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Abstract
One of the important issues in identifying susceptible landslide locations is to select effective factors in the landslide of 
studied areas. The complexity of this issue is due to the fact that each of the factors is a part of the desired criteria, and the 
selection among them is a multi-criteria decision-making problem, requiring a structured and systematic approach. In the 
study area, the presence of large outcrops, as well as relatively thick soils formed on the formations, has caused a significant 
level of the province to potentially have the conditions for the movement of the tides. In addition, the situation is exacerbated 
by inappropriate use of natural resources, and construction of numerous rural and forest roads. In this paper, multi-criteria 
decision-making (MCDM) such as the fuzzy analytical hierarchy process (FAHP) and Dempster–Shafer (DeS) method was 
used to detect susceptible landslide locations, and output maps were verified applying the prediction–area (P–A) method for 
landslide purposes. The study has utilized P–A plot to evaluate and compare the obtained results of FAHP and DeS meth-
ods. The results indicated that the normalized density value achieved from P–A plots was significantly higher for the FAHP 
than the corresponding value for the DeS. In other words, FAHP, compared to DeS, resulted in the successful detection of 
landslide occurrences and more accurate classification of the study area.

Keywords  Landslide · Dempster–Shafer · Fuzzy method · Prediction area plot

Introduction

A landslide is defined as an event in which a mass of earth 
or rock slides down from a mountain due to sudden changes 
in natural conditions (Lee et al. 2018). Dislodging billions 
of tons of soil and rock annually, landslides are one of the 
natural hazards that rank the highest next to earthquakes 
and floods in terms of the damage they cause. The growth 
of population and the development of cities in mountain-
ous areas make it necessary to recognize and mitigate the 
risks of this natural phenomenon (Youssef et al. 2016; Sun 
et al. 2018). A landslide results from the integrated and 

rapid movement of sedimentary materials along hillsides. 
The speed and extent of the incident may be so high as to 
simultaneously affect even tens or hundreds of thousands 
of cubic meters of rock and soil, which often brings about 
disastrous consequences. This natural phenomenon¸ having 
occurred throughout geological ages and periods, accounts 
for a part of the deformation of the earth’s surface (Zhao 
et al. 2018; Firomsa and Abay 2018).

Considering the adverse effects of landslides on natural 
resources and rural/urban residential areas as well as the 
erosion of significant volumes of soil, it seems warranted to 
develop controlling and inhibiting methods, detect or zonate 
potential lands, and predict landslide occurrences to avoid 
or diminish the potential risks (Shirani et al. 2018). Accord-
ingly, various methods have been developed, such as the 
multi-criteria decision-making (MCDM) method. In this 
method, rather than a single optimal evaluation criterion, 
several criteria are used.

An MCDM version is the fuzzy method, in which Buck-
ley (1985) used fuzzy numbers to express a decision-mak-
er’s evaluation of various criteria for each decision. Chang 
(1996) used triangular fuzzy numbers to introduce a new 
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technique for pairwise comparisons. Triantaphyllou and 
Lin (1996) proposed the fuzzy multiple-decision technique 
based on hierarchical analysis and a model of coefficients. 
That technique was the closest to the ideal one. Deng (1999) 
introduced a simple fuzzy method to solve the problems 
associated with the analysis of multiple qualitative criteria. 
Chou and Liang (2001) presented a fuzzy multivariate deci-
sion-making model by integrating the fuzzy theory, AHP 
and entropy concepts to assess the performance of shipping 
companies. To evaluate the performance of airports, Chang 
et al (2003) selected the desired criteria using traditional 
statistical methods. They also used FAHP to determine the 
weight of the mentioned criteria and applied the TOPSIS 
technique to rank the airports based on their performance. 
Tang and Beynon (2005) used the FAHP method in a study 
to choose a race car acceptable to a car hire company. Ayas 
and Ozdemir (2006) presented an intelligent technique based 
on this method to investigate alternatives to machines. First, 
they used this method to weigh alternatives. Then they ana-
lyzed the head-to-head points. Another technique based on 
FAHP and the balanced assessment of the IT sector was 
introduced by Lee et al. (2008) for the Taiwanese manu-
facturing industry. Ertugrul and Karakasoglu (2009) used 
FAHP to evaluate the performance of Turkish cement 
companies.

Another way of multi-criteria decision-making is the 
Dempster–Shafer (DeS) technique introduced by Dempster 
(1967) and developed by Shafer (1976). The technique is 
associated with the Bayesian probability theory with that it 
transacts subjective beliefs. Therefore, DeS subsumes the 
Bayesian probability theory as a specific case which is not 
able to transact ignorance. It has extensively been applied 
in many different fields including artificial intelligence, 
expert systems, pattern recognition, information fusion, 
risk assessment, and multiple-attribute decision analysis 
(Enea and Salemi 2001; Beynon et al. 2000; Beynon 2002; 
Althuwaynee et al. 2012; Tang 2015; Mezaal 2017; Shirani 
et al. 2018).

In the present research, the major geological factors that 
were of effect on the occurrence of landslides in the study 
area included large outcrops and slip-sensitive formations 
(e.g., Gizan schists, Shemshak formation, Khoshyyalagh 
formation, and Les Quaternaries) and relatively thick soils 
formed on those formations (Mohammady et al. 2012). 
Therefore, the landslide susceptibility map was evaluated 
based on the Fuzzy Analytic Hierarchy Process and the DeS 
theory. These two were chosen because they could deal with 
multiple decision-making problems and heterogeneous data 
types. FAHP was used to rate the evaluation criteria for land-
slide susceptibility in the fuzzy space. The DeS theory was 
used as it could deal with the ignored or missing informa-
tion, which is very likely to occur.

The goal of the study was set to be the introduction and 
utilization of a P–A plot to assess the FAHP and DeS meth-
ods comparatively. This could verify the prediction capabil-
ity of those methods and quantify their output uncertainty. 
The advantage of this approach is the non-interference of 
expert opinions to evaluate and compare the applied meth-
ods. The outputs of the methods were, thus, objectively 
evaluated by means of the P–A plot.

Study area

The study area is located at a north latitude of 36° 50′ and 
east longitude of 54° 25′. The province is bounded in the 
north by Turkmenistan country, in the south by Semnan 
province, in the east by the northern Khorasan, and in the 
west by the Caspian Sea and Mazandaran (Mohammady 
et al. 2012). Golestan province with an area of 2043.74 Km2, 
occupies 1.3% of the country’s total area. Its center is Gor-
gan city with the area of 24.96 Km2. In terms of topography, 
the slope of the area is downward, and the groundwater flows 
from south to north. The average slope is 4%, and the two 
rivers flow through it (Fonooni 1989). Figures 1 and 2 depict 
the location of the study area in Iran and its geological map, 
respectively (Table 1).  

Fig. 1   Location of the study area in Iran
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Methodology

Humans have always been subjected to choosing and deci-
sion-making. Decisions include the correct expression of 
objectives, determination of different and possible solutions 
and their feasibility assessment, evaluation of the conse-
quences and results of the implementation of each solution, 
and finally selection and execution. In most cases, decisions 
are favorable for the decision-maker when they are examined 
based on quantitative or qualitative multi-criteria. In multi-
criteria decision-making (MCDM) approaches employed 
in recent decades, a multi-criteria measure is used rather 
than a single-criterion optimization measure (Pohekar and 
Ramachandran 2004).

One of the MCDM techniques is the FAHP method, 
which is based on the concept of the fuzzy theory. The pro-
cess of fuzzy hierarchy analysis extends the AHP approach 
by merging it with the fuzzy set theory. In a fuzzy AHP, 
after creating a hierarchical structure for a problem, fuzzy 
relative scales are used to indicate the relative importance 
of the factors corresponding to the criteria. In this way, a 
fuzzy judgment matrix is yielded, and the final scores of the 
options are presented in fuzzy numbers, offering the optimal 
option obtained through fuzzy number ranking using certain 
algebraic operators (Ho et al. 2010).

Other MCDM techniques were developed based on the 
DeS theory. This theory, a development of the Bayesian 

theory of subjective probability, is identified as the theory 
of belief functions. While the Bayesian theory needs prob-
abilities for each query of interest, belief functions permit 
us to base degrees of belief for one query on probabilities 
of an associated query. These degrees of belief may or may 
not have the mathematical characteristics of probabilities, 
depending on how closely the two queries are related. The 
theory attracted scholars’ attention in the early 1980s when 
the scholars were attempting to incorporate the probability 
theory into critic systems. Previous research has indicated 
that managing uncertainty intrinsically needs more struc-
ture than is available in simple rule-based systems. However, 
the DeS theory has remained attractive due to its relative 
flexibility. This theory is based on two ideas: (1) obtaining 
degrees of belief for one query from subjective probabilities 
of an associated query, and (2) the Dempster’s rule for merg-
ing such degrees of belief when they are based on independ-
ent pieces of evidence (Dempster 1967; Shafer 1976; Tang, 
2015).

As indicated in the flowchart (Fig. 3), the research con-
sists of five stages as follows:

(1)	 Collecting the data on eight features including Aster 
DEM, roads, faults, stream networks, Corine land 
cover, geological maps, precipitation and temperature.

Fig. 2   Geological map of Golestan province
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(2)	 Testing the conditional independence of the landslide 
conditioning factors by overlaying every factor map on 
the landslide inventory map.

(3)	 Testing the multi-collinearity among the data.
(4)	 Providing weighted maps by means of the DeS and 

FAHP models.
(5)	 Applying P–A plots to validate and assess the two mod-

els comparatively.

Mass function is defined by the DeS theory as the rela-
tionship between input conditioning factors and the known 
landslides. In this study, susceptible and non-susceptible 
regions are distinguished by the mass function which is cal-
culated by applying susceptibility analysis and likelihood 
ratio functions. The ratio of susceptible and non-susceptible 
regions can focus on their contrast. Layers are elected such 
as evidence Ei (i = 1, 2, …, l) for proposed target TP that 

Table 1   Types of geological formation in the study area

Class Age–era Description

II Paleozoic Dark grey to black fossiliferous limestone with subordinate black shale (MOBARAK FM)
III Paleozoic light red to white, thick-bedded quartz arenite with dolomite intercalations and gypsum (PADEHA FM)

Mesozoic Grey thick-bedded limestone and dolomite (MOZDURAN FM)
Paleozoic Andesitic basaltic volcanic
Mesozoic Thick-bedded dolomite

IV Paleozoic Dark red medium-grained arkosic to subarkosic sandstone and micaceous siltstone ( LALUN FM)
Mesozoic Light grey, thin-bedded to massive limestone (LAR FM)

Conglomerate
Cretaceous rocks in general
Lower Cretaceous, undifferentiated rocks
Upper Cretaceous, undifferentiated rocks

Paleozoic Dark grey medium-bedded to massive limestone (RUTEH LIMESTONE)
Undifferentiated lower Paleozoic rocks

IX Cenozoic Stream channel, braided channel and flood plain deposits
Swamp

V Paleozoic Yellowish, thin- to thick-bedded, fossiliferous argillaceous limestone, dark grey limestone, greenish marl and shale, 
locally including gypsum

Proterozoic Late Proterozoic–early Cambrian undifferentiated rocks
Cenozoic Olive green shale and sandstone (KHANGIRAN FM)
Proterozoic Low-grade, regional metamorphic rocks (Green Schist Facies)
Paleozoic Red sandstone and shale with subordinate sandy limestone (DORUD FM)

Greenish grey shale, sandstone, sandy lime, coral limestone and dolomite (NIUR FOR)
Mesozoic Thick-bedded grey oolitic limestone; thin, platy, yellow to pinkish shale limestone with worm tracks and well- to 

thick-bedded dolomite and dolomitic limestone (ELIKAH FM)
VI Cenozoic Marl, gypsiferous marl and limestone

Mesozoic Well- to thin-bedded, greenish-grey argillaceous limestone with intercalations of calcareous shale (DALICHAI FM)
Dark grey shale and sandstone (SHEMSHAK FM)
Undifferentiated units including argillaceous limestone, marl and shale
Olive green glauconitic sandstone and shale ( AITAMIR FM)
Grey to block shale and thin layers of siltstone and sandstone ( SANGANEH FM)
Ammonite-bearing shale interacting with orbit Olin limestone ( SARCHESHMEH FM)

Cenozoic Polymathic conglomerate and sandstone
Fluvial conglomerate, piedmont conglomerate and sandstone
High-level piedmont fan and valley terrace deposits

VII Mesozoic Dark grey argillaceous limestone and marl (CHAMAN BID FM)
Cenozoic Low-level piedmont fan and valley terrace deposits

Light-red to brown marl and gypsiferous marl with sandstone intercalations
Gypsiferous marl

VIII Cenozoic Swamp and marsh
X Unconsolidated wind-blown sand deposit including sand dunes
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existed in the region. The likelihood ratio λ(TP)Eij for the 
validation of the proposed positive target has been men-
tioned in the flowchart. Then the ratio of non-susceptible 
and susceptible regions for the attribute Eij is shown as the 
numerator and denominator. All likelihood ratio values 
of class attributes of the evidence Ei divide the likelihood 
ratios to meet the standardization condition, and to consider 

relative importance within the class attribute (Shirani et al. 
2018):

Mass function defines the belief function (m(Tp)Eij) for 
supporting the positive target preposition as seen in the 
flowchart. In addition, the belief and plausibility functions 
based on the likelihood ratio functions are defined using the 
constraints related to the occurrence of a landslide. The DeS 
theory is a combination of belief, disbelief, uncertainty, and 

Fig. 3   Flowchart explaining landslide susceptibility maps using MCDM methods
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plausibility functions; therefore, it is the basis of evidence 
function estimation. Belief and plausibility are upper and 
lower boundaries of probability and the difference between 
belief and plausibility is defined as uncertainty function. 
The lack of correctness belief based on existing evidence 
is disbelief function. When landslides have not happened 
in the attribute Eij, belief does not exist in the proposed tar-
get. Anyhow there is uncertainty in the landslide studies 
and this does not mean disbelief in its complement. There-
fore, (m(T)Eij)) and consequently m(θ)Eij are set to 0 and 1, 
respectively. Landslide occurrences are depending on the 
second complementary constraint. For example, in flat areas, 
it cannot apply the first constraint. Therefore, no belief exists 
and landslide occurrence does not happen. Although based 
on the first constraint the disbelief and uncertainty are set to 
0 and 1, the disbelief should be set to 1 based on the second 
constraint. Eventually, belief and disbelief functions and 
uncertainty are considered, respectively, 0, 0 and 1 in this 
situation (Park 2011; Shirani et al. 2018) (Table 2).

Generally speaking, FAHP is performed in four steps 
including (1) propose the hierarchy structure of the decision-
making process, (2) build the pairwise comparison matrices 
for the criteria, (3) determine the weights of the criteria, and 
(4) do the decision-making task using fuzzy members.

Results

Fuzzy analytical hierarchy process

This research was conducted through library and field 
study methods to analyze landslide zonation. Based on field 

observations and expert opinion, the effective factors in the 
occurrence of this phenomenon were determined, and the 
database was prepared from the existing layers. FAHP and 
DeS were used to examine the factors affecting an earth-
quake. DeS was used because it could deal with ignorance 
and missing information, which is very likely in reality. 
FAHP is based on analyzing complex problems with hier-
archical ranking, which lead to the ultimate goal. In this 
method, the elements of different levels are compared pair-
wise. Ultimately, each of the elements is valued based on 
their preference. Given that the number of the selected infor-
mation layers in this case was 6, the ranking matrix was 7*7 
(see Tables 3, 4).

Effective factors

Slope

Slope is considered one of the important and effective 
factors in the rupture of hillsides. Increase in a slope dis-
turbs the equilibrium of the hillside-forming materials and 
increases shear stresses in hillside materials. Other factors 
remaining constant, the probability of sliding has a direct 
relation with the slope, and sliding does not occur on slopes 
less than 5° (Varnes 1958, 1978). In this step, the slope map 
was produced using a digital elevation model (DEM), and 
the slope of the area was clustered into five classes based 
on the importance of the slope in urban activities (Fig. 4a).

Table 2   The summary of symbols used in the present study

Eij The jth attribute class of the evidence Ei N(L ∩Eij) The number of landslide pixels occurred in Eij

N(Eij) The density of pixels in Eij N(L) Total number of landslides happened in the study area
N(A) The number of pixels in the whole study area A m(Tp)Eij Belief function
λ(TP)Eij The likelihood ratio for positive target λ(Tp)Eij The likelihood ratio to support proposition of the opposite target

m(θ)Eij Uncertainty function m(Tp)Eij Disbelief function

Table 3   Comparison of factors 
affecting landslide

Land use Slope Distance to fault Distance 
to stream

Distance 
to road

Precipitation Geology

Land use 1
Slope 5 1
Distance to fault 5 0.5 1
Distance to stream 7 0.33 0.5 1
Distance to road 3 0.33 0.33 0.5 1
Precipitation 3 0.33 0.1 0.2 0.2 1
Geology 2 0.5 1 2 3 2 1
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Fig. 4   Characteristic factors: a 
slope map, b rainfall raster, c 
aspect map, d temperature map, 
e, h fault map, f drainage map, g 
road map, i geology map, and j 
land use map
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Slope aspect

This map was produced by (DEM) and mapped into eight 
directions including north, south, east, west, northwest, 
northeast, southwest and south east (Fig. 4d). Accordingly, 
most of the dispersion of landslides in the area had been 
located in the northwest and the least in the north.

Distance to fault

The distance from the fault and the possible effect of earth-
quakes on landslides are very prominent factors. In general, 
a significant percentage of landslides in the study area have 
been observed near faults. The effect of faults on hillside 
movements is evident in different forms:

1.	 Earthquakes near the faults have high intensity and 
acceleration.

2.	 The impact of faults on the crushing of surrounding 
rocks

3.	 More water penetration into crushed masses, increas-
ing the level of groundwater and pore water pressure 
(Varnes 1958, 1978). As the distance from major faults 
increases, the impact of earthquakes and the probability 
of occurrence of hillside instabilities decrease. There-
fore, the probability of occurrence or non-occurrence 
of sliding instabilities can be represented in terms of the 
distance from faults (Fig. 4e, h).

Distance to road

Construction of a road with numerous trenches increases 
shear stress and causes instability and slope sliding. Change 
in the geometry of the slope, which can cause instability, is 
one of the first measures in this operation. Many roads have 
been established on the hillsides of the area, which can be a 
factor in increasing tension in the region (Fig. 4g).

The layer of distance from the road was prepared using 
the topographic map of the study area, and then entered 
into the geographical information system and digitized. The 
buffer of this information layer was prepared at intervals of 
1000, 2000, 3000, and 4000 for further analysis. According 
to the information obtained from this layer, it is clear that 
the highest frequency of occurrence of landslides is asso-
ciated with nearby faults, and the lowest with far distant 

ones. Therefore, it can be concluded that the road plays a 
significant role in these mass movements in that the den-
sity of mass movements in the region decreases as the dis-
tance from the road increases. This factor has somewhat 
increased instability due to roughness of hillsides and their 
slope variations.

Distance to a stream

Generally, the occurrence of a landslide has a reverse rela-
tion with distance from a stream. Streams in the study area 
play a significant role in increasing the susceptibility of adja-
cent hillsides to instability. This layer was prepared using 
the topographic map of the region. The desired layer was 
mapped in five floors (Fig. 4f).

Precipitation

The effect of precipitation on the instability of hillsides 
depends on the climatic conditions and topography of the 
area. Annual precipitation shows variance across different 
regions (Varnes 1958, 1978). The effect of precipitation is 
observed as a set of external dynamic functions and mechan-
ical activities such as saturation of materials, increase in 
mass volume and groundwater level, and static and dynamic 
loads. Thus, rain stimulates a set of agents, making hill-
sides susceptible to sliding. Considering the shape of the 
iso-precipitation map in Fig. 4b, it is evident that hillside 
motions somewhat increase by an increase in rainfall, but 
from that range (284–1004  mm), the motions abruptly 
decrease. This could be due to the direct impact of heights 
on sliding movements.

Land use

One of the factors which affect the slope instability is land 
use change. This factor will increase shear stress and imbal-
ance in a short time. The conversion of forest to residential 
land is one of the most obvious changes in land use. Air-
borne photos and satellite data clarification along with field 
observations were applied to allocate the land cover types 
in the area. Nine categories of it were recognized including 
low forest, mod forest, dense forest, irrigated farming, dry 
farming, urban, poor range, midrange and rock.

Table 4   Weights of layers of the study area

Layers Land use Slope Distance to fault Distance to stream Distance to road Geology Precipitation

Weight 0.7 0.8 0.7 0.6 0.5 0.8 0.4
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Geology

The lithology map is classified according to the rock types 
(Fig. 4j) (Table 5).

Dempster–Shafer

Mass functions including belief, disbelief, and ignorance 
were estimated via DeS technique as shown in Table 6. The 
maximum values of belief function in that category related 
to minimum values of the disbelief and ignorance function.

Verification of susceptibility maps

Using data from the Environmental and Natural Resources 
Organization and interpreting the information layers of the 
study area, areas susceptible to landslides were identified, 
and areas whose morphologies indicated landslides were 
marked to be reviewed. Finally, after regional and field 
observations, the characteristics of each landslide were 
recorded using GPS and planned on the map of the region.

Comparison of FAHP and DeS established that FAHP 
clearly identified most landslide events. The method identi-
fied as the P–A diagram was utilized for quantitative assess-
ment of outputs (Yousefi and Carranza 2015; Yousefi and 
Nykänen 2015). In this method, first, the accumulative 
percentage of the known event located in each category 
is calculated via a raster output classified based on prede-
fined threshold values. At the second stage, the sector of the 
involved area size for each category is characterized cumu-
latively. Subsequently, these are depicted on the diagram in 
which X- and Y-axes, respectively, include threshold values 
and cumulative involved area sizes. By way of the sum of 
the prediction rate and the involved area for this point which 
is identical to 100, the method that delivers the landslide 
potential map which is most likely to detect known landslide 
susceptibility points is the most efficient one (Yousefi and 
Carranza 2015; Yousefi and Nykänen 2015). In this paper, 
obtained results of DeS and FAHP techniques were verified 
via this method. Figure 5 shows the P–A plots of the present 
study. As it is evident in these plots, the values obtained by 
FAHP are significantly higher than those obtained by the 
DeS. FAHP resulted in a more effective classification of the 
study area than did DeS. In addition, FAHP successfully 
detected landslide occurrences (see Fig. 6).

Discussion

Next to earthquakes and floods, landslides are known as 
the most hazardous natural phenomenon that causes mas-
sive damages through the displacement of billions of tons 
of soil and rock annually. Rapid population growth and the Ta
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Table 6   The values obtained 
from the relationship between 
effective factors using DeS

Predisposing factor Class Total number of pixels N(L ∩ Eij) M(Tp)Eij M(T p̅)Eij M(θ)

Land use Low forest 1.78913E + 11 0 0.000 0.103 0.897
Mod forest 5.61846E + 11 22 0.001 0.102 0.897
Dense forest 2.75769E + 11 252 0.021 0.051 0.928
Irr-farming 3.24686E + 09 140 0.973 0.073 − 0.046
Dry farming 3.26133E + 11 70 0.005 0.090 0.905
Urban 1.24844E + 12 2 0.000036 0.113 0.887
Poor range 6.95102E + 12 0 0.000 0.242 0.758
Midrange 2.37272E + 12 8 0.000076 0.125 0.875
Rock 6.09683E + 10 2 0.001 0.102 0.898

Geology ll 5.47083E + 08 45 0.253 0.063 0.683
lll 4.19161E + 08 12 0.088 0.069 0.843
lV 1.23771E + 09 21 0.052 0.068 0.880
lX 1.47186E + 11 63 0.001 0.487 0.511
V 2.00652E + 09 155 0.238 0.045 0.717
Vl 2.62711E + 09 57 0.067 0.062 0.871
Vll 8.35171E + 08 20 0.074 0.068 0.859
Vlll 1.25322E + 10 17 0.004 0.073 0.923
X 4.70986E + 08 34 0.222 0.065 0.713

Distance to fault < 1000 2.90996E + 09 88 0.362 0.166 0.471
1000–2000 2.66018E + 09 46 0.161 0.210 0.629
2000–3000 2.32574E + 09 26 0.104 0.220 0.676
3000–4000 3.01265E + 09 38 0.118 0.224 0.658
> 4000 4.54455E + 09 91 0.187 0.207 0.606

Distance to stream < 1000 5.09299E + 09 88 0.176 0.208 0.615
1000–2000 2.03868E + 09 52 0.227 0.191 0.581
2000–3000 1.63914E + 09 50 0.272 0.186 0.542
3000–4000 2.54455E + 09 24 0.084 0.223 0.693
> 4000 3.54455E + 09 75 0.189 0.198 0.614

Distance to road < 1000 9.23520E + 06 91 0.995 0.134 − 0.129
1000–2000 4.18287E + 09 57 0.001 0.226 0.773
2000–3000 2.59610E + 09 32 0.001 0.214 0.784
3000–4000 1.90488E + 09 21 0.001 0.211 0.788
> 4000 5.05890E + 09 88 0.002 0.215 0.783

Precipitation 48–264 3.85591E + 06 0 0.000 0.196 0.804
264–361 3.90901E + 09 0 0.000 0.301 0.699
361–497 3.39854E + 09 144 0.236 0.174 0.590
497–674 2.29822E + 09 55 0.133 0.210 0.657
674–1029 1.57130E + 09 178 0.631 0.120 0.249

Slope 0–15 3.12419E + 07 2 0.035 0.209 0.756
15–30 1.13109E + 08 15 0.073 0.230 0.697
30–45 1.26805E + 08 82 0.354 0.178 0.468
45–60 1.74151E + 08 89 0.280 0.189 0.531
> 60 2.13784E + 08 101 0.259 0.193 0.548
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Table 6   (continued) Predisposing factor Class Total number of pixels N(L ∩ Eij) M(Tp)Eij M(T p̅)Eij M(θ)

Slope aspect Flat 1.12183E + 07 0 0.000 0.113 0.887

North 1.15357E + 08 16 0.035 0.125 0.840

Northeast 8.13175E + 07 75 0.232 0.093 0.675

Northwest 1.12004E + 08 91 0.205 0.090 0.705

South 8.13766E + 07 15 0.046 0.119 0.835

Southeast 2.31886E + 07 19 0.206 0.107 0.687

Southwest 3.12731E + 07 21 0.169 0.108 0.723

West 1.13015E + 08 23 0.051 0.122 0.827

East 1.31941E + 08 29 0.055 0.123 0.822

Fig. 5   Landslide susceptibility zonation maps obtained using MCDM methods

Fig. 6   Prediction–area plots of maps obtained by MCDM methods
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development of cities in mountainous areas make it neces-
sary to identify and mitigate the risks of this natural phe-
nomenon. Landslides result from the integrated and rapid 
movement of sedimentary materials along hillsides. The 
damage they make depends on their speed and extent. They 
may be so large as to simultaneously move hundreds of thou-
sands of cubic meters of rock and soil. This phenomenon 
has, thus, deformed the surface of the earth throughout geo-
logical periods. Nowadays, experts take landslide events into 
careful consideration, and producing exact maps of landslide 
occurrence has become a current concern in geology (Chen 
et al. 2016; Lee et al. 2018).

In this research, the potential of the DeS and FAHP meth-
ods was assessed in the study area in Golestan Province, 
Iran. As the first step, extensive landslide inventory mapping 
was done on the account that a reliable landslide inventory 
map is generally necessary for indirect landslide suscepti-
bility evaluations. In the second stage, the landslide con-
ditioning factors were determined for the evaluation of the 
area susceptibility through DeS and FAHP models. Finally, 
a P–A plot was produced based on a set of data randomly 
collected from landslide spots and safe zones. The experi-
mental results of this case study illustrated that the proposed 
scheme based on DeS and FAHP models can adequately 
account for the quantitative relationship between landslide 
occurrence and multiple spatial data layers. The validation 
results also showed that the occurrences in the area under 
the curve in DeS and FAHP models could be predicted with 
the accuracy of 0.79 (79%) and 0.85 (85%), respectively. In 
other words, the predictability of landslides by FAHP map-
ping was slightly higher than that by the DeS model.

Conclusion

Valuation of landslide susceptibility is highly important 
for handling potentially susceptible areas. Scholars attempt 
to improve and use easy, user-friendly and understandable 
models capable of making results more compatible with 
landslide events. These models should create near realistic 
predictions for landslide-susceptible zones. In this paper, 
we presented an integrated decision-making approach based 
on the fuzzy analytical hierarchy process and the Demp-
ster–Shafer theory for evaluating landslide susceptibility in 
Gorgan province, and the outputs were compared using the 
P–A plot. The FAHP approach provides a pliable technique 
that includes a connoisseur’s viewpoint on creation of an 
inference system though the DeS belief model applies mix-
ture laws, where a connoisseur only can allocate belief func-
tions to each factor map category. Typically, fuzzy systems 
can be applied in different ways to model two main types 
of uncertainty: (1) uncertainty from the lack of knowledge 
and human tools for understanding the complexities of a 

phenomenon, and (2) uncertainty associated with inaccu-
racy and the lack of transparency related to a particular phe-
nomenon or its specific features. Fuzzy logic with extreme 
flexibility in analyzing natural language meanings is able 
to model and analyze ambiguities pertaining to the human 
mind and the environment, and the uncertainty that always 
exists in human judgment. Thus, the results of the present 
study have practical implications for managers’ policy-
making, planning, and decision-making. Overlaying sliding 
locations on each of the first seven layers indicated that most 
landslides occur on 12–30% slopes and in the south direction 
due to its weaker vegetation.

Investigating the effective factors on landslides indicated 
that the central part of the study area is most sensitive to 
slides. Considering the man-made fractures and the result-
ing environmental disruptions, road intersections are sus-
ceptible areas for slides. The presence of streams causes 
pipping and increases the possibility of slide occurrence. 
In addition, most slides occur in areas with 500–700 mm 
precipitation. Lithological and soil studies have indicated 
that most slides occur in silt–clay–loam soils. This can be 
due to higher water absorption and lower hydraulic penetra-
tion of soils with medium and fine textures as a result of 
easier saturation. Generally, the obtained maps can be used 
to identify high-risk areas and develop ways to prevent this 
natural destructive phenomenon.
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