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Abstract
Successive applications of swine manure (SM) in agriculture may contribute to environmental contamination by excess 
ofphosphorus (P). In this study, we analyzed the dynamics of P fractions in soil cultivated with Ilex paraguariensis, fol-
lowing successive applications of SM over a long period (> 40 years) in southern Brazil. Soil samples in the 0–5, 5–10 and 
20–40 cm layers were collected in areas subjected to 35 (A35) and 45 (A45) years of SM application and an area with no 
anthropogenic intervention (M). The content of organic and inorganic P in the soil samples was quantified by sequential 
extraction with  NaHCO3 0.5 mol  L−1 (labile),  H2SO4 (moderately labile), and NaOH 0.5 mol  L−1 (recalcitrant). The poten-
tial of P adsorption was assessed using the solution of  KH2PO4 which remained in contact with the soil for a night. Data 
were compared by Tukey test at 5% probability. The results showed that 35 and 45 years of successive SM application did 
not increase total P content in soil. In contrast, an increase in inorganic form of P was observed. In comparison to the forest 
area, SM application for 45 years increased the content of the labile inorganic P fraction by 168%, 162% and 290% in the 
0–5, 5–10 and 20–40 cm soil layers, respectively. The accumulation of this fraction promoted the reduction of P adsorption 
in soil by 99%, 180% and 175% in the 0–5, 5–10 and 20–40 cm soil layers, respectively, increasing the risk of contamination 
of groundwater by P excess.

Keywords Manure · Phosphorus fractionation · Organic phosphorus · Inorganic phosphorus · Adsorption · Environmental 
contamination

Introduction

Global pork production reached 118 million tons in 2017 
(FAO 2018), with an overall per capita consumption of 
12.3 kg of the product (FAO 2017). In 2026, global pork 
consumption is projected to grow by about 9% (FAO 2017), 
which will be accompanied by increased production (127 

million tons) and an increased volume of waste generated 
by production units.

About 27% of global contribution of pig production to 
greenhouse gas emissions is due to stock and handling waste 
this activity (FAO 2013). In addition, because of the reduced 
ability to produce the phytase enzyme seen in the monogas-
tric system of pigs, which is responsible for the assimilation 
of P contained in the feed, waste with high phosphorus (P) 
concentrations is produced (Abioye et al. 2010; Sun and Jaisi 
2018).

Brazil is the fourth largest producer of pork in the world. 
In 2017, the state of Santa Catarina alone (the largest Brazil-
ian producer) produced 27% (1 million tons) of all Brazilian 
pork (MAPA 2018). In this region, the manure produced 
by swine (swine manure, SM) is typically applied to soil 
for cultivation in rural properties to distribute the large vol-
ume of stored waste, which also has high organic matter and 
nutrient content of agricultural interest.
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SM application in soil is a common practice in the state 
of Santa Catarina where yerba mate (Ilex paraguariensis) 
is cultivated. This state is the largest national producer 
of pork and the second largest producer of yerba mate, 
with an estimated production of 28,853 tons of yerba 
mate (IBGE 2016). SM has been repeatedly applied over 
time, because SM application to crops totally or partially 
replaces the need for mineral fertilizers (Bosch-Serra et al. 
2015; Penha et al. 2015; Menezes et al. 2017; Moreno-Gar-
cia et al. 2017). This positive effect is due to an increase 
of P availability in the soil, among other characteristics, 
following successive SM application to crops (Guardini 
et al. 2012; Tiecher et al. 2017; Boitt et al. 2018).

Some studies have shown that most P content (> 80%) 
in SM are forms of inorganic phosphates with different 
degrees of solubility (Li et al. 2014; Tiecher et al. 2014; 
Wienhold and Miller 2004; Abioye et al. 2010). Li et al. 
(2014)  showed that 22% of total P content in SM occurs 
in the form of inorganic phosphate. This form is easily 
extracted with water (Pi-H2O); thus, it is highly available. 
Similarly, Abioye et al. (2010) estimated that the Pi–H2O 
fraction represents between 54 and 75% of total P content 
in SM.

In contrast to the positive effect of increased P avail-
ability on soil after applying SM, some studies have dem-
onstrated that the accumulation of highly labile P fractions 
in the soil increase the risk of contaminating groundwa-
ter (Guardini et al. 2012; Boitt et al. 2018). Tiecher et al. 
(2017) observed increases of 5.523% in available P content 
in the 0–5 cm soil layer, after 8 years of successive SM 
(80  m3 ha−1) application in a no-tillage system in southern 
Brazil. However, over time, the more labile fractions of 
P might be adsorbed into the mineral matrix of the soil, 
reducing its availability (Boitt et al. 2018) or converting 
it to little-known organic forms of P, forming a passive 
stock of mineralization and availability in the soil over 
time (Withers et al. 2018).

Estimates of the different forms of P that accumulate in 
soil following long-term (> 40 years) application of SM 
remain limited in the scientific literature. This study quan-
tified the distribution of organic and inorganic P content 
of different labilities (labile, moderately labile, recalcitrant 
and residual) and adsorption potential of P (remaining phos-
phorus) in soil cultivated with yerba mate in south Brazil 
after 35 and 45 years of successive SM application. It was 
hypothesized that (a) after 35 and 45 years of successive 
SM application, predominantly inorganic P content would 
accumulate in the soil, particularly the fraction with high 
lability (extracted with  NaHCO3 0.5 mol  L−1), (b) the soil 
adsorption potential of P would decline after successive SM 
application and (c) causes the accumulation of the inorganic 
P fraction of high lability in subsurface when compared to 
soil of reference forest.

Materials and methods

Study area and experimental design

This study was carried out in the upper Uruguay Catarin-
ense region, Municipality of Presidente Castello Branco 
(27°13′17″S, 51°48′40″W, altitude 452 m), in the state 
of Santa Catarina, in southern Brazil. The climate of 
the region, according to the Köppen–Geiger classifica-
tion, is humid subtropical (Cfa), with average tempera-
ture of 20.6 °C and average annual rainfall of 1711 mm 
(IPARDES 2019).

In 1973, a pilot study was initiated in an area called 
A45, to understand the effect of applying 400  m3 ha−1 SM 
each year to soil on which yerba mate was cultivated. The 
SM was obtained by each farming property to add value 
to the waste by transforming it to an input and promoting 
the circular economy. Ten years after initiating the study, 
yerba mate cultivation was started on a second area (A35), 
immediately adjacent to A45, also with the same amount 
of SM being applied as fertilizer each year. Physicochemi-
cal properties of SM (average of the last 35 years) were: 
dry matter 38 ± 15 kg m−3; total carbon 17 ± 7 kg m−3; total 
P 1.8 ± 0.5 kg m−3; total nitrogen 2.9 ± 1.1 kg m−3; total 
potassium 1.2 ± 0.3 kg m−3; total calcium 1.2 ± 0.3 kg m−3; 
total magnesium 0.86 ± 0.4 kg m−3; pH 7.4 ± 0.5; and elec-
tric conductivity (CE) 1.9 dS  m−1. A preserved forest area 
(M), adjacent to A45 and A35, was used as the experi-
mental control. In the first half of 2017, soil samples were 
collected in all the three areas to quantify how P accumu-
lates in the different fractions over time. The soils of the 
study areas were classified as Haplic Cambisol (Santos 
et al. 2018).

Sample collection and soil analysis

Each experimental area had dimensions of 50 m × 50 m, 
totaling 0.25 ha. In each area, five soil samples were ran-
domly collected from the 0–5, 5–10 and 20–40 cm soil 
layer to form a composite sample. From each area, four 
composite samples (replicates) were obtained, total-
ing eight samples per area (four composite samples × 2 
depths).

The composite samples were air-dried, crushed, and 
passed through a 2 mm mesh sieve and analyzed for pH 
 (H2O),  Ca2+,  Mg2+,  Al3+,  Na+,  K+, H + Al, available P 
(Mehlich-1), organic carbon (OC), and granulometry 
(sand, silt, and clay content), according to the procedures 
proposed by Donagema et al. (2011). The characteristics 
of the soil are shown in Table 1.
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Phosphorus fractionation

Several analytical methods for sequential extraction of P 
in soil are available in the scientific literature (Dean 1937; 
Chang and Jackson 1957; Hedley et al. 1982). These meth-
ods use extracting solutions of different compositions and 
extraction capacities to obtain soil P fractions with differ-
ent degrees of lability. The most used method worldwide 
is that of Hedley et al. (1982). However, the methodology 
proposed by Bowman (1989) has been widely used for its 
simplicity, speed and precision of results (Beutler et al. 
2015; Bezerra et al. 2015; Guareschi et al. 2015,2016; 
Rosset et al. 2016; Rossi et al. 2016).

We follow the procedures proposed by Bowman (1989) as 
follows: soil organic and inorganic phosphorus was extracted 
sequentially with  NaHCO3 0.5 mol  L−1 (labile),  H2SO4 
(moderately labile), and NaOH 0.5 mol  L−1 (recalcitrant). 
For each extractor, the sample was digested with perchloric 
acid and magnesium chloride to obtain the total P content 
of the extract. The inorganic fraction of each extractor was 
obtained by colorimetry (Murphy and Hiley 1962). The 
organic fraction of each extractor was obtained by the differ-
ence between the total P content and the inorganic fraction. 
After the sequential extraction, we quantified the P content 
in residual soil (Residual P) by digestion, using perchloric 
acid and magnesium chloride and determination by color-
imetry (Murphy and Hiley 1962). The total P content of the 
soil was obtained by adding the total content of P obtained 
in each extractor to the residual P content.

Phosphorus adsorption

The remaining P of the soil was quantified according 
to Alvarez and Fonseca (1990) using 20 mL of 0.01 mol 

 L−1  CaCl2 solution containing 60 mg of P in the form of 
 KH2PO4, which remained in contact with the soil for one 
night. After this period, we removed an aliquot of the super-
natant solution for remaining P quantification in the extract 
by colorimetry. The difference between the initial P content 
(60 mg kg−1) and the remaining P content was adsorbed by 
the soil mineral matrix.

Statistical analysis

Statistical analysis was performed considering a completely 
randomized design in split plot arrangement. The plots (main 
factor) were composed by the three areas (A45, A35 and M) 
and the subplots (secondary factor) were composed by the 
three sampling depths (0–5, 5–10 e 20–40 cm). The split plot 
arrangement allows us to infer about the interaction between 
areas versus depths. Data were subjected to analysis of vari-
ance (ANOVA) and residues were checked for normality 
(Bartlett’s test) and homogeneity of variances (Cochran’s 
test). The averages of main treatments (areas), secondary 
treatments (depths) and their interactions (areas × depths) 
were compared by Tukey test at 5% significance. The analy-
ses were performed in the software R (R Core Team 2018), 
using the package EasyAnova (Arnhold 2013).

Results and discussion

Analysis of variance

The ANOVA indicated a reduced effect of the main treat-
ments (areas) on the results. However, among the second-
ary treatments (depths), the variability of the results was 
more pronounced. Moreover, the interaction between major 

Table 1  Soil chemical and 
granulometric analysis of the 
studied areas

A45 area with 45 years of consecutive application of SM, A35 area with 35 years of consecutive application 
of SM, M native forest area used as a reference

Areas pHwater Ca2+ Mg2+ K+ H + Al Al3+ Sand Silt Clay Available P OC
cmolc  dm−3 g  kg−1 mg kg−1 g kg−1

0–5 cm
 A45 5.1 3.3 2.0 0.2 9.5 0.8 197 408 395 5.8 22
 A35 4.5 1.5 0.7 0.3 7.2 0.9 159 291 550 5.5 20
 M 5.3 5.8 2.6 0.1 7.1 0.2 290 38 328 6 25

5–10 cm
 A45 4.9 2.5 0.9 0.1 8.5 0.4 217 343 441 5.4 21
 A35 4.4 1.4 0.9 0.1 12.7 1.0 146 275 579 5.5 19
 M 5.4 5.2 2.8 0.1 7.8 0.2 331 328 341 6 24

20–40 cm
 A45 4.8 2.2 0.7 0.1 8.2 0.4 217 343 441 5.4 19
 A35 4.3 1.2 0.8 0.1 10.7 1.0 146 275 579 5.5 17
 M 5.3 5.1 2.5 0.1 6.8 0.2 331 328 341 6 23
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and secondary factors was not significant for most of the 
variables studied. Only the recalcitrant organic P fraction 
(p = 0.0310), total organic P (p = 0.0376) and the remain-
ing P (p < 0.0001) showed significant interaction (areas x 
depths). This means that the effects of the areas for these 
variables act depending on the variation of the sampling 
depth (Table 2).

Normally, recalcitrant organic forms of P are associated 
with stable fractions of soil organic matter (SOM) and are 
indirectly influenced by sampling depth due to the direct 
effect of depth on SOM accumulation along the profile 
(Gonzalez Jimenez et al. 2019). Similarly, P adsorption, 
measured by the remaining P content, is highly dependent 
on the sampling depth due to the depth variation of avail-
able P levels (Bom et al. 2019) and SOM content, affect-
ing the anion exchange potential between phosphate ions 
and the soil mineral matrix (Gonzalez Jimenez et al. 2019; 
Lemming et al. 2019). Separately, considering the variance 
between areas, we observed significant variance only for the 
inorganic labile P (p = 0.0126), inorganic moderately labile 
P (p = 0.0030) and total P content (p = 0.0497). Between 
depths, however, significant variance was observed for the 
inorganic moderately labile P (p = 0.0216), recalcitrant 
organic P (p = 0.0120), total organic P (p = 0.0124), total P 
(p = 0.0161) and remaining P (p = 0.0252).

Total soil P content

Total soil P values ranged from 1223 (20–40 cm layer in 
A35) to 2465 mg kg−1 (0–5 cm layer in M) (Fig. 1). Compar-
ing the two soils submitted to the application of SM (A45 
and A35) against natural soil (M) showed that the successive 
application of SM did not cause total P content in the soil to 
increase at all the depths evaluated (Fig. 1a). In the compari-
son between A35 and A45, only at a depth of 5–10 cm the 
application of SM for 45 years was statistically superior to 
the treatment submitted to the application of SM for 35 years 
(p < 0.05). These results differ to those reported in other 
similar studies (De Conti et al. 2015; Tiecher et al. 2017; 
Yan et al. 2017; Boitt et al. 2018; Rigo et al. 2019), which 
documented an increase in the P content of soil after suc-
cessive applications of SM, regardless of experimental soil 
type. Statistical analysis between the three sampling depths 
inside the same area showed variation with increasing depth 
(from 5 to 40 cm) (p < 0.05), reducing by 38% of the total 
P content in cultivated areas (A45 and A35) and remained 
constant in the treatment without anthropic intervention (M) 
(p = 0.1250) (Fig. 1b).

Normally, forest soils without anthropic activity tend 
to maintain a balance between the inputs (leaves and dead 
roots) and outputs (plant absorption and leaching) of P, 
resulting in high values of total P in the soil (Missong 
et al. 2018; Zederer and Talkner 2018). First, the removal 

Table 2  Analysis of variance of P fractions (inorganic and organic) 
and remaining P in soil subjected to swine manure application for 
45 and 35 years versus the native reference forest at three sampling 
depths in southern Brazil

Source of variation with P value < 0.05 have statistically different 
averages according to the F test

Source of variation F value P value

Total P
Areas 4.2699 0.0497
Depths 5.2346 0.0161
Areas × depths 1.0180 0.4244

Inorganic labile P
Areas 7.6303 0.0126
Depths 2.0767 0.1543
Areas × depths 1.1245 0.3760

Moderately labile inorganic P
Areas 11.8376 0.0030
Depths 4.7790 0.0216
Areas × depths 0.9610 0.4526

Recalcitrant inorganic P
Areas 0.6035 0.5676
Depths 1.0018 0.3868
Areas × depths 0.2727 0.8917

Total inorganic P
Areas 2.9317 0.1046
Depths 1.3173 0.2925
Areas × depths 0.3443 0.8444

Labile organic P
Areas 0.7594 0.4957
Depths 1.5982 0.2297
Areas × depths 0.7775 0.5541

Moderately labile organic P
Areas 4.0470 0.0558
Depths 1.5628 0.2367
Areas × depths 2.7020 0.0635

Recalcitrant organic P
Areas 0.9003 0.4401
Depths 5.7058 0.0120
Areas × depths 3.3936 0.0310

Total organic P
Areas 0.9364 0.4271
Depths 5.6575 0.0124
Areas × depths 3.2031 0.0376

Residual P
Areas 0.6797 0.5310
Depths 2.6050 0.1015
Areas × depths 0.2746 0.8905

Remaining P
Areas 1.0168 0.3998
Depths 4.5466 0.0252
Areas × depths 66.3733  < 0.0001
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of natural vegetation for implantation of agricultural crops 
tends to reduce the total P content in soil, due to an intensi-
fication of the mineralization processes (Oliveira Filho et al. 
2017), leaching (Missong et al. 2018) and removal of the soil 
layer by erosive processes (Lourenzi et al. 2015). Second, it 
is expected that the application of SM to the soil increase the 
total P content (Tiecher et al. 2017). In our case, however, 
only the total P content in the 5–10 cm layer of the A45 
area reached the total P level of the natural soil condition. 
This indicates an intense mineralization process of the added 
waste, with constant extraction of P from the soil by crops 
or lost by leaching and/or runoff.

Statistical analysis between the three areas indicated a 
significant reduction (p < 0.05) in total P content in A35 
when compared with A45 and M in the 5–10 cm layer. Thus, 
P content increased to reflect that of the natural conditions 
only after 45 years of SM application. This phenomenon 
might be explained by the effect of considerable quanti-
ties of P being removed by the harvests. In the studied crop 
type, a large part of the aerial biomass, represented by leaves 
and thin branches, is removed by harvesting, resulting in 
10.2 kg ha−1 of P being exported from the soil (Santin et al. 
2017). In contrast, in the superficial (0–5 cm) and in the deep 
(20–40 cm) soil layers, 10 years difference in SM applica-
tion between the two areas was not sufficient to modify the 
total P content.

Under natural conditions (M), there was an equal split 
(50/50%) between inorganic (Pi) and organic (Po) forms, 
with organic content decreasing in the subsurface soil layer, 
whereas the inorganic fraction increased (Fig. 2). In com-
parison, after 35 years of SM application, only the mid-
dle layer (5–10 cm) contains more organic than inorganic 
P. After 45 years, the inorganic fraction of P was slightly 

higher in the superficial layer (0–5 cm) and in the subsurface 
layer (20–40 cm). The higher accumulations of inorganic 
P in these layers may be indicative that: (1) in the superfi-
cial layer it caused the partial mineralization of the organic 
fraction forming inorganic P (Mackay et al. 2017; Turrion 
et al. 2018; Ye et al. 2015) and (2) in the subsurface layer it 
caused the accumulation of inorganic P translocated from 
the upper layers (Giroto et al. 2013; Aronsson et al. 2014; 
Lourenzi et al. 2014).

Inorganic P fractions

The higher P inorganic fraction in the soil surface layer 
(0–5 cm) after 45 years of SM application was partly due 
to the higher accumulation of the highly labile Pi fraction 

Fig. 1  Total phosphorus (Total P) of soil subjected to swine manure 
application for 45 (A45) and 35 (A35) years versus the native refer-
ence forest (M; control) at three sampling depths in southern Brazil. 
Averages followed by the same letters when comparing the three 
areas (a) and averages followed by the same letters when comparing 

the three depths inside the same area (b) are considered similar by 
the Tukey test at 5% significance. Each value represents the average, 
and the error bar in A represents the standard deviation of the average 
(n = 4)

Fig. 2  Organic and inorganic phosphorus content of soil in areas cul-
tivated with yerba mate and subjected to swine manure application 
for 45 (A45) and 35 (A35) years versus a native reference forest (M) 
in southern Brazil. Averages followed by the same letters in the com-
parisons are considered similar by the Tukey test at 5% significance. 
Each value represents the average, and the error bar represents the 
standard deviation of the average (n = 4)
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 (NaHCO3 0.5 mol L  − 1) (Fig. 3a). Statistical analysis 
indicated significant difference (p < 0.05) in the accumu-
lation of this fraction in A45 when compared with A35 
and M. This increase in A45 was 406% and 168% greater 
than that in A35 and M, respectively. Similar results were 
obtained by Tiecher et al. (2017) and Boitt et al. (2018) 
in agricultural systems subjected to SM for eight and fif-
teen years, respectively. A significant proportion of total 
P content of SM occurs in highly labile forms (Abioye 
et al. 2010; Li et al. 2014). According to Oliveira Filho 
et al. (2019), approximately 50% of the total P content of 
SM is in highly water soluble forms. Thus, the application 
of SM in agriculture contributes positively to an increase 
in the labile fraction of inorganic P in the soil. Moreover, 
analyzing the effect of the depth factor on labile inorganic 
P content (Fig. 3b), we observed that only A45 showed 

significant difference (p < 0.05), with reduced content with 
increasing sample depth.

According to Dechmi et al. (2013) and Boitt et al. (2018), 
the accumulation of the most labile inorganic fraction of 
P in soil after the application of SM may mean the risk of 
contamination of the groundwater by excess of P. This con-
tamination occurs basically by the leaching of inorganic 
phosphate to the deeper layers of the soil and is dependent 
on the volume of drainage water that passes through the soil 
profile after the application of SM (Lourenzi et al. 2015). 
According to Aronsson et al. (2014), only three monthly 
applications of SM (13 kg P  ha−1) in soil cultivated with 
spring cereals promoted the accumulation of 0.16 kg ha−1 
of soluble P in the leaching water. Logically, the effect of 
groundwater contamination should be greater as SM applica-
tion time increases (Yang et al. 2017).

Fig. 3  Fractions of inorganic phosphorus in soil cultivated with yerba 
mate subjected to SM application for 45 (A45) and 35 (A35) years 
versus a native reference forest (M) in southern Brazil. Averages fol-
lowed by the same letters in the comparisons of areas (a) and aver-

ages followed by the same letters when comparing the three depths 
inside the same area (b) are considered similar by the Tukey test at 
5% significance. Each value represents the average, and the error bar 
in A represents the standard deviation of the average (n = 4)
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Thirty-five years of SM application was not sufficient 
for labile Pi to reach the same levels as that under natural 
conditions in the 0–5 cm layer. Statistically, the labile inor-
ganic P content in A35 and M in this soil layer is similar 
(p = 0.2430). Much of the labile Pi added to the soil sur-
face via SM during the 35 years was probably absorbed by 
the plants (Santin et al. 2017) or interacted with the min-
eral matrix of the soil, limiting the available P fractions 
(Withers et  al. 2018). However, continued application 
(45 years), probably saturated the P adsorption sites of the 
soil (iron and aluminum oxides), reducing adsorption and 
promoting the permanence of phosphate in its more avail-
able form, supporting the proposal of Frank et al. (2018).

In the layers of 5–10 and 20–40 cm, statistical analysis 
results showed significant differences in labile inorganic P 
content between areas submitted to SM application (A45 e 
A35) and M, with the DS application areas showing higher 
accumulations of this fraction of P. In the 5–10 cm layer, 
the A45 area showed labile inorganic P values 2.6 times 
higher than in the reference. In the A35 area this accumu-
lation was approximately 2 times greater. In the 20–40 cm 
layer, the accumulation of the most labile inorganic frac-
tion of P was 4 times (A45) and 2.7 times (A35) higher 
than the value observed in the same layer of the reference 
area. These characteristics indicate a possible vertical 
movement of the most labile inorganic fraction of P in the 
soil, as proposed by Lourenzi et al. (2014) and Aronsson 
et al. (2014). In addition, the high content of N in SM 
promotes greater mobility and leaching of the phosphate 
ion in the soil profile (Yan et al. 2016), increasing the risk 
of contamination of groundwater by excess of P.

In general, in both the surface and subsurface layers, the 
fractions of moderately labile and recalcitrant inorganic 
P decreased following 35 years of SM application, but 
returned to values close to natural conditions after 45 years 
of SM application. Statistical analysis showed a signifi-
cant difference for the most stable inorganic fractions of 
P between A35 and M, proving the tendency to return to 
the initial levels found in M of these fractions in the soil 
with the continued application of SM. The depth factor 
(Fig. 3b) seems to have little effect on the accumulation 
of moderately labile and recalcitrant inorganic P fractions, 
with little statistical variation due to the increase in sam-
pling depth. These fractions require a longer period of 
time to form because they are associated with P forms 
bound to high stability secondary minerals, which serve as 
buffers to maintain adequate levels of labile Pi in the soil 
solution (Oliveira Filho et al. 2017; Weihrauch and Opp 
2018). Certainly, the buffering effect was more evident in 
the moderately labile P fraction (extracted with  H2SO4) 
compared to the more recalcitrant P fraction (extracted 
with NaOH 0.1 mol  L−1). The former was consumed more 

quickly by becoming Pi labile, resulting in its content 
being lost with successive crops (Rossi et al. 2016).

Organic P fractions and residual P

The organic fraction of highly labile P (obtained with 
 NaHCO3 0.5 mol  L−1 extraction) represents a source of 
organic P that mineralizes quickly and is available in a short 
period of time (Weihrauch and Opp 2018). In this fraction, 
is included the P of the microbial biomass, which repre-
sents the immediate source of labile P of  the plants after 
the death of the microorganisms (Zhang et al. 2018). In the 
soil surface layer (0–5 cm) of the studied areas, statistical 
analysis indicated significant difference for labile organic P 
content between A45 and A35 (p < 0.05), between A35 and 
M (p < 0.0001) and between A45 and M (p < 0.05). This 
fraction was higher in the area with 35 years of SM applica-
tion (134.8 mg kg−1) and lower in the area with 45 years 
of SM application (46.1 mg kg−1) and in the natural forest 
(23.9 mg kg−1) (Fig. 4a). Therefore, the accumulation of 
organic labile P following SM application (35 years) allows 
this fraction to be mineralized for inorganic P-labile. This 
phenomenon explains the greater accumulation of labile 
inorganic P in A45 versus A35 observed in Fig. 3. For this 
fraction, the depth factor showed a significant difference 
(p < 0.05) only for area A35, with content reduction with 
increasing sampling depth (Fig. 4b).

According to Zhao et al. (2019), the accumulation of the 
labile organic P fraction in the soil surface layer is due to 
reduced activity of the phosphomonoesterase enzyme, which 
has the function of catalyzing the transformation of organic 
P to inorganic P. It is probable that with increasing time of 
SM application, the soil microbial demand for the formation 
of stable organic matter (humic substances) promoted the 
mineralization of the labile organic P associated with the 
labile fractions of organic matter in the soil. This promoted 
the increase of the fraction of P of high lability in the super-
ficial layer after 45 years of the SM application (Tian et al. 
2016; Wang et al. 2016).

In the subsurface soil layer, SM application had no effect 
on labile organic P content after 35 (p = 0.2245) and 45 years 
(p = 0.3998). The effects of SM application on labile organic 
P were more evident in the surface soil layer. For the more 
stable organic fractions (moderately labile and recalcitrant), 
the area with no intervention consistently had greater or 
equal P content in the surface soil layer when compared 
to the soils where SM was applied. In this case, the depth 
factor was significant only for the recalcitrant organic P frac-
tion in A35 (p < 0.05), reducing its content with increasing 
sampling depth (Fig. 4b). According to our results, we found 
that the soil organic fractions of P varied in less intensity 
when compared to the inorganic fractions of the nutrient as 
a function of different land use systems.
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The crop caused the more stable P organic fractions 
(moderately labile and recalcitrant) to decline in most layers 
of the soil, except for the 5–10 cm layer in moderately labile 
fraction. Consequently, successive SM application was not 
sufficient to replace these fractions to initial levels. These 
fractions represent forms of P associated with organic matter 
stabilized in the soil, which form part of recalcitrant humic 
structures (Spain et al. 2018). These structures may be lost 
in long periods of cultivation (Rossi et al. 2016). Similarly, 
this phenomenon explains the higher residual P content in 
the forest area when compared to the cultivated areas with 
SM application in the 0–5 and 5–10 cm soil layers (Fig. 5a).

In the 20–40 cm layer, however, no statistical differ-
ences were observed in the content of the residual P frac-
tion among the three evaluated areas (p = 0.3543), indicating 

that in this depth, the content of this fraction did not change 
under the effects of the vegetation removal to the crop and 
the SM application over time. For the depth factor, however, 
the residual P content in M showed a significant difference 
with increasing depth (from 5 to 40 cm), reducing the con-
tent of this fraction and statistically equaling the other areas 
(Fig. 5b).

The residual P fraction is formed by highly resistant 
organic and inorganic P forms, which cannot be extracted 
with conventional approaches. In general, these forms rep-
resent phosphates that are strongly associated with organic 
matter stabilized in the soil, as well as inorganic phosphates 
forming part of the mineral structure of the soil, which 
requires great energy for extraction (Spain et  al. 2018; 
Weihrauch and Opp 2018; Lemming et al. 2019). Like the 

Fig. 4  Fractions of organic phosphorus in soil cultivated with yerba 
mate subjected to SM application for 45 (A45) and 35 (A35) years 
versus a native reference forest (M) in southern Brazil. Averages fol-
lowed by the same letters in the comparisons of areas (a) and aver-

ages followed by the same letters when comparing the three depths 
inside the same area (b) are considered similar by the Tukey test at 
5% significance. Each value represents the average, and the error bar 
in A represents the standard deviation of the average (n = 4)
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other more stable fractions in the superficial soil layers, this 
fraction was lost from the soil under cultivation, with 45 and 
35 years of SM application not being sufficient for the new 
formation of this P fraction. However, it is possible that the 
recurrent addition of labile P through SM application on the 
soil surface inhibits the formation of stabilized organic mat-
ter containing P, due to the increase of SOM mineralization 
(priming effect) leading to the release of inorganic P (Liu 
et al. 2017; Ma et al. 2013).

Soil P adsorption

As observed in Fig. 3, forty-five years of SM application 
promotes the accumulation of the more labile Pi fraction. 
This results in reducing the adsorption sites of the phos-
phate with the mineral matrix of the soil. This phenomenon 

increased the values of remaining P and reduced the effec-
tive adsorption of ion phosphate with the mineral matrix of 
P in the soil (Fig. 6a, b). Remaining P values are inversely 
proportional to soil P adsorption. Thus, high remaining P 
values indicate reduced P adsorption capacity by the soil 
mineral matrix. Schmieder et al. (2018) estimated that 76% 
of soil inorganic P in soils subjected to SM application for 
40 years was associated with iron and aluminum oxide sur-
faces, promoting the saturation of these sites. After satu-
ration, Boitt et al. (2018) estimated a loss of 6–38% P to 
the groundwater from the total P applied via SM. This loss 
might lead to high risk of environmental contamination by 
the vertical movement of phosphate ions in the soil profile.

Our results clearly showed that P adsorption was lower 
(higher remaining P value) in all layers of A45 compared to 
the other areas. Thus, inorganic P might shift deeper into the 

Fig. 5  Residual phosphorus in soil cultivated with yerba mate and 
subjected to SM application for 45 (A45) and 35 years (A35) versus 
the native reference forest (M) in southern Brazil. Averages followed 
by the same letters in the comparisons of areas (a) and averages fol-

lowed by the same letters when comparing the three depths inside the 
same area (b) are considered similar by the Tukey test at 5% signifi-
cance. Each value represents the average, and the error bar in A rep-
resents the standard deviation of the average (n = 4)

Fig. 6  Remaining phosphorus in soil cultivated with yerba mate and 
subjected to SM application for 45 (A45) and 35 years (A35) versus 
the native reference forest (M) in southern Brazil. Averages followed 
by the same letters in the comparisons of areas (a) and averages fol-

lowed by the same letters when comparing the three depths inside the 
same area (b) are considered similar by the Tukey test at 5% signifi-
cance. Each value represents the average, and the error bar in A rep-
resents the standard deviation of the average (n = 4)
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soil layer, even though it is considered to have low mobility 
in soils (da Rosa Couto et al. 2017). Of note, the area with-
out anthropogenic intervention had the lowest levels of labile 
inorganic P and contributed to higher adsorption values (low 
remaining P), both in the surface and subsurface soil layers, 
indicating the inversely proportional relationship between 
labile inorganic P content and P adsorption potential by the 
soil mineral matrix.

Conclusions

Sequential extraction of P content in soil is important as it 
provides detailed information on the dynamics of the various 
forms (organic and inorganic) of P accumulation in soil. As 
presented in this work, the quantification of the total soil P 
content alone does not provide evidence of the potential for 
soil contamination by P excess. Currently, there is a great 
concern about the eutrophication of surface and groundwa-
ter by the excess of labile inorganic P, with great potential 
for mobility and solubility. Our results confirm that in the 
areas submitted to the application of the SM, a considerable 
increase in this fraction was observed. Basically, the more 
labile inorganic P fraction (extracted with  NaHCO3 0.5 mol 
 L−1) increased. We observed the accumulation of the most 
labile inorganic P fraction in the deepest layers of the profile 
in the area submitted to 45 years of SM application. This 
may be indicative of the vertical movement of P in the soil 
profile. The accumulation of this fraction promoted the satu-
ration of P adsorption sites in the mineral matrix of the soil, 
as indicated by the higher values of remaining P observed 
in the cultivated areas with SM application. The increase 
in the labile inorganic fraction, which was associated with 
reduced adsorption, might present a risk of environmental 
contamination to groundwater, due to the accumulation of 
P in the environment.
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