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Abstract
In terrestrial landscape architecture, land surface temperature (LST) is a key estimator of local climate, vegetation growth, 
and urban transition. It also represents the environmental factors that influence the land cover patterns using temperature vari-
ation over land use land cover (LULC) classes. In the present study, various geospatial techniques have been implemented to 
analyze the spatio-temporal trends in temperature among different LULC of an arid Potohar region of Pakistan using Landsat 
7 (ETM+) and 8 (OLI & TIRS) and the relationship between different normalized satellite indices and LST. Results of the 
seasonal fluctuation in winter showed temperature range of 0–57, 0–50, 04–31 and 7–39 °C for the year 2000, 2005, 2010, 
and 2015, respectively, while the summer exhibited the temperature range of 24–48, 27–57, 22–48, and 12–41 °C for the 
year 2000, 2005, 2010, and 2015, respectively. The analysis established a direct correlation between LST and normalized 
difference vegetation index and normalized difference water index, and an indirect correlation among LST and normalized 
difference soil index, normalized difference built-up index and built-up index. The findings are critically important for plan-
ning and development division for sustainable use of land resources for urbanization extension projects. Future research will 
highlight the change in the area occupied by different land featured classes and their impacts on LST over a specified period.
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Introduction

Land surface temperature is the fundamental climatic param-
eter in determining the surface radiation and the energy 
exchange (He et al. 2019). It is also essential for determining 
the dynamics of the earth’s surface, which impact-feedback 
loops that occur over a wide range of temporal and spatial 
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scales (Simó et al. 2019). Among these parameters, land use/
land cover (LU/LC) and land surface temperature (LST) are 
the most important. The concept of LST has been widely 
used by many researchers across the globe for unpredict-
able rainfall, temperature fluctuations, vegetation patterns, 
and urban area agglomeration are aspects that alter/shift 
the land use/land cover in a region (Owojori and Hongjie 
2015). The shifting of this land use/land cover is attributed 
to anthropogenic activities that alter the physical character-
istics of the land surface and abrupt changes in temperature 
in a particular region (Srivanit et al. 2012). It is well docu-
mented that as land surface cover changes, the surface tem-
perature of that particular area also changes (Buyadi et al. 
2013; Hua and Ping 2018). Hence, measurement of land 
surface temperature and its variation over a specified period 
significantly depicts the variation in land use/land cover of 
that local region.

Previously, different techniques have been employed for 
the measurement of land surface temperature through ground 
base data, but that is costly and cumbersome (Rehman et al. 
2015). Dense time-series observations (DTSO) frequently 
employed in monitoring approaches related to the remote 
sensing (RS) and LST. The applicability of these DTSO in 
the assessment of the climate variability over a extended 
period can be improved by the integration of spatial data 
from multiple satellite systems (Kothe et al. 2019). The most 
valuable source of spatial information (30-m resolution) is 
Landsat images data (Lagüela et al. 2019). It not only helpful 
in continuous global coverage but also provide an oppor-
tunity to characterize human-scale processes (Chen et al. 
2017). The operational Landsat 7 (ETM+) and Landsat 8 
(OLI & TIRS) can provide a revisit frequency of 8 days at 
the equator (Chastain et al. 2019). The images obtained by 
Landsat sensors have a high spatial resolution for monitoring 
the urban thermal environment (Sobrino et al. 2012; Rong-
bo et al. 2007).

The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
sensor is the successor of TM. However, on May 31st, 2003, 
the scan-line corrector (SLC) of ETM+ permanently failed, 
which caused roughly 22% of the pixels not to be scanned 
in any ETM+ images (referred to as SLC-off images) 
(Arvidson et al. 2006). For the generation of 16-day data 
in Landsat 7, a smooth and gap-filled time series data with 
30 m spatial resolution were generated using Geo-statis-
tical neighborhood method which involves scanned lines 
filling techniques. Additionally, it can also produce more 
accurate results than NSPI, specifically for the long time 
interval between the auxiliary input images and the target 
SLC-off images (Zhu et al. 2012). Therefore, the thermal 
infrared (TIR) remote sensing is a unique process for the 
estimation of land surface temperature at regional to global 
scale (Meng et al. 2017). Although, these approaches have 
been used widely to estimate the variations in land surface 

temperature and their relationship with Land use/Land cover 
indices, yet estimation of LST and its variation over selected 
Land use/Land cover indices for an arid Potohar region using 
multi-spectral geospatial techniques has been merely studied 
(Cristóbal et al. 2009; Jiménez-Muñoz and Sobrino 2009; 
Mallick et al. 2008; Bala et al. 2019).

Therefore, the present study was planned to investigate 
the variation in temperature over wide range of classes and 
investigate relationship between normalized satellite indices 
including normalized difference vegetation index (NDVI), 
normalized difference water index (NDWI), normalized dif-
ference soil index (NDSI), normalized difference built-up 
index (NDBI), built-up index (BI) and LST. The arid Potohar 
region as study area due to its highly undulating topography 
and erratic rainfall pattern along with a wide variety of land 
covers like water bodies, barren land, built-up areas, and 
vegetated land. To the best of our knowledge, this is the first 
report on estimation of LST and its variation over Land use/
Land cover indices for an arid Potohar region of Pakistan 
using Landsat-7 (ETM+) and 8(OLI + TIRS) imagery with 
two valuable thermal bands Band 6 (ETM+) and Band 10 
(OLI + TIRS).

Study area

The arid Potohar region (32.5° N to 34.0° N Latitude and 
72° E to 74 °E Longitude) was selected as a study area. The 
geographic location of the study area has been shown in 
Fig. 1. The region comprises four districts, namely Attock, 
Jhelum, Rawalpindi, and Chakwal, covering an area of 
28,488.9 km2 (Rashid and Rasul 2007). The terrain of the 
region was undulating, and the average height of the moun-
tain was 450–900 m (3000 ft), which extend up to 72 km. 
The general methodology adopted for this study has been 
summarized in the flow chart diagram (Fig. 2).

Materials and methods

Data collection and processing

LST and Normalized satellite indices were calculated using 
Matlab 2015 and Erdas 2016. The shapefiles of respective 
areas were created, and area of interest (AOI) was extracted 
using Erdas 2016 (Supplementary Table 3). The next step 
involved was downloading satellite data (cloud cover 0%) 
of Landsat-7 & 8 were used of arid Potohar region for 
this study. The four-year imaging (five-year interval 2000, 
2005, 2010, and 2015) were downloaded from USGS Earth 
Explorer website (https ://www.usgs.gov/) (day, level-1G 
product) and referenced to the Universal Transverse Merca-
tor (UTM) Projection System (Table 1). Landsat 7 images 

https://www.usgs.gov/
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Fig. 1  Location map of study area (Potohar Region showing District Rawalpindi, Chakwal, Attock and Jhelum)

Fig. 2  Flow chart of general methodology
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with 08 bands (of which the band 6 was thermal band), and 
ETM+ bands (1–5 and 7 bands) of 30 m spatial resolution, 
were used to estimate Land use/Land cover (LULC) map 
of the study area. The spatial resolution of thermal bands 
was 60 m, which was re-sampled to 30 m for distribution 
according to the method as described by Jimenez-Munoz 
et al. (2014). Landsat 8 images with 11 bands (of which 
band 10 and 11 were thermal, 1–7 & 9 were OLI, band 8 was 
panchromatic, and band 10 and 11 were thermal) were used 
to estimate Land use/Land cover (LULC) map (Table 2). 
The Landsat 8 images had 30 m spatial, 12 bit radiometric, 
and 16 days temporal resolution. The spatial resolution of 
thermal bands was 100 m, which was re-sampled to 30 m 
for distribution (Supplementary Table 1) according to the 
method as described by Jimenez-Munoz et al. (2014).

Image pre‑processing

For removal of strips and gaps during downloading of 
LANDSAT ETM+ data, Environment for Visualizing 
Images (ENVI) software was used. For extraction of data of 

interest in the present study, Layer stack and create image, 
and the mosaic of all images tools was used. Similarly, 
removal of haze from all layers during the downloading of 
LANDSAT8 (OLI & TIRS) was done using these tools (Sup-
plementary Table 3).

Land cover indices determination

The land cover indices (NDVI, NDWI, NDSI, NDBI, and 
BI) used in this study, and were obtained from visible por-
tion (VP) Green (G), Red (R), Near Infrared (NIR) and 
Short Wave Infra-Red (SWIR) reflectance bands which were 
extracted from the LANDSAT 7 (ETM+) and LANDSAT 
8 (OLI & TIRS) images (Xu et al. 2013). The estimation 
of vegetation cover, water bodies, built-up area, and barren 
land, was carried out according to the procedure as described 
by Smakhtin and Hughes (2007). The various land cover 
index maps were obtained using the method as described 
by Weng (2004). Data regarding the calculation of various 
indices have been shown in Supplementary Table 2.

Table 1  Data collection S. no Season Dated Mosaic

Row Path Row Path Row Path

01 Winter 2000 150 37 150 36 151 37 Landsat 7 (ETM)
02 Summer 2000 150 37 150 36 151 37
03 Winter 2005 150 37 150 36 151 37
04 Summer 2005 150 37 150 36 151 37
05 Winter 2010 150 37 150 36 151 37
06 Summer 2010 150 37 150 36 151 37
07 Winter 2015 150 37 150 36 151 37 Landsat 8 (OLI)
08 Summer 2015 150 37 150 36 151 37

Table 2  Description of Landsat7 (ETM+) and Landsat 8 (OLI & TIRS)

S. no Landsat 7 (ETM+) Bands Landsat 8 (OLI & TIRS)

Resolution (m) Wavelength 
(Micrometer)

Band Name Band Name Wavelength 
(Micrometers)

Resolution (m)

1 30 0.45–0.52 Blue Ultra Blue 
(coastal/aerosol)

0.435–0.451 30

2 30 0.52–0.60 Green Blue 0.452–0.512 30
3 30 0.63–0.69 Red Green 0.533–0.590 30
4 30 0.77–0.90 NIR Red 0.636–0.673 30
5 30 1.55–1.75 SWIR1 NIR 0.851–0.879 30
6 60*(30) 10.40–12.50 Thermal SWIR1 1.566–1.651 30
7 30 2.09–2.35 SWIR2 SWIR2 2.107–2.294 30
8 15 0.52–0.90 Panchromatic Panchromatic 0.503–0.676 15
9 Cirrus 1.363–1.384 30
10 TIRS1 10.60–11.19 100*(30)
11 TIRS2 11.50–12.51 100*(30)
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Image classification

To investigate the changes occurring at the regional scale, 
the land cover classification was carried out to develop the 
LULC maps of arid Potohar region for the year 2000, 2005, 
2010 and 2015. Categories used for classification were 
built-up area, water bodies, vegetation area, and barren 
land. A supervised signature extraction with the maximum 
likelihood algorithm was employed to classify the Landsat 
images. Both statistical and geospatial analysis of feature 
selection was used to find out the most active band in dis-
crimination of each category and classification. The descrip-
tion of each normalized satellite index has been given in 
Supplementary Table 2.

Extraction of land surface temperature 
from Landsat 7(ETM+)

The LST from Landsat 7 dataset was retrieved according 
to the procedure as described by Chander et al. (2009). 
Briefly, the radiance values derived were used to calcu-
late at satellite brightness temperature (i.e., black body 
temperature) followed by a correction for spectral emis-
sivity according to the nature of the landscape (Weng 
et al. 2004). LST maps with band 6 (Landsat-7), band 10 
(Landsat 8) and top of atmosphere brightness tempera-
ture values have been expressed in Kelvin for each of the 
study areas.

Conversion of the digital number (DN) to spectral radiance 
(L �)

The Spectral Radiance was calculated as:

which is also expressed as

where L� is the Spectral Radiance at the sensors aperture in 
[

(W)

m2
× ster × μm

]

 , QCAL is the quantized calibrated pixel 
value in DN (Digital Number), LMIN � is the spectral radi-
ance that is scaled to QCALMIN in 

[

(W)

m2
× ster × μm

]

 , LMAX 
� is the spectral radiance that is scaled to QCALMAX in 
[

(W)

m2
× ster × μm

]

 , QCALMIN is the minimum quantized 
calibrated pixel value (corresponding to LMIN �) in DN, 
QCALMAX= the maximum quantized calibrated pixel value 
(corresponding to LMAX �) in DN (255).

(1)L� = Grescale × QCAL + Brescale

(2)

L� =
(LMAX �−LMIN�)

(QCALMAX − QCALMIN)
(QCAL − QCALMIN) + LMIN�

Conversion of spectral radiance (L� ) to At‑satellite 
brightness temperatures (TB) Corrections

The conversion of spectral radiance to temperature (k) was 
done according to the following equation

where TB = At-satellite brightness temperature (K), K2 = cali-
bration constant 2 calculated from Table 3, K1 = Calibration 
constant 1 calculated from Table 3, L� = spectral radiance in 
[

(W)

m2
× ster × μm

]

.

Conversion of brightness temperatures (K) corrections 
to brightness temperatures (°C) corrections

TB = surface temperature (°C)

Extraction of land surface temperature 
from Landsat 8 (OLI & TIRS)

For absolute temperature recovery, the digital number (DN) 
of the thermal infrared band was converted to spectral radi-
ance (Lλ) using the Eq. (5) as stated by Rosas et al. (2017).

where, Lλ—top of atmospheric radiance 
[

(W)

m2
× ster × μm

]

 , 
ML—band-specific multiplicative rescaling factor from 
metadata 0.0003342 (radiance_mult_band_X, where X is 
the band number), Qcal—quantized and calibrated standard 
product pixel values of DN in the band 10 from image, AL—
band-specific additive rescaling factor from metadata 0.1 
(radiance_add_band_X, where X is the band number).

The radiance values obtained were used to estimate the 
brightness temperature of the satellite. The average bright-
ness temperature of band 10 was calculated, and the surface 
temperature values of the region were analyzed at the time 

(3)TB =
K2

Ln

(

K1

L�
+ 1

)

(4)TB = TB − 273.15

(5)L� = ML × Qcal + AL

Table 3  Factors and their parameters

Landsat 7 (ETM+) Landsat 8 (OLI & TIRS) Thermal Band Calibra-
tion Constants & Rescaling

Constant 1-K1
Watts  (m2 *ster 
*µm)

Constant 2-K2 
Kelvin  (m2 *ster 
*µm)

Rescaling

Landsat 7 666.09 1282.71
Landsat 8 774.8853 1321.0789 ML 0.0003342

AL 0.10
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of data recorded (Table 4). The conversion of Radiance to 
sensor temperature was done using equation as described by 
(Suresh et al. 2016).

where TB = At-satellite brightness temperature (°C), K1 
and K2 stand for the band-specific thermal conversion con-
stant from the metadata, Lλ—top of atmospheric spectral 
radiance.

For the Conversion of sensor temperature to temperature 
(celsius), the absolute zero value was added to radiant tem-
perature (Table 3).

Land surface temperature (LST) measurement

The absolute temperature or Land surface temperature (LST) 
was estimated from average brightness temperature acquired 
from band 10 & band 11, the wavelength of emitted radi-
ance, land surface emissivity, and constant value P. Land 
surface emissivity was calculated from the vegetation frac-
tion which, in turn, derived from NDVI value range. The 
absolute temperature was calculated according to the method 
as employed by (Latif and Kamsan 2017), while the Landsat 
visible and near-infrared bands were used for calculating 
the NDVI.

where NIR represents the near-infrared band (Band5), and 
R represents the Red Band (Band4).

Measurement of vegetation index, ground emissivity, 
and emissivity‑corrected values

The vegetation index ( Pv ) was calculated according to the 
equation as described by (Rong-bo et al. 2007)

(6)TB =
K2

ln

[(

K1

L�

)

+ 1

] − 273.15

(7)NDVI =
NIR (ban5) − R (band4)

NIR (ban5) + R (band4)

While the Ground Emissivity (�) and Emissivity-cor-
rected values were calculated according to the following 
equations (Pal and Ziaul 2017).

The emissivity corrected land surface temperatures (LST) 
was computed as following (Artis and Carnahan 1982).

where LST = land surface temperature corrected; TB
= Brightness temperature ; w = Wavelength of emitted radi-
ance (11.5 µm) ; ∈ = emissivity corrected and ρis the density 
which can be represented as ρ = h c/σ = 1.438 ×  10−2 mk.

Where � is the Boltzmann constant (1.38 × 10−23 J/K), h 
is Planck’s constant (6.626 × 10−34 J s), and c is the velocity 
of light (2.998 ×  108 m/s).

To estimate the relationship between normalized satel-
lite indices (NDVI, NDWI, NDSI, NDBI, and BI) and LST, 
approximately 100 randomly selected spot locations were 
taken for each LST and indices in ArcGIS. Point values were 
recorded, and regression analysis in SPSS was performed to 
quantify the LST relationship with extracted NDVI, NDWI, 
NDSI, NDBI, and BI.

Results and discussion

Land surface temperature change (LSTC)

The derivation of LST for arid Potohar region showed high 
spatio-temporal variability in land surface temperature. The 
maps are shown in Fig. 3 indicates that the winter tempera-
ture was in the range of 24–48, 0–50, 04–31, and 7–39 °C 
for the year 2000, 2005, 2010, and 2015, respectively. Mur-
ree, Kotli Sattian and Attock exhibited dense vegetation 
cover and were highlighted green as the region of reduced 

(8)Pv =

(

NDVI − NDVIs

NDVIv − NDVIs

)2

(9)� = 0.004 × Pv + 0.986

(10)LST =
TB

1
+W

(

TB

�

)

× ln (�)

Table 4  Coefficient of 
determination for LST 
normalized satellite indices

NDVI NDWI NDSI NDBI BI LST

2000 winter 0.9309 0.8125 0.7337 0.7643 0.8084 0.9768
2000 summer 0.9782 0.9927 0.9637 0.9927 0.9637 0.8741
2005 winter 0.9796 0.8902 0.9846 0.929 0.9322 0.6307
2005 summer 0.997 0.9983 0.9955 0.9667 0.9796 0.8885
2010 winter 0.9309 0.8125 0.7643 0.7337 0.8084 0.9768
2010 summer 0.9566 0.9132 0.9242 0.9287 0.948 0.924
2015 winter 0.9972 0.9372 0.9594 0.9726 0.9897 0.8739
2015 summer 0.9906 0.951 0.9674 0.9875 0.9969 0.8675
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temperature, while Rawalpindi and Chakwal region were 
highlighted reddish as the regions of increased temperature 
Result shown in Fig. 3 also indicates that the maximum 
temperature range (in winter) observed was 24–48, 0–50, 
4–31, and 7–39 for the year 2000, 2005, 2010, and 2015, 
respectively. The maximum temperature range (in summer) 
observed was 0–57, 27–57, 22–48, and 12–41 for the year 
2000, 2005, 2010 and 2015, respectively. The results were 
further validated by regression analysis, which also indicates 
that areas having water bodies and vegetation exhibited low 
surface temperature while built-up areas and barren land 
exhibited high surface temperature. Previous studies also 
illustrate the usefulness of Remotely sensed LST for radiant 
energy emitted from the ground surface, including Built-up 
areas, vegetation, bare ground, and water (Arnfield 2003; 
Voogt and Oke 2003).

Land use and land cover mapping

Rainfed agriculture is the primary source of livelihood in 
the arid Potohar region. Rainfed areas are highly diverse, 
ranging from resource-rich areas to poor resource areas with 
much more restricted potential. Vegetation has a pronounced 
effect on climate change indicators such as temperature and 
precipitation patterns. Besides other factors, soil tempera-
ture and moisture, wind, relative humidity, and crop water 
requirements also affect the land use and land cover (Amir 
et al. 2019).

Results presented in Fig. 4 indicates the Land use land 
cover variations of arid Potohar region for the year 2000, 
2005, 2010 and 2015. Figure 4a indicates the higher vegeta-
tion index, and low built-up area for the year 2000, while an 
increase in built-up area and low vegetation index for 2005. 
It might be because drought period prolongs during the year 
2005 (Mallick et al. 2008). Similarly, a higher vegetation 

index, built up area and moisture contents were observed 
for the year 2010. It was likely due to increased rainfall in 
that year (Ahmad et al. 2019). During the year 2015, the 
built-up area significantly increased due to the introduction 
of housing schemes in Rawalpindi and other cities in the 
year 2010–15 (Butt et al. 2015). Our results indicate that 
a significant enhancement in vegetation cover occurred in 
regions of Murree, Kotli Sattian, near Jhelum River, at Tax-
ila and some areas of Chakwal district. The urban areas of 
Attock city, Chakwal, Rawalpindi, and Jhelum significantly 
increased due to residential and commercial development 
while water bodies and barren land found to be decreased in 
the year 2015 compared to the previous year.

Relationship between land surface temperature 
(LST) and land use land cover classes (LULC)

The temperature variation was derived from two thermal 
bands; Thermal Band 6 (Landsat 7 ETM+) and TIR 10 
(Landsat 8 OLI & TIRS) having the spatial resolution 30 m 
and swath width of 185 km (15° FOV from 705 km orbit). 
The appropriate color ramp symbology was selected to dem-
onstrate the variation in temperature across the arid Potohar 
region for the studied years. 3 & 4 depict the projected LST 
maps over LULC maps of arid Potohar region. The varia-
tion in LST over various LULC might be due to the diverse 
nature of land use/cover type (Chaudhuri and Mishra 2016).

The Potohar plateau covers an area of about 5000 square 
miles (13,000 square km) and lies at an elevation of some 
1200–1900 feet. The land resources of Potohar region char-
acterized by fragmented land holdings. The contribution 
of agriculture activities in about 10 percent of total agri-
cultural production (Adnan et al. 2009). In Fig. 5, the red 
spaces indicate the mean built-up areas where the average 
temperature was 25 °C and 40 °C in winter and summer, 

Fig. 3  Land surface temperature (seasonal) of year a 2000, b 2005, c 2010 and d 2015
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Fig. 4  Land cover classes of year a 2000, b 2005, c 2010 and d 2015

Fig. 5  LST trend change with LULC pattern
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respectively, for the year 2000. The increase average tem-
perature observed was 45 °C in summer and 30 °C in winter. 
The dry winter season observed might be due to lack of 
rainfall in the year 2000, which subsequently affected overall 
surface temperature (Jahangir et al. 2016). In 2010, the aver-
age temperature observed was 40 °C (in summer) and 30 °C 
(in winter), likely due to heavy rainfalls occurred in that year 
(Jahangir et al. 2016). During the year 2015, an increased 
in the built-up area was observed in Rawalpindi, Jhelum, 
Chakwal and Attock cities while a reduction in vegetation 
area and the temperature was observed in summer (38 °C) 
and winter (30 °C). It was likely due to the introduction of 
many housing societies and commercial development during 
the year 2015 in Rawalpindi district and surrounding areas. 
Our findings are also consistent with the findings of Xiong 
et al. (2012), who described that high-temperature anoma-
lies are closely associated with built-up land, densely popu-
lated zones, and heavily industrialized districts. Similarly, in 
another study, it was analyzed that Landsat TM/ETM+ and 
Landsat 8 (OLI & TIRS) images NDVI and NDBI indices 
had a significantly close relationship (Rong-bo et al. 2007).

In Fig. 5, the yellow spaces indicate the barren areas 
shows an average temperature of 57 °C in summer and 48 °C 
in winter for the year 2000 while 57 °C in summer and 50 °C 
in winter for the year 2005. As discussed above, it might 
be due to the prolonged drought period in the year 2000, 
which resulted in increased surface temperature (Smakhtin 
and Hughes 2007). In 2010, due to the occurrence of heavy 
rainfall, the temperature in summer was 47 °C and 31 °C in 
winter. During the year 2015, the maximum average tem-
perature observed in summer was 48 °C and 39 °C in winter. 
Low vegetation coverage is one of the main reasons for the 
LST effect (Weng and Yang 2004).

In Fig. 5, the greenish spaces indicate the vegetative areas 
exhibited a maximum average temperature of 25 °C in sum-
mer while 15 °C in winter for the year 2000. During the year 
2005, a reduction in vegetation index was observed due to 
the drought period in arid Potohar region, and the average 
temperature observed in summer was 32 °C and 18 °C in 
winter. In 2010 the temperature in summer observed was 
34 °C and 20 °C in winter. During the year 2015, the tem-
perature in summer observed was 39 °C and 25 °C in winter 
due to the increase of built-up area and decrease of vegeta-
tion area in Potohar region (Peng et al. 2018).

In Fig. 5, The temperature of the water is usually lower 
than other kinds of land uses (Hathway and Sharples 2012; 
Peng et al. 2018) For bringing this relation more explicit, 
following (Yang et al. 2015). The water areas exhibited a 
maximum average temperature of 27 °C in summer and 
19 °C in winter for the year 2000 which was increased up 
to 34 °C in summer and 23 °C in winter for the year 2005. 
In 2010, average temperature observed was 36 °C in sum-
mer and 24 °C in winter while during 2015, the average 

temperature increased to 40 °C in summer and 29 °C in 
winter.

LST relationship with normalized satellite indices

Based on the above observations in Figs. 3, 4 and 5, the 
ETM+ & OLI images from January 14, 2000 to August 20, 
2015 were used to extract remote sensing information for the 
whole arid Potohar region, including the brightness tempera-
ture, Land use/land cover, NDVI, NDWI, NDSI, NDBI and 
BI (Figs. 6, 7, 8, 9 and 10).

Normalized difference vegetation index (NDVI) has been 
used to identify long-term variations in vegetation coverage 
(Fu and Burgher 2015). Land surface temperature changes 
are associated with vegetation cover/density (Xu et al. 2011). 
Extensive research has been conducted to find a real rela-
tionship between vegetation and surface temperature indexes 
(Kustas et al. 2003; Weng et al. 2004; Agam et al. 2007; 
Inamdar et al. 2008; Li et al. 2015). Figure 6a (winter, 2000) 
indicates NDVI values observed were from − 0.640719 to 
0.488889 with the lowest temperature of 24 °C and the 
highest temperature of 48 °C. Results also revealed lower 
temperature high vegetative areas while the higher tempera-
ture in low vegetated areas. In Fig. 6b (winter, 2005) and 
Fig. 6c (winter, 2010), less vegetation could be observed 
during summer and winter because during that time drought 
period prevailed (Smakhtin and Hughes 2007). Figure 6d 
(winter, 2015) shows that NDVI values observed were from 
− 0.343254 to 0. 491024 with the lowest and highest temper-
ature of 7 °C and 39 °C. Results describe the high tempera-
ture in less dense vegetative areas, and low temperature in 
highly vegetated areas and vegetation move to the southern 
part in the study area. Results presented in Fig. 6a (summer, 
2000), indicates that NDVI values observed were ranged 
from − 0.482597 to 0.253333 with the lowest temperature 
of 0 °C and the highest temperature of 57 °C for the year 
2000. Figure 6b (summer, 2005) and in Fig. 6c (summer, 
2010) summer was very harsh and dry with less vegetation 
(Smakhtin and Hughes 2007). In Fig. 6d (summer, 2015) 
the NDVI values observed were ranged from − 0.362459 
to 0.595055 with the lowest temperature of 12 °C and the 
highest temperature of 41 °C. Results showed that the low-
est temperature observed during winter was 0 °C, 39 °C for 
2000 and 2015 while it was 24 °C for the same years during 
the summer season. Large vegetation areas in Murree and 
Jhelum exhibited high NDVI values while low vegetation 
in Attock and Chakwal district showed low NDVI values.

Surface water features depict the heat flow pattern and 
could be used to mitigate the urban heat island effects 
(Chang et al. 2007; Ahmed Memon et al. 2008; Bowler et al. 
2010). Water bodies, have a little thermal response and are 
known to be efficient radiation absorbent (Gupta et al. 2019). 
Results presented in Fig. 7 indicates the NDWI spatial 
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distribution of water in Fig. 7a (winter, 2000), the NDWI 
values ranged were from 0.777778 to − 0.588608 with the 
lowest temperature of 0 °C and highest 48 °C temperature 
and Fig. 7b (winter, 2005), − 0.710626 to 0.953488 with 
the lowest temperature of 0 °C and highest 50 °C. In Fig. 7c 
(winter, 2010), the NDWI values ranged were from 0. 8 to 
− 0.661238 with the lowest temperature of 4 °C and highest 
31 °C. In Fig. 7d (winter, 2015), the NDWI values observed 
were ranged from − 0.717474 to 0. 499642, with the lowest 
and highest temperature of 7 °C and 39 °C, respectively.

Figure 7a (summer, 2000), the NDWI values ranged were 
from 0.506098 to − 0.304124 with the lowest temperature of 
0 °C in summer and highest 57 °C and in Fig. 7b (summer, 
2005), − 0.634615 to 0.754386 with the lowest temperature 
of 27 °C in summer and highest 57 °C. In Fig. 7c (sum-
mer, 2010), the NDWI values ranged were from 0. 666667 
to − 0.415385 with the lowest temperature of 22 °C in and 
highest 48 °C. In Fig. 7d (summer, 2015), the NDWI values 

observed were ranged from − 0.698386 to 0. 0.548229 with 
the lowest temperature of 12 °C in summer and highest 
41 °C. Major water bodies of the district include River Jhe-
lum and water coming from Tarbela Dam that passes with 
the boundary of Attock District (Ghoraba 2015).

Soil attributes directly influence the land surface tem-
perature (Sayão et al. 2018). The soil spectral responses in 
the regions of visible (Vis), near-infrared (NIR), and short-
wave infrared (SWIR) have a strong relationship with soil 
attributes with land surface temperature (Chang et al. 2001). 
Results presented in Fig. 8 indicates the NDSI values for the 
year 2000–15. Results indicate the NDSI values for the year 
2000 (winter), were ranged from − 0.382857 to 0.649123 
with the lowest and highest temperature of 24 and 48 °C, 
respectively (Fig. 8a). For the year 2005 (winter), the NDSI 
values observed were ranged from − 0.633136 to 0.498992 
with the lowest temperature and the highest temperature 
of 0 and 50 °C, respectively (Fig. 8b). The NDSI values 

Fig. 6  NDVI (seasonal) of year a 2000, b 2005, c 2010 and d 2015

Fig. 7  NDWI (seasonal) of year a 2000, b 2005, c 2010 and d 2015
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for the year 2010 (winter) were ranged from − 0.734894 
to 0.818182 with the lowest temperature and highest tem-
perature of 4 and 31 °C, respectively. During the year 2015 
(winter), the NDSI values observed were from − 0.444113 
to 0.42518 with the lowest and highest temperature of 7 °C 
and 39 °C (Fig. 8d).

During the summer season, the NDSI values for the year 
2000, ranged from − 0.155556 to 0.491124 with the low-
est and highest temperature of 48 and 57 °C, respectively 
(Fig. 8a). For the year 2005, the NDSI values observed 
were ranged from − 0.51851relationship between Land use/
land cover9 to 0.52381 with the lowest and highest tem-
perature of 27 and 57°, respectively (Fig. 8b). In the year 
2010, these NDSI values were ranged from − 0.563299 to 
0.54023 with the lowest and highest temperature of 22 and 
48 °C, respectively (Fig. 8c). During the year 2015, the 
NDSI values observed were from − 0.519708 to 0.42087 

with the lowest and highest temperature of 24 and 48 °C, 
respectively (Fig. 8d).

The transformation of natural landscapes into human set-
tlements has increased since urbanization starts, which has 
a considerable effect on built environments and global and 
local climates (Grimm et al. 2000). Cities are the primary 
areas for human activities and interactions, have faced exten-
sive alterations in their land use and land cover (Li et al. 
2011). Due to the intensity of urban development around the 
world, there is a growing body of studies attempting to inves-
tigate built-up index in various spatial and temporal scales 
(Jamei et al. 2019). Results of the present study indicate that 
during the year 2000 (winter) the NDBI values were ranged 
from − 0.470588 to 0.688742 with the lowest temperature 
and highest temperature of 0 and 57 °C (Fig. 9a). These 
values were from − 0.621622 to 0.624204 with the lowest 
temperature and highest temperature of 0 and 50 °C for the 

Fig. 8  NDSI (winter) of year a 2000, b 2005, c 2010 and d 2015

Fig. 9  NDBI (seasonal) of year a 2000, b 2005, c 2010 and d 2015
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year 2005 (winter) (Fig. 9b). Similarly, the NDBI values 
were from − 0.952381 to 0.625 with the lowest temperature 
and highest temperature of 4 and 31 °C for the year 2010 
(winter) (Fig. 9c). The NDBI values observed were ranged 
from − 0.488002 to 0. 634833 with the lowest temperature 
and highest temperature of 7 and 39 °C for the year 2015 
(winter) (Fig. 9d). Similarly, For the year 2000 (summer), 
the NDBI values observed were ranged from − 0.174312 
to 0.556923 with the lowest temperature and highest tem-
perature of 24 and 48 °C (Fig. 9a). During the year 2005 
(summer), the NDBI values were ranged from − 0.621622 to 
0.624204 with the lowest temperature and highest tempera-
ture of 27 and 57 °C (Fig. 9b). In the year 2010 (summer), 
the NDBI values were ranged from − 0.553299 to 0.54023 
with the lowest temperature and highest temperature of 22 
and 48 °C (Fig. 9c). During the year 2015 (summer), the 
NDBI values were ranged from − 0.581395 to 0. 302128 
with the lowest temperature and highest temperature of 12 
and 41 °C (Fig. 9d).

Urban indicators are for communicating relevant infor-
mation to land planners (Handayani et al. 2018). Results are 
shown in Fig. 9a indicates BI values for the year 2000 (win-
ter) observed were ranged from − 0.483066 to 0.854801 with 
the lowest and highest temperature of 0 and 48 °C, respec-
tively. For the year 2005 (winter), these values were ranged 
from − 1.28267 to 0.359896 with the lowest temperature 
and highest temperature of 0 and 50 °C (Fig. 9b). In the year 
2010 (winter), the BI values were ranged from − 1.32386 to 
0.471154 with the lowest and highest temperature of 4 and 
31 °C, respectively (Fig. 9c). During the year 2015 (winter), 
the BI values observed were ranged from − 0.766378 to 0. 
911882 with the lowest and highest temperature of 7 and 
39 °C, respectively (Fig. 9d).

Similarly, for summer (2000), the BI values were ranged 
from − 0.338056 to 0.861271 with the lowest and highest 

temperature of 24 and 57 °C, respectively (Fig. 9a). In 
2005 (summer), these values were ranged from − 1.01454 
to 0.690207 with the lowest and highest temperature of 27 
and 57 °C, respectively (Fig. 9b). For summer, (2010), the 
BI values were ranged from − 1.0084 to 0.643264 with the 
lowest and highest temperature of 22 and 48 °C, respectively 
(Fig. 9c). During 2015 (summer), the BI values observed 
were ranged from − 0.962331 to 0. 405921 with the lowest 
and highest temperature of 12 °C and 41 °C, respectively 
(Fig. 9d).

The relationship between Land use/land cover classes 
with derived land surface temperature shown in Figs. 7, 8, 
9 and 10 indicates that there exists an inverse relationship 
between LST and water bodies, vegetation covers a direct 
relationship between built-up and barren land area.

Measurement of the coefficient of determination 
for LST normalized satellite indices

Results presented in Table 4 indicates the seasonal and 
annual variability in LST with relation to different normal-
ized satellite indices of arid Potohar region for the year 2000, 
2005, 2010, and 2015. At seasonal and annual scales, the 
LST shows high interannual variability with NDVI, NDWI, 
NDSI, NDBI, and BI (Supplementary Fig. 1, 2, 3 and 4). At 
the annual scale (the year 2010 and 2015), a significant posi-
tive relationship observed among LST and NDSI and NDVI 
for the regions located in the western part of arid Potohar 
region while negative trends in the year 2000 and 2015 year. 
Whereas, an inverse relationship observed occurred in a 
minimal area (NDVI) of the eastern part, in which it is dif-
ficult to interpret LST trends.

At a seasonal scale, a significant relationship exists 
between LST and the different variables measured. Sum-
mer shows a generally positive trend (77.2%) between the 

Fig. 10  BI (seasonal) of year a 2000, b 2005, c 2010 and d 2015
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LST and indices measured. Nevertheless, negative trends 
were recorded in the areas of the Murree and upper part of 
Jhelum. These areas were characterized by high-density for-
est region, which results in a decrease in LST over the last 
half decades. For summer and winter, positive trends prevail 
over the southern and western part of the study area, likely 
due to lack of vegetation and low rainfall in that particular 
areas (Balouch et al. 2016).

Conclusion

In this study, we systematically analyzed spatio-temporal 
trends in temperature in an arid Potohar region from 2000 
to 2015 using multi-spectral remote sensing data. The study 
demonstrates the significance of land use/land cover in 
determining the surface heat balance that is the ultimate 
effect of temperature variation over the entire land cover 
area. An inverse relationship between LST and water bodies 
and vegetation cover was found while and a direct relation-
ship between LST and built up, and barren land area was 
observed. Hence, it is concluded that an increase in veg-
etative areas and water bodies can significantly reduce the 
overall surface temperature of any region due to the dem-
onstrated inverse relation of NDVI and NDWI with LST. 
Use of RS & GIS techniques proves to be effective for the 
analysis of earth’s surface variables like temperature, growth 
of vegetation, and built-up areas specifically in different geo-
graphical zones. Further research work will highlight the 
assessment of change in the area occupied by different land 
featured classes, i.e., dense forests, grasslands, built-up area 
and reserved forests and their impacts on Land surface tem-
perature fluctuation concerning a specified period.
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