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Abstract
Snout monitoring of the Gangotri glacier (Uttarakhand, India) during the ablation season (May to September) in years 
2005 and 2015 by using rapid static and kinematic GPS survey reveals that the retreating rate has been comparatively more 
declined than shown by the earlier studies. Our study is based on the individual measurement by the remote sensing, added 
by the ground observations by using Differential global positioning system (DGPS) to determine the precise recession rate 
of the glacier at sub-centimeter level of accuracy. The GPS dataset show that the total average retreat along the snout has 
been 102.57 ± 0.05 m from 2005 to 2015 with an average rate as 10.26 ± 0.05 m/yr. Additionally, the shift in snout position 
was also measured through multi-temporal satellite data from 1989 to 2016. The results indicate that the Gangotri glacier 
snout has retreated by 585.62 ± 38.30 m during this period with an average retreat of 26.75 ± 4.36 m/yr from 1989 to 1999, 
21.58 ± 3.77 m/yr from 1999 to 2009 and 14.60 ± 4.81 m/yr from 2009 to 2016. Such a decline in retreat is further confirmed 
by the satellite data set. A close examination of meltwater discharge and retreating rate (r2 = 0.95) show that both parameters 
are strongly correlated. Therefore, we suggest that a consistent decrease in meltwater discharge from 1999 to 2015 is in 
agreement with decreasing trend of retreating rate during the recent years. To determine the possible causes of decreased 
retreating rate, a relationship between debris thickness and melt rate was also established by ablation stakes. Further, we 
infer that the declining trend in the glacier retreat is not only controlled by prevailing weather conditions (rainfall and air 
temperature) but is also governed by increased debris cover on the glacier surface which prevents the ice to melt.
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Introduction

The Himalaya contains a number of glaciers, which are 
mostly valley type, covering an area of about 33,000 km2 
(Bahuguna 2003). Himalayan glaciers have always been 
an issue of debate in perspective of global warming and 
majority of these are dying due to global warming and cli-
mate change (Negi et al. 2012). During the 20th century, a 
persistent retreat of glaciers along the Himalayan arc has 
been reported (Vohra 1981) and this process still continues. 
When mass gain in the receiving zone leads to a signifi-
cant advance of the terminus, the calving flux is amplified 
(Kochtitzky et al. 2019). Most of the Himalayan glaciers 
are partially or fully covered with debris, hence are divided 
into two categories, clean-ice type (C type) and debris cov-
ered ice type (D type) (Shroder et al. 2000). In the cold 
mountainous environment, debris covered glacier is the main 
agent of sediment transport (Kirkbride 1995). The debris 
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above the glacier surface is generally deposited from the 
rock fall in the adjacent valley walls and erosion of lateral 
moraines and avalanches (Benn et al. 2012). Usually, the 
debris cover is important for determining ice melt rate as 
well as glacier mass balance (Zhang et al. 2011). Thin debris 
covered glaciers respond faster to the climatic changes than 
thick debris covered glaciers (Scherler et al. 2011). Since the 
glaciers are very sensitive to the climate change, a regular 
glacier monitoring is required to understand the role of cli-
mate change in the glacier dynamics. Apart from climatic 
conditions, the glacier dynamics also depends on glacier 
characteristics. Recent studies on Himalayan glaciers point 
to wide-ranging variability in the retreating rate and mass 
balance (Dobhal et al. 2013). This is mainly due to mor-
pho-geometrical changes, behavior of winter and summer 
monsoons and incoherent climatic changes in the Himalayan 
region (Dumka et al. 2013). As the change in snout position 
varies from year to year, it is important to regularly monitor 
the glacier snout to estimate the impact of local factors on 
glacial retreat.

Hydrological investigations of mountain glaciers are 
equally important as they are the major source of fresh 
water for the community living in the downstream region 
(Bisht et al. 2018). Variability in rainfall, air temperature 
pattern and solar insolation mainly influence the meltwater 
discharge, which is one of the major controlling factors of 
the glacier melt (Young 1981; Bisht et al. 2017). The Hima-
layan rivers receive significant runoff from snow and glacier 
melts (Singh et al. 2008), therefore, the meltwater discharge 
measurements are significant to assess the melting rate of the 
glaciers (Srivastava et al. 2012).

Past positions of the glacier snout can also be recon-
structed using satellite imageries and examination of the 
terminal moraines (Kaser et al. 2003). The remote sensing 
method can provide useful information in monitoring the 
glacier tongue position, length area, equilibrium line alti-
tude (ELA) and volume (Negi et al. 2012). This technique 
is a bird eye view of the whole glacial body through which 
one can effortlessly determine the area, retreating trend and 
delineate the glacial catchment boundaries (Bhambri et al. 
2011). For the last few decades, the method has been widely 
used to estimate ice extent, terminus position, volume and 
surface elevation of glaciers by using various multi-spectral 
and multi-temporal data and has a capability to recognize 
past retreating trends (Negi et  al. 2012). However, this 
approach also faces inadequacy because even the Cartosat, 
2.5 m resolution has uncertainty of 10 m (Bhambri et al. 
2011). The ground based method is another way to estimate 
the glacial retreat in which the GPS survey method (static 
and kinematic surveys) and geomorphological evidences are 
used to determine the glacier retreat (Kaser et al. 2003).

In the present study, we have selected the Gangotri glacier 
(Fig. 1) as it has initiated widespread discussions because of 

its more dynamic nature and varying rate of retreat. Several 
studies have been conducted on this glacier to estimate the 
recession rate using remote sensing data (Srivastava 2004; 
Tangri 2004; Thayyen 2008; Bhambri et al. 2011) as well 
as geomorphological evidences (Naithani et al. 2001; Singh 
et al. 2017), whereas, a few studies have been based on the 
GPS survey (Kumar et al. 2008). However, the aim of our 
study is to understand the dynamic nature (retreating rate) of 
Gangotri glacier using DGPS and the relationship between 
meltwater discharge and rate of glacier retreat. In addition, 
the emphasis is given on the impact of debris cover in ter-
minus retreat of the Gangotri glacier.

Study area

Gangotri glacier (30°43′10″ to 30°55′50″ N, 79°4′55″ to 
79°17′18″ E) is situated in the Uttarkashi district of Utt-
arakhand (Fig. 1). Geologically, the area lies above the 
Main Central Thrust (MCT), a key structure in the Indian 
Himalaya as basal contact between the Greater Himalayan 
sequence and the underlying Lesser Himalayan sequence) 
(Metcalfe 1993; Bisht et al. 2020). The regional climate is 
mainly influenced by the Indian Summer Monsoon (ISM) as 
well as Indian Winter Monsoon (IWM) (Dimri et al. 2016; 
Kotlia et al. 2018) and the microclimate is affected by both 
the altitude and valley aspects (Naithani et al. 2001). At pre-
sent, the glacier comprises mainly two inactive glacier tribu-
taries (Raktavarna and Chaturangi) and four active tributary 
glaciers (Kirti, Swachhand, Maiandi and Ghanohlm). The 
Gangotri glacier is NW flowing valley type glacier, about 
30.2 km long and 0.5 to 2.5 km wide (Kaul 1999). The lon-
gitudinal U shaped valley occupies 39.18 km3 of ice volume 
with 258.56 km2 glaciated area (Naithani et al. 2001). Evi-
dence of neotectonic activity (e.g., deep gorges, triangular 
fault facets and tectonic depressions) observed in this region 
are mainly responsible for modification of the present land-
form. The occurrence and distribution of various landforms 
including snout positions of the tributary glaciers appear 
to be controlled by the neotectonic activity and partially by 
the glacial movement (Bali et al. 2003). The depositional 
features (e.g., lateral and terminal moraines, talus cones and 
dead ice mounds) and erosional features (e.g., gorges, trun-
cated spurs, glacier striations, cirques, glacial horns, glacial 
lakes etc.) are characteristics of the glacier landforms and 
are well exposed all along the glacier valley. Throughout 
the glacier surface, transverse and longitudinal crevasses 
are formed mainly due to unequal surface velocity of the 
glacier at marginal and central parts, ranging in length from 
4–10 m and 1–2 m in width. Besides this, the glacier abrades 
the valley walls, depositing highly unsorted, angular and 
unconsolidated sediments on and along its sides.
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Fig. 1   Location map of the study area, showing Gangotri glacier system with its tributary glaciers
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Materials and methods

DGPS survey for retreat measurements

The snout of the Gangotri glacier was monitored using 
Differential Global Positioning System (DGPS) survey 
with high level of accuracy for annual retrieval rate of the 
glacier. The survey was carried out all along the snout in 
year 2005 (May) and 2015 (June) by using a pair of Leica 
SR520 GPS receivers and AT502 antenna in rapid static 
and kinematic modes in which one antenna, attached with 
receiver was mounted on a solid bedrock with 1 mm hole 
located off the glacier (Fig. 2a), and another receiver was 
used as a rover (Fig. 2b) which takes observation at an 
interval of 5 s, lasting for 5 min to obtain precise position 
of coordinates with accuracy of sub-centimeter. We started 
the reference station 24 h before the kinematic survey for 
instrument calibration and to get a precise location of the 
reference point. The roving antenna was fixed to the top 
of an iron rod, attached to the backpack, nearly 2 m above 
the ground level (Fig. 2b). The survey was carried out 
along the closest possible tracks, 1–4 m distance from the 
glacier snout to avoid mishap from ice, rock and debris 
fall. The GPS derived raw data were processed by using 
Leica SKI-PRO 3.0 software and position coordinates 
were presented in form of the WGS 84 coordinate sys-
tem. The position quality was also calculated, defined as 
Root Mean Square (RMS) error of standard deviations of 
X and Y coordinates (Kumar et al. 2008). The accuracy 
of results is also affected by large Geometric Dilution of 
Precession (GDOP), which may introduce a large error 
in the GPS derived positions. To minimize this error, all 
GPS observations having GDOP > 6 were not considered 
in the final analysis.

Area velocity method for discharge measurements

Area velocity method (Eq. 1) was used to calculate chan-
nel discharge as a product of water flow velocity (ms−1) 
and the channel cross sectional area (m2) in years 2005 
and 2015. A suitable gauging site was selected ~1.6 km 
downstream (30°56′15″ N and 79°3′53″ E) from present 
position of the Gangotri glacier snout. The channel cross 
section area was measured by standard survey technique 
using ruler and a tape measure (Fig. 2c). Here, a transect 
across the stream at 50 cm interval was taken as the height 
from bed to the water surface. The channel flow velocity 
was measured by wooden floats over a stream flow length. 
Since channelized water flow velocity decreases exponen-
tially towards the bed and banks of channel, the correc-
tion factor (k = 0.8) was applied to obtain mean channel 

velocity (Hubbard and Glassar 2005). Variation in water 
level was recorded 6–8 times at a regular interval to draw 
a rating curve for daily discharge measurement by using 
following formula (Hubbard and Glassar 2005).

Where Q is discharge, k is correction factor (0.8), A is chan-
nel cross sectional area and V is surface velocity of the 
channel.

Measurements of debris thickness for glacier melt

The study was conducted during the ablation season (May to 
September) in 2015 to determine the surface melt rate and 
varying thickness of debris cover. The ablation measure-
ments were undertaken with the glaciological stake network 
method (Østrem and Brugman 1991). To measure the abla-
tion and debris thickness, 10 ablation stakes were emplaced 
up to 2 m depth into the glacier surface by ice drill machine 
(AR 502, Fig. 2d). The ablation stakes were labeled as 
1–10 from one valley side to other side near the tongue and 
were divided into two categories, e.g., thin debris covered 
stakes (≤ 5 cm) and thick debris covered stakes (5–55 cm). 
The height of the ablation stakes from the glacier surface 
(Fig. 2e) was taken at an interval of one month during the 
entire ablation period of 5 months (May to September) to 
determine monthly melting of the glacier surface. The snout 
of the glacier was also photographed at the same place with 
high resolution camera in 2005 and 2015 (Fig. 3) to compare 
observed changes in its position and shape.

Remote sensing method for retreat measurements

Average annual retreating rate of Gangotri glacier snout 
was also computed from 1989 to 2016 through remote sens-
ing method. To achieve past positions and retreating rate of 
glacier tongue, multi-temporal satellite imageries (Landsat 
Sentinel 2016, IRS LISS III 2009, Landsat ETM + PAN 
1999 and Landsat TM 1989) (https​://earth​explo​rer.usgs.
gov/; https​://bhuva​n.nrsc.gov.in/) were processed and geo-
rectified using Arc GIS (ver. 10.2) and ERDAS imagine 
(ver. 14) software. A comprehensive set of multi-spectral 
and multi-temporal satellite data were acquired in cloudless 
condition (see Table 1). The registration error was calculated 
by registering the images 1989 (Landsat TM), 1999 (Land-
sat ETM + PAN) and 2009 (LISS III) to base image 2016 
(Landsat Sentinel), which were 0.6 pixel or 6 m, 0.4 pixel or 
4 m and 0.5 pixel or 5 m, respectively. To assess positional 
accuracy of results, the uncertainty was calculated by using 
the formula, as proposed by Hall et al. (2003).

(1)Q = k(A × V)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://bhuvan.nrsc.gov.in/
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Fig. 2   a Reference antenna mounted on solid bedrock, b GPS survey 
along the snout of Gangotri glacier, c measurements of cross section 
area across the Bhagirathi stream draining from Gangotri glacier, d 

photograph showing drilling on the glacier surface through ice drill 
(AR502), e measurement of stake height to determine the debris 
thickness on the glacier surface
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Fig. 3   Photographs showing change in the position of glacier snout from 2005 (a) to 2015 (b) 



Environmental Earth Sciences (2020) 79:329	

1 3

Page 7 of 14  329

where a1 is spatial resolution of image 1; a2 is spatial reso-
lution of image 2 (base image) and Ereg is registration error 
of the image.

Therefore, the uncertainty for 1989 Landsat TM data can 
be estimated as follows;

Similarly, the uncertainty was found as 22.03 m for Landsat 
ETM + PAN and 30.54 m for LISS III.

Results and discussion

Variation in retreating rate of the glacier

Monitoring changes in the snout terminus provides useful 
information for understanding the impact of various factors 
on glacial retreat (Kaser et al. 2003). Kinematic GPS survey 
along the glacier snout is an effective method for monitoring 
changes in the position of glacier terminus (Karpilo 2009). 
Comparison of mapped terminus positions of glacier tongue 
over different time periods provides a record of change in 
glacier length and area by processing the data, derived from 
the DGPS. Detailed analysis through the kinematic GPS sur-
vey indicates that the recession was maximum in frontal part 
of the glacier towards the northern side (129.57 ± 0.09 m) 
and minimum towards the southern side (88.56 ± 0.06 m) 
(see Fig. 4). This may be attributed to melting of the ice 
through tributary glacier meltwater (e.g., Raktavarna) at 

(2)e =

√

(a1)2 + (a2)2 + Ereg

e =

√

(30)2 + (10)2 + 6 = 37.62m
northern side of the snout. A similar retreating trend has also 
been reported by previous workers on the Gangotri and its 
tributary glacier (e.g., Chaturangi) (Kumar et al. 2008; Bisht 
et al. 2019). Based on the DGPS studies at different locations 
along the snout, we infer that the glacier was retreated by 
102.57 ± 0.05 m from 2005 to 2015 (Table 2), and estimate 
that the frontal part of the glacier has been retreating at an 
average rate of 10.26 m/yr after 2005. Previous studies have 
revealed that the terminus area of glacier was reduced by 
0.58 km2 (~ 0.01 km2/yr) between 1935 and 1996 (Srivastava 
2004). The preceding observations on the recession of the 
glacier show varying rates in the last century (see Table 3). 
The wide variability in terminus retreat rate and mass bal-
ance of different glaciers in the Himalayan region are mainly 
due to topography and climate of the region (Dobhal et al. 
2013). Venkatesh et al. (2012) and Pudelko et al. (2018) also 
suggested that the reduction in glacier extent vary with time 
depending on the dynamics of ice movement (controlled by 
length and slope of the glacier), size and type of the glacier. 
In the Gangotri glacier, a higher recession rate (38 m/yr) was 
recorded during 1975–1976 (Puri 1984), while the lower rate 
(10.16 m/yr) was observed during 1935–1956 (Jangpangi 
1958). The Sonapani glacier in the Himachal Himalaya also 
show variable retreat rate during different time intervals 
from 1906 to 2016 (Majeed et al. 2020). Such variations 

Table 1   Comprehensive details of multi-spectral and multi-temporal 
satellite data from 1989 to 2016

Satellite/sensor Date of acquisi-
tion

Spatial 
resolution 
(m)

Spectral resolution

Landsat TM 15/11/1989 30 G = 0.52–0.60 µm
R = 0.63–0.69 µm
NIR = 0.76–

0.90 µm
Landsat 

ETM + Pan
15/10/1999 15 G = 0.52–0.60 µm

R = 0.63–0.69 µm
NIR = 0.76–

0.90 µm
Liss III 23/10/2009 23.5 G = 0.52–0.59 µm

R = 0.62–0.68 µm
NIR = 0.77–

0.86 µm
Sentinel 09/10/2016 10 G = 0.56 µm

R = 0.66 µm
NIR = 0.84 µm

Fig. 4   Retreating trend and total displacement of Gangotri glacier 
snout from 2005 to 2015 as obtained from DGPS derived coordinates
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may correspond to changes in the climatic conditions and 
behavior of winter and summer monsoons (Thayyen and 
Gergan 2010; Dumka et al. 2013). In addition, the fluctua-
tion in retreating rate through different time periods may also 
be due to low response time of large glaciers to the climate 
variability (Kulkarni 2007).

The results obtained from long term satellite imageries 
were used to determine the temporal changes in the snout 
position and retreating trend of the glacier from 1989 to 
2016 (Fig. 5). The glacier retreat, computed during three dif-
ferent periods, viz., 1989–1999, 1999–2009 and 2009–2016 
was observed as 267.56 ± 43.59 m, 215.84 ± 37.66 m and 
102.22 ± 33.65 m respectively with a total recession of 
585.62 ± 38.30 m (Table 4). Reconstruction of the past snout 
position and cumulative retreating trend clearly shows that 
the recession rate of the glacier was higher (26.75 ± 4.36 m/
yr) during 1989–1999, and subsequently, consistently 

decreased during 1999–2009 (21.58 ± 3.77 m/yr) as well as 
from 2009 to 2016 (14.60 ± 4.81 m/yr) (Table 4). The snout 
retreat, measured by satellite data from 2009 to 2016, is 
more or less similar to the results derived by the DGPS dur-
ing 2005–2015, indicating that the recession rate of Gangotri 
has been slowed down during the recent years. Bhattacharya 
et al. (2016) also reported decreased retreat rate during the 
recent years, compared to other debris covered glaciers in 
the Himalayan region. The Pindari glacier in Kumaun Hima-
laya also shows decreased recession from 1966 to 2007 (Bali 
et al. 2009). The satellite and ground based study carried 
out by Ali et al. (2019) also proves that the retreat rate of 
Pindari glacier has slowed down since 2010. Similarly, the 
Milam glacier has retreated at a rate of 9.54 m/yr after 2004 
(Dumka et al. 2013), significantly slower than 30.32 m/yr 
from 1966 to 1997 (Shukla and Siddiqui (2001). Similarly, 
the Satopanth glacier which provides water to the Ganga 
basin, has receded at a rate of 22.86 m/yr before 2005 but 
slowed down to 6.5 m/yr in next years (Nainwal et al. 2008). 
Most evidently, a 70 km long Siachin glacier, too, has been 
in a steady state for the last several decades, with almost 
no retreat (Sinha and Shah 2008). Considering all this, we 
believe that the recession rate of many glaciers has slowed 
down in different parts of the Himalayan region.

Relationship between meltwater discharge 
and glacier melt

The hourly data were used to obtain mean daily variation in 
meltwater discharge during the ablation season in year 2005 
and 2015 (Fig. 6). The hydrograph pattern clearly shows an 
increasing trend of the meltwater discharge beginning from 
June, subsequently attains highest value around July and then 
gets decreased. In early part of the ablation season, the limb 

Table 2   Position coordinates 
of GPS derived snout points in 
2005 and 2015 for comparative 
study of average retreat rate of 
the glacier

Year/points X (North) (m) Y (East) (m) Position 
quality 
(cm)

Change in 
N (dX) (m)

Change in E 
(dY) (m)

Resultant change 
in position (m)

2005-1
2015-1

1038066.32 5380262.49 5.3 − 34.86 84.03 90.97 ± 0.05
1038031.46 5380346.52 0.94

2005-2
2015-2

1038054.9 5380266.2 6 − 38.72 80.59 89.41 ± 0.06
1038016.18 5380346.79 0.91

2005-3
2015-3

1038049.1 5380274.67 5.8 − 39.55 88.3 96.75 ± 0.05
1038009.55 5380362.97 1.23

2005-4
2015-4

1038055.6 5380279.14 1.4 − 54.65 91.9 106.92 ± 0.01
1038000.95 5380371.04 0.81

2005-5
2015-5

1038060.8 5380282.54 1.4 − 68.66 75.19 101.82 ± 0.07
1037992.14 5380357.73 7.24

2005-6
2015-6

1038072.3 5380289.3 9.1 − 103.43 78.05 129.57 ± 0.09
1037968.87 5380367.35 4.05

Mean − 56.64 83.01 102.57 ± 0.05

Table 3   Recession rate in the Gangotri glacier as estimated by pre-
sent study and earlier workers

Period Annual snout retreat 
(m)

References

1935–1956 10.16 Jangpangi (1958)
1956–1971 27.33 Vohra (1971)
1971–1974 27.34 Puri and Singh (1974)
1974–1975 35.00 Puri (1984)
1975–1976 38.00 Puri (1984)
1976–1977 30.00 Puri (1984)
1977–1990 28.08 Puri (1991)
1990–1996 28.33 Sangewar (1997)
2004–2005 12.10 Kumar et al. (2008)
2005–2015 10.26 Present study
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Fig. 5   Satellite images of Gangotri glacier with change in the position of the snout in 1989 (a), 1999 (b), 2009 (c) and 2016 (d) 
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of the hydrograph is almost flat (Fig. 6) showing no signifi-
cant changes during early part of the ablation season because 
of less melting due to weak solar insolation (e.g., Singh et al. 
2006). The discrepancy in the hydrographs in both the years 
may perhaps correspond to variation in precipitation pattern 
and extreme events such as Glacial Lake Outburst Flood 
(GLOF). The total meltwater discharge volume draining 
from the Gangotri glacier was calculated for entire ablation 
periods of 2005 and 2015 (Table 5). To establish a relation-
ship between meltwater discharge and retreat rate, we have 
compared the discharge values and retreating rate with pre-
vious studies (Kumar et al. 2002, 2008; Tangri et al. 2004). 
The average meltwater discharge and retreating rate in 1999 
(565.87 × 106 m3 and 25 m/yr) (Kumar et al. 2002; Tangri 
et al. 2004), 2000 (479.32 × 106 m3 and 17.15 m/yr) (Kumar 
et al. 2002, 2008), 2005 (423.47 × 106 m3 and 12.10 m/yr) 
(Kumar et al. 2008) and 2015 (354.42 × 106 m3 and 10.26 m/
yr) show positive correlation (r2 = 0.95) (Table 6). Thus we 
suggest that a consistent decrease in meltwater discharge 
during 1999, 2000, 2005 and 2015 is in agreement with 
decreasing trend of retreating rate during recent years.

Impact of debris thickness variation in glacier melt

Due to vertical thinning, recession and movement of the gla-
cier, enormous sediment load has been deposited on its sur-
face from the valley walls. Also, along the margins of active 
tributary glacier (connected with the main trunk), the valley 
sides are scrapped and rock blocks are broken off into the 
ice and are carried away. This leads to undercutting of the 
valley sides and pave the ground for sliding, slumping and 
debris avalanching, bringing large quantity of rock-waste on 
top of the main glacier trunk. Some inactive tributary gla-
ciers (detached from the main trunk), lying above the main 
glacier are also responsible for sediment transport on the 
glacier surface by meltwater streams. The physical weather-
ing of rocks through frost-wedging is another phenomenon, 
responsible for deposition of the rocks on the glacier surface. 
To determine the influence of debris cover on surface melt-
ing of the glacier, 10 ablation stakes were emplaced on the 
glacier surface near snout. The results reveal that melting for 

Table 4   Retreating rate of Gangotri glacier from 1989 to 2016 as esti-
mated from remote sensing technique by using satellite data

Time duration (years) Total recession (m) Retreating rate (m/yr)

1989–1999 267.56 ± 43.59 26.75 ± 4.36
1999–2009 215.84 ± 37.66 21.58 ± 3.77
2009–2016 102.22 ± 33.65 14.60 ± 4.81
Total 585.62 ± 38.30

Fig. 6   Hydrograph showing daily mean meltwater discharge draining from Gangotri glacier during the ablation period (2005 and 2015)

Table 5   The meltwater 
discharge volume draining from 
Gangotri glacier during entire 
ablation season in year 2005 
and 2015

Month Meltwater 
discharge volume 
(× 106 m3)

2005 2015

May – 17.92
June 73.46 36.16
July 145.32 120.98
August 147.74 138.69
September 56.95 40.67
Total 423.47 354.42
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thick debris cover (55 cm) was minimum as 11.9 cm/month 
and maximum for thin debris cover (1 cm) as 20 cm/month 
(Fig. 7a), thus, the melting appears decreased significantly 
with increased debris thickness. Further, a strong correla-
tion (R2 = 0.96) was observed between debris thickness and 
surface melting of the glacier (Fig. 7b), indicating that both 
the parameters are inversely correlated with each other. A 
similar pattern between surface melting and debris thickness 
has been observed in the nearby Chorabari and Dokriani 
glaciers (Dobhal et al. 2013; Pratap et al. 2015). Dobhal 
et al. (2013) proposed that the Chorabari glacier has slower 
retreat compared to other non debris covered glacier, indicat-
ing that the influence of debris cover is mainly responsible 
for terminus retreat of the glacier. Xiang et al. (2018) further 
suggested that the debris covered glaciers shrink with lower 
rate than the debris free glaciers in the Central Himalaya. 
We suggest that high debris cover near tongue is a major 
factor for reduced recession of the Gangotri glacier. There 
are several debris covered glaciers, retreating at a relatively 
slower rate, such as Shankulpa (6.8 m/yr), Dunagiri (3.0 m/
yr) and Bhagirathi Kharak (1.5 m/yr) (Swaroop et al. 2001; 
Raina and Srivastava 2008; Nainwal et al. 2008).

The retreating rate of the Chaturangi glacier (tributary 
glacier of Gangotri) was measured as 22.85 ± 0.05 m/yr 
during 2015–2016 (Bisht et al. 2019) and this indicates 
that the glaciers, although stretching out in the same valley 
do not respond homogeneously with change in prevailing 
weather conditions and the retreat also depends on the 
glacier characteristics and topography of the glacier val-
ley (Singh et al. 2017). The geomorphological evidence 
(e.g., terminal and lateral moraines) in the study also 
supports the retreat and shrinking of glacier in the recent 
past. Therefore, repeated photography of snout is useful 
tool to document changes in the glacier terminus position 
(Karpilo 2009). To estimate change in the position of gla-
cier snout, photographs of snout were taken (in year 2005 
and 2015) and there seems a considerable change in the 
height and position of the snout (Fig. 3).

Conclusion

We conclude that the retreating rate of Gangotri glacier 
has been comparatively more declined than shown by the 
previous studies. Our results also prove that the consist-
ent decrease in meltwater discharge during recent years is 
positively correlated with decreased retreating rate of the 
glacier snout. Therefore, we conclude that a consistent 
decrease in meltwater discharge from 1999 to 2015 is in 
favor of decreasing trend of retreating rate during recent 
years. In addition, we believe that the high load of debris 
cover and isolated boulders on the surface of the glacier 
with passage of time is one of the major factors for reduc-
tion in retreating rate of the glacier, as high sediment load 
prevents the solar insolation that protects the ice to melt. It 
also has been documented in other glaciers of the Himala-
yan region (e.g., Swaroop et al. 2001; Raina and Srivastava 
2008; Nainwal et al. 2008).

Most of the glacial activities were observed near the 
tongue and upper reaches and palaeo-glacial marks and 
other geomorphic evidences indicate the existence of gla-
cier up to several km downstream from the present posi-
tion of snout. Nevertheless, the retreating rate of Gangotri 
snout measured by satellite data from 2009 to 2016 is more 
or less similar with the result derived from the DGPS from 
2005 to 2015, which also suggests that the rate of retreat 
has been slowed down during recent years.

Although the tough terrain and logistic problems ham-
per detailed glaciological studies on the Gangotri glacier, 
yet the extensive field surveys seem necessary as they 
provide more accurate results than the satellite imageries. 
This is because the rock debris, covering the glacier makes 
it more difficult to measure through satellite research. It 
is also felt that all the tributary glacier snouts of Gangotri 
glacier system may be studied to assess the retreat pattern 
of the whole Gangotri glacier system.

Table 6   Retreating rate of 
Gangotri glacier and total 
discharge volume during 
ablation season of four different 
years

Year Discharge volume 
(× 106 m3)

Retreating rate
(m/yr)

References

1999 565.87 25 Kumar et al. (2002); Tangri et al. (2004)
2000 479.32 17.15 Kumar et al. (2002); Kumar et al. (2008)
2005 423.47 12.10 Kumar et al. (2008); Present study
2015 354.42 10.26 Present study
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Fig. 7   a Relationship between debris thickness and average surface melt rate of the glacier near snout during ablation season (May to Septem-
ber) in 2015, b exponential relationship between debris thickness and average monthly surface melting of the glacier
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