economic
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development, LULCC (demand for agricultural products has
resulted in large-scale conversion of rangeland and forest
to cropland), over-exploitation of water resources, geology
and topography, and climate change (Pour et al. 2009; Seraji
et al. 2009; Davudirad et al. 2016; Bakhshandeh et al. 2019).

Owing to the many interacting factors causing LD,
machine learning techniques could be useful in LD risk map-
ping. In this study, we applied four novel machine learning
algorithms, namely Support Vector Machine (SVM), Mul-
tivariate Adaptive Regression Splines (MARS), General-
ized Linear Model (GLM), and Dragonfly Algorithm (DA).
These have already been successfully applied in other fields,
e.g., in flood risk and hazard mapping, fog-water harvest-
ing, agricultural drought assessment, and groundwater risk
assessment (Zhao et al. 2019; Darabi et al. 2020; Karimidas-
tenaei et al. 2020; Rahmati et al. 2020; Choubin et al. 2020).

Many studies have pointed out that knowledge about
LD conditions, especially in arid and semi-arid regions
with rapid industrialization and urbanization, is important
for achieving the global aim of sustainable development
in the long term (Gu et al. 2016; Tripathi et al. 2017; Cao
et al. 2018; Van Haren et al. 2019; Giuliani et al. 2020).
Hence, the aim of the present study was to develop a new
quantitative LD mapping approach using machine learning
techniques, benchmark models, and selected socio-envi-
ronmental conditioning variables. Different types of data
and information were used with the four different machine
learning algorithms to develop distributed maps of LD risk
for the case of a watershed in Iran. The novelty of the study
lies in (1) comparing conventional algorithms (support vec-
tor machine (SVM), multivariate adaptive regression spline
(MARS), and generalized linear model (GLM)) with new
algorithms, including DA, for LD mapping applications; (2)
developing a spatial framework for LD mapping by applying
new conditioning factors; (3) considering and introducing
important socio-environmental variables in land degrada-
tion; and (4) evaluating socio-environmental conditioning
variables for creating useful LD maps based on the model
results.

Materials and methods
Study area

The Pole-Doab watershed (49° 04’ 15""-49° 52’ 12" E, 33°
44" 42""-34° 12" 13" N) covers an area of 1740 km? in central
Iran (Fig. 1). It lies within a semi-arid-moderate to semi-
arid-cold region based on the Domartan climate index, with
maximum temperature in July (42 °C) and minimum tem-
perature in January (— 25.7 °C). The precipitation regime
is rainfall-snow, with a mean annual total (1988-2017) of
430 mm, which mainly falls during November, December,
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Fig. 1 Location of the study area, the Pole-Doab watershed in central Iran
and May. The topography of the Pole-Doab watershed con-  Methods

sists of rugged and mountainous terrain surrounding plains,
with elevation varying from around 1809 m above sea level
(asl) on the plains to 3342 m asl in the mountains. This
complex topography and steep gradients create a high risk
of LD, particularly when combined with human-induced
activities such LULCC, urbanization, and industrialization
in the watershed (Davudirad et al. 2016). The Pole-Doab
watershed is one of the main sub-basins in headwaters of
the Qareh—Chai river basin, which has been regulated by
the Saveh reservoir since 1995. The Shazand plain, located
in the center of the watershed, is used intensively for agri-
culture (Davudirad et al. 2016). In addition, considerable
recent development of infrastructure, industries, and urban
areas has altered lifestyles significantly. These rapid LULCC
(increasing agriculture, urban expansion, industrial develop-
ment) have led to extensive land degradation (Davudirad
et al. 2016; Sadeghi et al. 2019; Hazbavi et al. 2020).

Field measurements of land degradation

Several processes associated with LD, including water and
wind erosion and soil fertility decline, were considered in LD
risk mapping. Information on these processes in the Pole-Doab
watershed was extracted from an inventory of LD sites in the
region, based on field surveys and some documents from the
Forest, Range, and Watershed Management Organization
of Markazi Province, Iran. The LD sites, which represented
different types of degradation (e.g., gully erosion, riverside
erosion, surface erosion, and mining), were plotted in an LD
inventory map (Fig. 2). In order to prepare an urban LD risk
map, degraded areas and non-degraded areas were allocated a
value of 1 and 0, respectively. Hence, the historical occurrence
of LD was a source of essential information. In field surveys
in the Pole-Doab watershed, 200 degraded sites (value=1)
and 200 non-degraded sites (value =0) were chosen randomly
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Fig.2 Examples of land degradation in the Pole-Doab watershed: Riverside erosion (a, d, n), stream erosion (b, ¢, k, 1), gully erosion (e, m, g),

mining (f, i), badlands (j), and pollution and industrial causes (k)

for the analysis. For the purposes of the present study, the
LD inventory map was randomly divided into two groups,
training/learning and testing/validation datasets. The training
dataset, which comprised 70% of the LD (140 points), was
used for training/leaning of the machine learning algorithms.
The validation dataset, which comprises 30% the LD inventory
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(60 points), was used for validation of the models. Non-land
degraded locations were selected randomly at a distance from
the land degraded areas, as suggested in the literature (Hong
et al. 2018; Rahmati et al. 2020; Darabi et al. 2020). Therefore,
200 non-land degraded locations were selected, with 70% of
the non-land degraded inventory (140 points) used for model
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training and 30% (60 points) to validate the machine learning
algorithms.

Dragonfly algorithm (DA)

A number of intelligence algorithms have been developed in
the recent years and these have enormous potential to solve
non-linear problems. Intelligence algorithms perform intel-
ligent behavior by collecting conditioning factors to solve
problems. The Dragonfly Algorithm (DA), one of the pioneer
intelligence algorithms, has been extensively studied in the
recent years (Mirjalili 2016; KS and Murugan 2017; Jafari and
Chaleshtari 2017; Diaz-Cortés et al. 2018; Shilaja and Arun-
prasath 2019; Li et al. 2020). It is a meta-heuristic optimization
algorithm that was developed using the particle swarm opti-
mization technique with distinctive and extraordinary swarm-
ing behavior, which is intended to represent a tiny predator in
nature, because of its simple and easy implementation. The
main inspiration and purpose of the DA is to hunt and migrate
through static and dynamic swarming, based on the unique and
superior swarming behavior of dragonflies (KS and Murugan
2017; Shilaja and Arunprasath 2019). The DA starts the opti-
mization procedure by generating a set of random solutions for
a specific problem. The situation and stage vectors of dragon-
flies are booted by random values defined within the minimum
and maximum values of the variables (Mirjalili 2016). In this
study, the DA was used as an artificial intelligence algorithm
to prepare a LD risk map based on socio-environmental con-
ditioning variables. DA can be described by the expression:

X, = (x!.x....xN) (1)

where N is size of the population of dragonflies, i=1, 2, 3,
...N,and Xf refers to the position of the ith dragonfly in dth
dimension of the search space.

Based on the initial position values (randomly produced
between the lower and upper limits of the variables), the fitness
function is evaluated. For updating the velocity and position
of the separation, alignment, cohesion, food, and enemy coef-
ficients are calculated as follows:

N
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where S;, A;, C;, F;, and E, are the weights for separation,
alignment, cohesion, food, and enemy factors for each drag-
onfly; V; and X; refer to the velocity and position of the ith
individual; X refers to the position of the current individual,
and N indicates the number of individuals (KS and Murugan
2017; Rahman and Rashid 2019; Debnath et al. 2020).

Support vector machine (SVM)

Support vector machine (SVM) model is a classification/
regression method with a set of linear indicator functions
based on non-parametric statistical learning theory (Moun-
trakis et al. 2011). It specifies the boundary of classes by an
optimization algorithm (Sajedi-Hosseini et al. 2018). The
particular attributes of decision level in SVM enable high
extension capability of the learning machine, which makes
it effective in handling non-separable training datasets
(Drucker et al. 1996). The main difficulty in SVM modeling
lies in selecting important modeling variables. Transforma-
tion of data in SVM is carried out using kernel mathemati-
cal functions, and there are numerous standard transforma-
tions which can be applied for specific purposes. The SVM
kernel functions were used here to transform data into two
classes, consisting of land-degraded and non-land-degraded
locations (0, 1). The ability of SVM is reliant on choosing
suitable kernel functions (e.g., sigmoid kernel, radial basis
function (RBF), linear kernel, polynomial kernel). Accord-
ing to the previous studies (Tien Bui et al. 2012; Hong et al.
2018; Choubin et al. 2019), RBF provides the most accu-
rate results. It was therefore used in the present study in R
software (‘e1071° package) (Meyer et al. 2019). The RBF
kernel is commonly used in SVM classification in various
kernelized learning algorithms, and is defined as (Vert et al.
2004; Cura 2020):

2
[~

K(xl-,xj) = exp| —

(6)

2 X 02

where xiandxj are two features for the RBF kernel (K (xi, xj));
x; — x; is Buclidean distance between two features; and o
is a free parameter. The RBF kernel value decreases with
distance and ranges between 0 and 1 (x=x").

Multivariate adaptive regression splines (MARS)
The Multivariate Adaptive Regression Splines (MARS)

approach is an adaptive modeling process of machine learn-
ing techniques that can be used for identifying relationships
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between a set of independent variables and response vari-
ables with high-dimensional data (Friedman 1991). In
MARS, relationship modeling between a response variable
and independent conditioning factors is performed with sim-
ple functions (Darabi et al. 2020). In essence, it is a local
regression procedure that utilizes a collection of foundation
functions to model non-linear complex communications.
The prognosticator space is splined into multiple overlap-
ping places, called spline functions, which are appropriate.
The MARS model uses the following equation (Xu et al.
2010; Zhang and Goh 2016; Serrano et al. 2020):
k

Fo = ¢ x B), )

i=1

where B;(x) shows the base function of the MARS model
(which may be a sole spline function or a yield (interaction)
of more than two spline functions); c; is a constant coeffi-
cient; and i is the size of the base function contained in the
model. The base function is defined as:

xif x>0
Bi(0) = { 0 otherwise ®)

For each dataset in MARS, m explanatory and » individ-
ual variables are defined (n X m basic functions). To obtain
and prune the definitive model in MARS, a progressive
selection of basic functions is used, which leads to a much
overfitted model. In the present study, the method was built
in R software, using the “earth” package.

Generalized linear model (GLM)

Generalized linear model (GLM), an extension of the pre-
dictable linear regression model, was formulated by Nelder
and Wedderburn (1972) to produce answers based on the
Maximum Likelihood (ML) of the training variables. The
GLM allows the dataset to be overfitted by exponential dis-
tribution (normal, binomial, or gamma distribution) (Nordin
et al. 2020). Regression methods, including linear, logistic,
and log-linear regression, have been widely used to obtain
the best model to illustrate the communication between a
dependent parameter and multiple independent parameters
(Ozdemir and Altural 2013; Karimidastenaei et al. 2020).
The GLM approach can be used to process data of different
types, such as normal data, Bernoulli success/failure data,
Poisson count data, and others (McCullagh and Nelder
1989). A detailed description of the GLM model is presented
by Breslow (1996). In a GLM, each dependent variable (here
Y) is assumed to be created from a distribution in an expo-
nential family. The mean of the distribution (x) depends on
the independent variables (X). In the GLM, the linear predic-
tor is given as (Nordin et al. 2020):
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where E(Y), Xf, and g are the value of Y, linear predictor,
and the link function, respectively. In this context, the vari-
ance (V) is typically a function of u:

Var(Y) = V(u) = V(g7 (XB)). (10)

It is suitable if V tracks from an exponential distribution,
but it may simplify matters if V is a function of the pre-
dicted value. The f parameter is naturally estimated with the
maximum likelihood (ML) and maximum quasi-likelihood
(MA-L), or Bayesian models. In this study, the GLM model
was run in the R software environment.

Land degradation conditioning factors

There are many different types of LD worldwide and
many different conditioning variables can be distinguished
depending on the region and causes of LD. Thus in gen-
eral, there is no universal definition of LD or of condition-
ing factors (Sklenicka 2016). In the present study, based on
land degradation conditions in the Pole-Doab watershed,
18 biophysical conditioning variables were identified and
categorized into three groups: topographic variables (eleva-
tion, slope, curvature, topographic wetness index, terrain
ruggedness index, sky view factor, aspect); human-induced
variables (land use, population density, population growth
rate, residential and industrial expansion, distance to road);
and geo-environmental variables (geology, soil type, precipi-
tation, wind effect, distance to river, C-factor). The scale and
resolution of these land degradation conditioning factors,
classified into three groups, are presented in Table 1.

Topographic variables

Digital elevation model (DEM) We used a 30-m resolution
digital elevation model (obtained from the Forest, Range,
and Watershed Management Organization of Markazi prov-
ince) which shows the 1809-3342 m asl altitude variation in
the watershed (Fig. 3a).

Slope (%) We derived slope values from the 30-m DEM
in ArcGIS 10.5 using the slope tool Spatial Analyst. The
slope values in the watershed varied from 0% to more than
67.60% (Fig. 3b).

Curvature Curvature was derived from the DEM and
categorized into three classes (Fig. 3¢): concave (< — 0.05,
upwardly concave surface), flat (— 0.05 to 0.05), and convex
(> 0.05, upwardly convex surface) (Karimidastenaei et al.
2020; Tehrany et al. 2019).

Topographic wetness index (TWI) TWI, which indicates
soil moisture content and spatial variability in surface satura-
tion, was used to quantify local topographical impacts on LD



Environmental Earth Sciences (2021) 80:1

Page70f21 1

Table 1 Land degradation conditioning factors

Topographic factors Scale Spatial
resolution
(m)
Elevation 1:25,000 30
Slope 1:25,000 30
Aspect 1:25,000 30
Terrain ruggedness index 1:25,000 30
Topographic wetness index 1:25,000 30
Sky view factor 1:25,000 30
Curvature 1:25,000 30
Human-induced factors Scale Spatial
resolution
(m)
Distance to road 1:25,000 30
Land use 1:25,000 30
Residential and industrial area expansion 1:25,000 30
Population density 1:25,000 30
Population growth rate 1:25,000 30
Geo-environmental factors Scale Spatial
resolution
(m)
Geology 1:25,000 30
Land type 1:25,000 30
Distance to river 1:25,000 30
Precipitation 1:25,000 30
C-factor 1:25,000 30
Wind effect 1:25,000 30

conditions (Fig. 3d). It was calculated using ArcGIS 10.5 as
(Zhu et al. 2018; Karimidastenaei et al. 2020):

TWI=L As
-(7) "

where Ag is the local upslope drainage area for a certain grid
cell and g is the local slope.

Terrain ruggedness index (TRI) TRI, which was developed
by Riley et al. (1999), was calculated using SAGA GIS to
explain the elevation difference between a given point (cell)
and the mean of surrounding points (eight-cell matrix cells).
TRI quantifies surface roughness by including maximum
elevation values in the surroundings of a given point or cell
in a DEM (Riley et al. 1999; Karimidastenaei et al. 2020).
In the Pole-Doab watershed, TRI values varied from highly
rugged (46.00) to completely level surface (0 m) (Fig. 3e).

Sky view factor (SVF) SVF is the visible sky in a hemi-
sphere centered visible from the ground at a given point (cell
in the raster map). It varies significantly with the topography
of different regions and is used to account for obstruction of
the overlying sky hemisphere by surrounding land surface

as an adjustment factor, with regions with lower visibility
related to lower LD risk (Zaksek et al. 2011; Bernard et al.
2018). It is defined as:

SVF = % X [cos B X cos® B, + sin f X cos (Q)i - a)

N
=1

x(90—(pi—sin(piXCOS(pi)], 12)

where N is the number of directions, ¢, and @ are horizon
angle and azimuth in the ith direction, respectively, around
each cell in an elevation map, and « and f are the slope
aspect and angle, respectively. In the present study, SVF
was calculated using SAGA GIS, and the value for the study
watershed varied from absolutely horizontal surface (=1) to
absolutely obstructed land surface (=0) (Fig. 3f).

Aspect Aspect affects solar radiation received in a moun-
tainous watershed and plays an important role in environ-
mental changes. As the Pole-Doab watershed is located in
the northern hemisphere, its north-facing slopes are less
exposed to sunlight than south-facing slopes and thus have
a higher moisture content, which influences the temperature
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gradient and surface warming and leads to differences in ero-
sion pattern (Darabi et al. 2014, 2016) (Fig. 3g).

Human-induced variables

A number of human-induced conditioning factors of LD
have been identified in previous studies (Huber-Sannwald
et al. 2006; Lu et al. 2007; Pravalie et al. 2017; Mekonnen
et al. 2018; Speranza et al. 2019). We selected five of these
for use in LD risk mapping in the study watershed.

Land use Land use information was prepared using
Operational Land Imager (OLI) images from the Landsat 8
satellite, with path 165 and row 036-037. The images were
acquired from the USGS dataset for 04 June 2019. In a pre-
processing step, atmospheric correction of Landsat-OLI
data was carried out using QUick Atmospheric Correction
(QUAC) in ENVI 5.3 software. Using the maximum like-
lihood method (supervised classification), a land use map
was then prepared in the ENVI 5.3 software (El-Khoury
et al. 2015; Pullanikkatil et al. 2016; Torabi Haghighi et al.
2018). In the Pole-Doab watershed, there are seven land use
types: Bare land, dry farming, irrigation farming, orchard,
rangeland, residential, and rock zones, occupying an area
of 59.86 km? (3.44%), 441.78 km* (25.39%), 205.49 km*
(11.81%), 666.739 km? (38.32%), 89.85 km? (5.16%), and
140.80 km? (8.09%), respectively (Fig. 4a).

Population density The impact of population den-
sity on LD is unclear, but it is obvious that higher population
density (population per unit area) would lead to more land
degradation, with more serious degradation in areas with
higher population density (Li et al. 2015). In this study, the
impact of population density on LD risk in the Pole-Doab
watershed was estimated based on human-induced changes
in 10 counties within the watershed (Amiriyeh, Astaneh,
Pole-Doab, Khorram dasht, Sadeh, Shamsabad, Gharehkah-
riz, Kazzaz, Koohsar, and Nahremian) (Fig. 4b).

Population growth rate Population growth rate is mainly
responsible for population pressure on natural ecosystems
(rangeland) and also conversion of rangeland to farmland
and residential areas, which can affect flooding, sediment
yield, and soil erosion, and consequently land degradation
conditions. Population growth leads to increasing demand
for housing and other facilities, which in turn leads to
increased area of impervious surface as a result of urban
development, infrastructure construction, and deforestation
(Li et al. 2015). According to census data for Iran, the popu-
lation growth rate in counties in the Pole-Doab watershed
has increased rapidly in the recent decades (1976-2016)
(Davudirad et al. 2016). We therefore assessed the impact of
population pressure on LD risk in the Pole-Doab watershed
by considering the population growth rate in the 10 counties
in the watershed (Fig. 4c).

Residential and industrial area expansion Rapid urbani-
zation and industrialization and conversion of neutral land
to impervious land can affect LD conditions by increasing
surface runoff and flooding conditions (Li et al. 2015). In
this study, we used residential and industrial area expansion
in the Pole-Doab watershed 1973-2016 (produced using
TerrSet software) as a human-induced variable in LD risk
mapping (Fig. 4d).

Distance to road Distance to road as impervious surface,
and also as an indicator of development and infrastructure
construction, is an important factor in LD risk mapping (Li
et al. 2015). Here it was derived using the distance module
in GIS 10.5 for each raster cell (Fig. 4e).

Geo-environmental variables

Geology The geology of a watershed can affect soil erosion
and land degradation in two ways: (1) As an intrinsic effect
related to the geological formation; and (2) as an effect of
external and indirect factors such as climate (e.g., weather-
ing). In this study, the geology of the watershed was divided
into four formations: Quaternary, limestone, granite-grano-
diorite, and sandstone-shale (Fig. 5a).

Soil type Land type is typically defined by soil type and
land form, which can affect soil erosion and land degradation
(Nunes et al. 2011; Qiang et al. 2016). In this study, water-
shed soil types were divided into seven categories: alluvial
fans, colluvium fans, hills, lowland, mountains, piedmont
plains, and plateau and upper terraces (Fig. 5b).

Precipitation Annual precipitation data for 13 stations
run by the Iranian Meteorological Organization (IRIMO)
were used to produce a precipitation map for the Pole-Doab
watershed. Analysis of the interpolation accuracy was car-
ried out based on root mean square error (RMSE) in Arc-
GIS GIS 10.5, so the simple Kriging interpolation method
was selected as it has the lowest RMSE (0.96) (Darabi et al.
2016). Mean annual precipitation varied from 461 mm in the
west and southwest to 298 mm in the east and northeast of
the study area (Fig. 5c).

Wind effect Land degradation by wind is one of the most
serious environmental problems related to soil erosion,
threatening environmental quality, ecosystem services, and
land productivity (Chi et al. 2019). Wind effect assessments
are relatively rare in the literature, due to poor data avail-
ability. Because the amount of evapotranspiration is greatly
affected by high winds and high temperatures in summer
(Fenta et al. 2020), wind effect was included as a biophysical
variable for LD risk mapping in the present study (Fig. 5d).
Information on wind effect in the study watershed was
obtained based on the DEM in the SAGA GIS software.

Distance to river According to data on riverside and river-
bed erosion obtained from local authorities and in field sur-
veys, distance to river plays an important role in LD in the
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Fig.4 Human-induced variables used in land degradation risk mapping: a land use, b population density in the 10 counties in the Pole-Doab
watershed, ¢ population growth rate in the different counties, d residential and industrial area expansion, and e distance to road

Pole-Doab watershed. The Euclidean distance to the river was
calculated using the distance module in GIS 10.5 (Fig. 5e).
C-factor C-factor, a surface cover and roughness factor
considered to show the effect of cropping and management
practices on erosion conditions, is a critical indicator char-
acterizing LD. C-factor mapping can provide suitable infor-
mation for improving spatial and temporal modeling of land
degradation and soil erosion. It is one of the most sensitive
spatiotemporal factors, as it follows plant growth dynamics
(Berendse et al. 2015; Vaverkova et al. 2019). In this study,
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C-factor used to consider the impact of soil and vegetation in
LD risk mapping. It was derived using Landsat OLI (165-036
and 165-037) images for 04 June 2019 (Fig. 5f), which were
obtained from the USGS website (Almagro et al. 2019). In a
first step, Normalized Difference Vegetation Index (NDVI),
which has a direct linear correlation to C-factor, was computed
using Landsat data:

pband5,;; — pband4 ;

NDVIg; = (13)

pband5,,;; + pbanddy, ;'
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Fig.5 Geo-environmental variables used in land degradation risk mapping: a geology, b soil type, ¢ annual precipitation, d wind effect, e dis-

tance to river, and f C-factor

C-factor was then calculated as:
C = ((1-NDVI)/2), (14)

where p is the reflectance value of spectral bands for Land-
sat-OLI image: band 4, : Red, band 5;;: NIR. C-factor
varies in value from O to +1, representing good to bad condi-
tions for soil erosion.

Calculation of land degradation index

Machine learning methods automate analytical model build-
ing, based on the idea that the model can learn from data,
identify patterns, and make decisions (here prediction of
LD index) with minimal human intervention. In this study,
calculations of LD index were carried out using GIS layers
(with ascii format), which were categorized into three groups
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(topographic, human-induced, and geo-environmental vari-
ables), prepared in the same way in Arc map (with the same
resolution, scale, and coordinate system), and considered as
independent variables. Information related to LD (as point
data) was considered as other input for the machine learning
algorithms. Hence, after learning based on the above inputs,
the models used in this study proceeded to predict the LD
index as a final map with ascii format. All 18 conditioning
variables, together with the 200 points selected as LD loca-
tions, were used in the R program to produce LD risk maps
by the machine learning models. Using the natural break
method (Tehrany et al. 2015; Choubin et al. 2019; Darabi
et al. 2020) in ArcGIS 10.5, the LD risk was then classified
into five classes: very low, low, moderate, high, and very
high.

Model assessment

All machine learning models used in this study were
assessed using the receiver-operator characteristic-area
under the curve (ROC-AUC), which has been widely used
for evaluating model performance (Frattini et al. 2010;
Choubin et al. 2018; Darabi et al. 2020). The ROC-AUC
value ranges from O to 1, with a value of 0.5-0.6, 0.6-0.7,
0.7-0.8, 0.8-0.9, and 0.9-1 indicating weak, average, good,
very good, and excellent model performance, respectively
(Choubin et al. 2018). The Kappa index, which employs
model classification probabilities based on the null hypoth-
esis to calculate the agreement by chance, was also used
in model assessment. According to Monserud and Lee-
mans (1992), the Kappa index is divided into five classes,
with values of k<0.4, 0.4<k < 0.55, 0.55<k < 0.85,
0.85 <k < 0.99, and 0.99 <k < 1.00 indicating poor, moder-
ate, good, excellent, and perfect model performance, respec-
tively. All model assessments were carried out in R software.

The importance of the 18 selected conditioning variables
was evaluated for models showing high accuracy and preci-
sion. Visual assessment of model performance was carried
out using a Taylor diagram (Taylor 2001) and three statis-
tics: correlation coefficient, normalized standard deviation,
and root mean square error (RMSE). In the Taylor diagram,
models with high accuracy are close to the observations
(Choubin et al. 2018).

Importance of variables

The importance of the conditioning variables was cal-
culated from the results obtained through applying the
selected model based on the ROC-AUC and Kappa index.
The importance of independent variables (here topographic,
human-induced, and geo-environmental variables) was cal-
culated based on the frequency of dependent variables (here
degraded locations) and spatial variation in the independent
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variables, using the instructions of the selected model. In the
selected model, importance of variables was considered as
the reduction in node impurity weighted by the probability
of reaching that node. The probability of the node was con-
sidered as the number of points influencing the node divided
by the sum for the points (the more important the variable,
the higher the value).

Results
Spatial distribution of land degradation

The spatial distribution maps of land degradation, obtained
using the SVM, GLM, MARS, and DA algorithms, indi-
cated that most parts of the Pole-Doab watershed were
affected by LD, with high and low degradation conditions
(Fig. 6a—d). All models showed the same overall spatial
pattern, with high degradation in the south and southwest
of the watershed. However, the spatial resolution at local
scale derived from the different models varied. Regions
with the highest (1.00) and lowest (0.00) risk of land deg-
radation were successfully recognized by the DA, SVM,
GLM, and MARS algorithms. In the spatial distribution
of LD, the risk value ranged from 0.00 to 1.00. Using the
natural break method in ArcGIS 10.5, the LD risk was
divided into five classes: very low, low, moderate, high,
and very high, the spatial distribution zones for which are
presented in Fig. 6e-h. The LD risk maps obtained with all
four algorithms indicated that the south of the Pole-Doab
watershed is most exposed to degradation conditions. Based
on degraded area obtained from SVM, GLM, MARS, and
DA (Fig. 6e-h), the land area with a very high degrada-
tion risk represented 19.16%, 19.29%, 21.76%, and 22.40%,
respectively, of the total area of the Pole-Doab watershed
(Table 2). The LD risk maps also showed that most of the
watershed was affected by some type of degradation, with
more than 40% of the area falling into high and very high
zones according to all algorithms. It is worth mentioning
that some of the predictive variables used in the analysis
may vary over time, leading to uncertainty in the results.
Precipitation is one such variable, but since long-term pre-
cipitation data from 13 meteorological stations were used
in the present analysis, the associated uncertainty was con-
sidered to be minimized.

Model performance

Validation is an important phase in evaluation of model
accuracy. For quantitative comparison of the mod-
els, ROC-AUC and Kappa index were used. The maps
obtained for LD risk were compared with the validation
data, to assess the performance of each model. ROC-AUC
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Table 2 Area of the study
watershed falling within
different land degradation zones
according to the SVM, GLM,
MARS, and DA models

Table 3 Performance of the SVM, GLM, MARS, and DA models,
based on ROC-AUC and Kappa index (higher values indicate greater

model accuracy)

SVM

GLM

MARS DA

Area (km?) Area (%)

Area (km®) Area (%) Area(km®) Area (%) Area(km?) Area (%)

Very low
Low
Moderate
High
Very high

157.35
293.60
455.34
497.20
332.75

9.06 211.64
16.91 313.44
26.23 409.55
28.64 466.71
19.16 334.97

12.19 423.14 24.37 213.90 12.32
18.05 327.06 18.84 343.01 19.76
23.59 300.49 17.31 387.14 22.30
26.88 307.76 17.72 403.36 23.23
19.29 377.86 21.76 388.83 22.40

determines the probability of correctly and incorrectly
labeled pixels, with values close to 1 indicating a perfect

model with maximum precision and values <0.5 indicating

Models ROC-AUC Kappa index that the model is not suitable for the analysis. The accu-
SUM 0.864 0.866 racy and efficiency of the SVM, GLM, MARS, and DA
GLM 0.82 0.823 models, based on ROC-AUC and Kappa index, are shown
MARS 0.822 0.812 in Table 3. The highest ROC-AUC values were obtained
DA 0.880 0.892 for DA (0.880), followed by SVM (0.864), GLM (0.829),
: . and MARS (0.825) (Table 3). The ROC-AUC curves of
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