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Abstract
This study focuses on evaluating the capability and contribution of using backscatter intensity image and textural bands from 
Sentinel-1A synthetic aperture radar (SAR) data for reducing the limitation of optical image classification and improving 
the classification accuracy. The study was carried out at Theni district of Tamil Nadu, India, which is characterized by very 
heterogeneous features. The optical multispectral images such as Linear imaging self scanning sensor-IV (LISS-IV), Sentinel-
2A and Landsat8 were used. Support vector machine classifier performed on the different combination of SAR, optical image 
and texture features. Results showed that the optimal window size was 11 × 11, and mean and variance are optimal textural 
bands of gray-level co-occurrence matrix techniques. The best classification result was achieved with the combination of 
LISS-IV and Sentinel-1A-derived features (backscatter intensity and texture features) with an overall accuracy up to 78.49% 
and a kappa coefficient of up to 0.68, respectively. The combination of optical image and Sentinel-1A data decreased the 
spectral confusions between the classes, provided better classification results, and reasonably improved the accuracy.
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Introduction

Determination of land cover and green area change related to 
urban area and its immediate surroundings: land use change 
is due to human activities and natural factors. Land cover 
is one of the most important data used to demonstrate the 
effects of land use changes, especially human activities. 
Production of land use maps can be done using different 
methods on satellite images. Some studies have produced 
land cover maps of the controlled classification technique 
over Landsat satellite imagery. Using land cover maps, the 
changes in urban development and green areas over time 
have been evaluated. At the same time, the relationship 
between changes in the land cover over time and changes 
in the urban population has been (Cetin 2015, 2016; Cetin 
et al. 2018; Kaya et al. 2018).

The generation of the thematic maps, such as those 
describing land cover, using a land use/land cover (LULC) 
classification is one of the widely used applications of 
remote sensing. Remote sensing has the characteristics 
of synoptic repetitive coverage and provides accurate and 
detailed observation of data at various spatial and tempo-
ral scales. It is a powerful tool to monitor the Earth’s sur-
face, particularly in LULC classification (Ward et al. 2000). 
Remote sensing in the optical band has numerous advantages 
such as image acquisition at near nadir, high resolution and 
easily understands the earth features. It is a well-established 
tool for LULC classification and many studies have been 
carried out since the last four decades. However, LULC clas-
sification remains a difficult task in optical sensor due to 
cloud cover (Asner 2001), adverse weather conditions (Lu 
and Weng 2006), large number of mixed pixels, similari-
ties in spectral reflectance across a landscape (Joshi et al. 
2016), and heterogeneous landscapes (Kuzucu and Balcik 
2017). For countries like India with varied climatic zone, all 
these factors limit the accuracy of image classification and 
temporal LULC classification is also very difficult. In this 
context, few studies have also been conducted for multispec-
tral image fused with hyperspectral images which enable 
more accurate discrimination of land features and improve 
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the classification accuracy (Walsh et al. 2008). However, 
most of the hyperspectral sensors have medium resolution 
(30 m) which is a major drawback for the identification of 
highly heterogeneous environment, targets of poor densities 
or small objects, narrow swath width and fewer satellite data 
sources.

One of the most advanced technologies is synthetic aper-
ture radar (SAR) sensors, which has numerous advantages 
over optical sensors that are used to acquire polarimetric 
properties of objects or target under observation and capable 
of determining the physical properties of objects (Zakeri 
et al. 2017). In addition, SAR data can provide complemen-
tary information on optical data that reduce the limitation 
of optical image classification and improve the classifica-
tion accuracy (Zhang et al. 2015). A combined product of 
optical and SAR data is more informative than that of the 
individual sensor. The response of SAR data is based on 
geometry and structure of target features, while the optical 
sensors response depends on the reflectance from the target 
(Parihar et al. 2016). Therefore, a higher image classification 
accuracy is achievable by combined image products (Solberg 
et al. 1994; Brisco and Brown 1995; Stramondo et al. 2006).

Furthermore, spectral and backscattering intensity alone 
is not sufficient for image classification (Wu et al. 2006). 
Therefore, textural features represent a significant source of 
information regarding the spatial relation of the pixel value 
(Zakeri et al. 2017). The textural bands, in addition to the 
spectral bands or backscattering intensity, have been used 
in image classification to bring out subclass variation and 
to improve the LULC classification accuracy (Haralick et al. 
1973; Franklin et al. 2001; Ndi Nyoungui et al. 2002; Wu 
et al. 2006, 2015; Zakeri et al. 2017; Mishra et al. 2017). The 
gray-level co-occurrence matrix (GLCM) is one of the most 
trustworthy methods which uses a gray-tone spatial depend-
ence matrix to calculate texture values (Zakeri et al. 2017).

Classification is the process of categorizing the pixels of 
the image into LULC classes by creating maps (Lillesand 
et al. 2004). This helps to identify the features in the image 
in terms of the LULC which corresponds to actual features 
on the ground. Various methods have been proposed to assist 
the interpretation and the classification of optical and SAR 
data (Lu and Weng 2007; Mishra et al. 2011). The Maxi-
mum Likelihood (ML) classifier is the most common as it 
provides acceptable accuracy in spite of its limitations due 
to the normal distribution of class signature (Mishra et al. 
2014). The support vector machine (SVM) is considered as 
appropriate techniques because of the normal distribution of 
data and, therefore, are more suitable for classifying optical 
and SAR images (Gao 2010). In recent years, SVM classifier 
has been frequently used for LULC classification (Fukuda 
and Hirosawa 2001; Zou et al. 2010; Niu and Ban 2013; 
Sambodo and Indriasari 2013; Wu et al. 2015; Muthuku-
marasamy et al. 2017; Mishra et al. 2017). The objective of 

this study was to assess the capability and contribution of 
using backscatter intensity image and textural bands from 
Sentinel-1A data to reduce the limitation of optical image 
classification and improve the classification accuracy.

Study area and datasets

Study area

The study area is the part of Theni district (9° 50′ N to 9° 
54′ N and 77° 20′ E to 78° 24′ E) of Tamil Nadu, India and 
is a part of the Western Ghats System. It is a mostly hilly 
area with intermittent plain. This region enjoys a salubri-
ous climate with temperature ranging from 26.3 to 38.5 °C 
(Thanabalan and Vidhya 2016). The seasonal Vaigai river 
meets the major water demand of the region (Magesh et al. 
2012). Theni district was selected as the test case, as it is 
characterized by very heterogeneous features such as coco-
nut plantation, cropland, barren land, scrub forest and settle-
ment. At the time of image acquisition, the site had agricul-
ture land as current fallow land and was a big challenge for 
classification due to the spectral confusion between current 
fallow land and settlement in optical data. The study area 
map is given in Fig. 1.

Satellite data sets

The data used in the research were acquired by LISS-IV, 
Landsat 8 and Sentinel series satellites, operated by the 
Indian Space Research Organization (ISRO), the National 
Aeronautics and Space Administration (NASA) and the 
European Space Agency (ESA), respectively. The speci-
fication and characteristic of optical and SAR sensors are 
given in Table 1. Resourcesat-2 was launched on 20th April 
2011 and carries three sensors mounted on a single platform 
such as high-resolution sensors LISS-IV, medium-resolution 
LISS-III and a coarse-resolution AWiFS (NRSC 2011). The 
LISS-IV image was acquired on 10th February 2017 and 
includes 4 multi-spectral bands with 5.8 m spatial resolution. 
The Landsat 8 satellite was launched on February 11, 2013. 
It carries two instruments namely Operation Land Imager 
(OLI) and Thermal Infrared Sensor (TIRS) (Zakeri et al. 
2017). OLI and TIRS contain nine spectral bands including 
one panchromatic band and two spectral bands, respectively. 
The Landsat 8 OLI image was acquired on 19th February 
2017 and includes a panchromatic band with 15 m, and 
multi-spectral bands with 30 m spatial resolution. Sentinel-
2A was launched on 23rd June 2015 and carries an optical 
instrument payload with 13 spectral bands for global land 
observation (Heiselberg 2016; Ng et al. 2017). Sentinel-2A 
was acquired on 23rd February 2017 and includes four bands 
at 10 m, six bands at 20 m and three bands at 60 m spatial 
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resolution (Verhegghen et al. 2016; de Oliveira Silveira et al. 
2017). The Sentinel-1A was launched on 3rd April 2014 and 
carries an advanced C-band radar instrument with a center 
frequency of 5.40 GHz in four exclusive imaging modes 
with different resolution (down to 5 m) and coverage (up to 
400 km) (Omar et al. 2017; Zakeri et al. 2017). The Sentinel-
1A image captured on 27th February 2017 had the following 
characteristics: polarization bands of VH and VV, interfero-
metric wide swath (IW) mode, incident angle of 34.02° and a 
spatial resolution of 10 m. Moreover, both optical and SAR 
images cover the entire study area in one scene.

Accuracy assessment

An accuracy assessment was carried out using confusion 
matrix which shows the accuracy of a classification result 
by comparing the classification result with ground truth 
information. It gives the agreement between the classifier 
and the ground truth data region of interests (ROIs). In this 

study, the ROIs were selected using LISS-IV image with the 
help of ground truth measurements. The ROIs contains the 
polygon of different land features such as agriculture fallow 
land, plantation, scrub forest, barren land and settlement. 
The ground truth image or land use/cover map of the study 
area was prepared from LISS-IV by visual interpretation 
with very-high-resolution Google Earth image and ground 
truth verification. The ground truth ROI, ground truth image 
and ground truth verification are shown in Fig. 2.

Methods

In this study, different techniques are involved such as image 
pre-processing, textural analysis, image classification tech-
niques and accuracy assessment for land use/cover classifi-
cation using dual polarization SAR data and optical multi-
spectral data (Fig. 3).

Pre‑processing

The preprocessing of Sentinel-1A ground range detected 
(GRD) product was conducted using SNAP (sentinel appli-
cation platform) toolbox, including the following processes: 
radiometric calibration, speckle filtering and geocoding. The 
radiometric calibration process was performed to convert 
the digital numbers (DN) into sigma naught and backscatter 

Fig. 1   The study area

Table 1   The data characteristics of SAR and multispectral images

Satellite Resolution Polarization/bands used Date of pass

LISS-IV 5.8 m 2, 3, 4 10-02-2017
Landsat 8 30 m 3, 4, 5 19-02-2017
Sentinel-2A 10 m 3, 4, 8 23-02-2017
Sentinel-1A 10 m VV and VH 27-02-2017
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coefficient (dB) images. The computation of backscatter (σ0 
dB) can be performed as (Omar et al. 2017)

 where, σ0 (dB)—backscattering image in dB and σ0—sigma 
naught image.

To reduce speckle, a lee filter with 3 × 3 windows 
was applied to backscattering (dB) images. Further, the 
images were geometrically rectified using Range Doppler 
Terrain Correction method using shuttle radar topogra-
phy mission digital elevation model (SRTM DEM) with 
a spatial resolution of 30 m. The preprocessed Landsat8 
OLI, Sentinel-2A and LISS-IV images were used in the 
present study. All the images were geometrically rectified 
using ground control points (GCPs) in ERDAS imagine 
software, with the root mean square error (RMSE) less 
than 0.5 pixels.

Texture features

Spatial information in the form of texture features can be 
used for image classification. The texture is the pattern 
of intensity variations in an image and can be a valuable 
tool in improving land cover classification accuracy. The 
GLCM is a matrix that is computed based on statistics 
the gray values among pixels with given distance and 
angle (Wei et al. 2012). Several texture features can be 
computed from the GLCM matrix, e.g., contrast, dis-
similarity, homogeneity, angular second moment (ASM), 

�
0(dB) = 10 ∗ log 10 (abs(�0)),

energy, entropy, mean, variance and correlation. The 
window size is a most important parameter for measur-
ing the texture features. In this study, after several exper-
iments, different window sizes (5 × 5, 7 × 7, 9 × 9 and 
11 × 11) were evaluated to obtain the appropriate window 
size. To reduce the influence of the angle (direction) and 
improve the texture features extraction accuracy, they 
are detected in different angles of 0°, 45°, 90°, 135° and 
combination of all angles.

Feature combination

To evaluate the ability and contribution of using backscatter-
ing images and texture features extracted from Sentinel-1A 
data to reduce the spectral confusion in optical images and 
improve classification accuracy, different combinations were 
made (Table 2).

Support vector machine (SVM)

The use of SVM classifier has significantly increased the 
classification accuracy in recent times. It was developed 
based on machine learning theory (Vapnik 1999) and pro-
vides higher accuracies in LULC classification using pola-
rimetric SAR (PolSAR) data compared to other classifiers 
(Fukuda and Hirosawa 2001; Iyyappan et al. 2014; Mishra 
et al. 2014). SVM classifier was performed on Sentinel-1A 

Fig. 2   The ground truth ROI, image and verification
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backscattering alone, backscattering with GLCM textural 
bands, spectral alone and spectral with GLCM textural 
bands of three optical sensors. Later, the backscattering 
images (VV&VH) and best GLCM bands of Sentinel-1A 
were combined with three optical sensors. These images 
have resembled with lowest image resolution for merging. 
An accuracy assessment was carried out for all the combi-
nation of classified images and compared.

Results and discussion

GLCM textural band analysis of Sentinel‑1A data

Figures 4 and 5 show the class separability analysis of tex-
ture features of Sentinel-1A using Jeffries–Matusita (JM) 
distance to obtain the optimum identification window size 
and angle (direction), respectively. The JM distance values 
vary from 0 to 2 and indicate how finely the selected training 

Fig. 3   Flowchart of the method-
ology adopted
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samples are statistically separated (Amarsaikhan et  al. 
2010). The values ≥ 1.9 indicate that the samples have good 
separability (Wei et al. 2012). The combination of all texture 
features obtained the maximum separability in 11 × 11 win-
dow size (minimum of 1.07 to the maximum of 1.99). The 
combination of all angles of 11 × 11 window size achieved 
better results compared to other angles. Minimum separabil-
ity occurred between agriculture fallow land and barren land 
due to the same nature of scattering mechanism that means 
single bounce scattering, whereas plantation and settlement 
due to double-bounce and volume scattering mixed together 

between these two classes. The maximum separability has 
been achieved with all the remaining class pairs.

Optimum textural band selection

Statistical analysis was carried out to identify the most suit-
able textural band of Sentinel-1A. Figure 6 shows the maxi-
mum separability among the classes observed in the dissimi-
larity, homogeneity, mean and variance bands of GLCM.

Table 2   Different combination of SAR, multispectral images and texture features

ID Combination Description

1 VV + VH VV and VH polarization backscattering images of Sentinel-1A
2 VH + T VH polarization backscattering image and GLCM textural bands of Sentinel-1A
3 VV + T VV polarization backscattering image and GLCM textural bands of Sentinel-1A
4 VV + VH + T Backscattering images and GLCM textural bands of Sentinel-1A
5 L LISS-IV spectral alone
6 S Sentinel-2A spectral alone
7 L8 Landsat 8 OLI spectral alone
8 L + T1 Spectral bands and optimum GLCM textural bands of LISS-IV
9 S + T1 Spectral bands and optimum GLCM textural bands of Sentinel-2A
10 L8 + T1 Spectral bands and optimum GLCM textural bands of Landsat 8
11 VV + VH + L backscattering images of Sentinel-1A and LISS-IV
12 VV + VH + S backscattering images of Sentinel-1A and Sentinel-2A
13 VV + VH + L8 backscattering images of Sentinel-1A and Landsat 8
14 VV + VH + T + L Combination of Sentinel-1A (backscattering images and textural bands) and LISS-IV
15 VV + VH + T + S Combination of Sentinel-1A (backscattering images and textural bands) and Sentinel-2A
16 VV + VH + T + L8 Combination of Sentinel-1A (backscattering images and textural bands) and Landsat 8

Fig. 4   Optimum window size of 
textural bands
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Classification of SAR data

SVM classifier was performed on the different combina-
tion of four textural bands (dissimilarity, homogeneity, 
mean and variance) with two backscattering images (VH 
and VV). An accuracy assessment was carried out for all 
SVM classified images with the help of ground truth image 
(Table 3). Sentinel-1A backscattering images, backscattering 
images with all textural bands and backscattering images 
with mean and variance of textural bands were classified 
with overall accuracy of about 61.51%, 67% and 67.72%, 
respectively, and a kappa coefficient of 0.44, 0.51 and 0.52, 
respectively. The land cover classes were well classified with 
improved accuracy except for the settlement class. Based 
on the results, the GLCM textural band contributed most to 

the classification, followed by dissimilarity and homogene-
ity. Mean and variance bands are optimum GLCM textural 
features of Sentinel-1A for further analysis.

The classification of multi‑sensor data

To investigate the advantages of the combination of back-
scattering images and textural features of Sentinel-1A, dif-
ferent classifications were carried out by combining three 
multispectral images. The classification results of LISS-IV, 
Sentinel-2A and Landsat 8 spectral alone gave an overall 
classification accuracy of 69.72%, 66.29% and 64.26%, 
respectively (Table 4). Settlement class was poorly clas-
sified in three sensors due to current fallow lands. Conse-
quently, the agriculture lands were classified incorrectly as 

Fig. 5   Optimum angle of win-
dow size (11 × 11)

Fig. 6   Selection of best textural 
band for Sentinel-1A
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settlements. The spectral reflectance characteristics of settle-
ment and the current fallow land of agriculture are remark-
ably similar. It was observed that the settlement and scrub 
forest were mostly classified as agriculture fallow land. 
Therefore, the three sensors do not seem appropriate for 
classifying the land use/cover of the study area.

Considering the limitation of the three sensors, mean 
and variance of GLCM textural bands were extracted from 
three sensors to overcome this issue. The combination 
of multispectral image and textural bands was classified 
with SVM classifier. The overall classification accuracy 
was improved from 69.72 to 74.41%, 66.29 to 75.45% and 
64.26 to 68.64% for LISS-IV, Sentinel-2A and Landsat 8, 

respectively (Table 4). The spectral confusions between 
the classes were reduced and the classes become more uni-
form when compared to those using only the spectral bands 
alone. The barren area and plantation categories are clas-
sified better in the spectral combined with textural bands. 
The remaining categories need improvement for classifica-
tion accuracy. The study observed that three sensors overall 
achieved better result and producer accuracy when spec-
tral bands combined with textural bands. It was found that 
homogeneous features (very smooth textures) and heteroge-
neous features (textured) were better classified by spectral 
alone and spectral with GLCM texture band, respectively.

Table 3   Classification accuracies obtained using the different combination of textural bands and backscattering images of Sentinel-1A

VV VV polarization backscattering image, VH VH polarization backscattering image, T texture features, D dissimilarity, H homogeneity, M 
mean, V variance

Combinations Producer accuracy (%) Overall accu-
racy (%)

Kappa

Plantation Scrub forest Agriculture Barren land Settlement

VV + VH 65.25 70.8 63.2 50.02 34.11 61.51 0.44
VH + T (D and H) 55.09 35.82 66.14 3.38 25.01 54.08 0.33
VH + T (M and V) 57.65 44.99 58.77 18.82 19.96 52.58 0.33
VH + T (D, H, M and V) 51.08 43.98 54.92 28.74 34.96 50.05 0.31
VV + T (D and H) 52.83 31.94 62.11 52.4 24.67 54.16 0.34
VV + T (M and V) 54 34.74 59.63 42.27 29.27 53.24 0.34
VV + T (D, H, M and V) 52.96 35.51 61.56 43.26 24.7 53.57 0.35
VV + VH + T (D and H) 59.7 78.96 61.12 58.89 36.56 59.71 0.43
VV + VH + T (M and V) 65.92 87.02 72.74 57.33 37.38 67.72 0.52
VV + VH + T (D, H, M and V) 66.72 85.06 70.94 58.7 38.34 67.2 0.52
VV + VH + T (ALL) 66.8 84.89 70.58 59.42 36.93 67 0.51

Table 4   Classification 
accuracies obtained using 
the different combination of 
multispectral images, SAR data 
and optimum textural features 
(mean and variance) of both 
data

The combinations ID are explained in Table 2
L LISS-IV, S Sentinel-2A, L8 Landsat 8 OLI, T1 texture features of the optical image, T texture features of 
Sentinel-1A, VV and VH backscattering images of Sentinel-1A

Combinations Producer accuracy (%) Overall 
accuracy 
(%)

Kappa

Plantation Scrub forest Agriculture Barren land Settlement

L 88.89 75.51 61.71 64.61 26.37 69.72 0.56
S 76.49 75.19 62.19 63.33 38.27 66.29 0.5
L8 83.1 73.67 53.45 63.17 39.3 64.26 0.49
L + T1 88.71 84.85 62.85 74.74 72.12 74.41 0.63
S + T1 78.76 70.71 75.79 67.04 67.34 75.45 0.62
L8 + T1 78.68 70.45 63.22 63.72 59.15 68.64 0.53
VV + VH + L 90.59 87.38 66.77 59.61 61.96 75.4 0.64
VV + VH + S 79.26 84.72 70.83 62.11 61.64 73.33 0.6
VV + VH + L8 83.65 86.25 68.78 64.3 53.63 73.44 0.6
VV + VH + T + L 88.31 91.75 73.04 64.28 68.39 78.49 0.68
VV + VH + T + S 79.21 90.83 74.02 64.33 69.64 75.81 0.64
VV + VH + T + L8 83.07 91.79 75.12 65.6 57.6 76.89 0.65
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Fig. 7   Final land cover map products using SVM classification. a Left—L, middle—L + T1 and right—VV + VH + T + L. b Left—S, middle—
S + T1 and right—VV + VH + T + S. c Left—L8, middle—L8 + T1 and right—VV + VH + T + L8
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To reduce the spectral confusion between classes in optical 
images, the classification accuracy was potentially improved 
and the classification was performed by combining the three 
optical images with Sentinel-1A data-derived features (back-
scattering and mean and variance of textural bands). As seen 
in Table 4, the best classification results were achieved with 
the combination of LISS-IV and Sentinel-1A-derived features 
with an overall accuracy of up to 78.49% and a kappa coef-
ficient of up to 0.68. Whereas, the accuracy achieved using 
combination of Sentinel-2A and Landsat 8 OLI combined with 
Sentinel-1A data was lower, with an overall accuracy above 
75% and kappa coefficient above 0.64. The overall accuracy 
of LISS-IV, Sentinel-2A and Landsat8 with Sentinel-1A were 
increased by 4.08%, 0.36% and 8.25%, respectively, compared 
with the combination of spectral and textural bands of optical 
sensors.

An agriculture fallow land, scrub forest and settlement 
are easily confused in spectral classification and achieved 
poor classification in spectral bands of three multispectral 
images. The combination of optical images and Sentinel-1A 
data decreased the spectral confusions between the classes, 
provided better classification results, and improved accuracy 
reasonably. SAR data backscatter provided supplementary 
characteristics to these features such as surface roughness, 
orientation, signatures and roughness, object density and 3D 
information of the feature (Kurosu et al. 1999). SAR data con-
tain geometry and structure of target feature, while the optical 
image provides reflectance information from the target (Pari-
har et al. 2016). Optical and SAR data can use the comple-
mentarities of their information to improve the classification 
accuracy. Figure 7 shows a closer view of SVM classification 
for the optical spectral bands only, spectral and textural bands 
of the optical image and optical spectral bands with derived 
features of Sentinel-1A. The improvement in the classification 
accuracy mentioned before can be visualized in this figure.

Conclusion

The study evaluated the capability and contribution of using 
backscattering image and texture feature from Sentinel-1A 
data for land cover classification. For combination of all tex-
tures features, the optimum window size was 11 × 11. The 
mean and variance bands represent optimum GLCM textural 
bands of Sentinel-1A data. The combination of optical images 
and Sentinel-1A-derived features reduced the spectral confu-
sion between the classes, identified the most favorable bands 
for classification and improved classification accuracy. The 
limitation of GLCM technique mainly depends on the win-
dow size and the textural band pixel, which is summarized 
on the basis of neighboring pixels. The selection of optimal 
GLCM bands may vary with seasons and land features. In 
the future, the study can compare GLCM textural bands with 
hybrid decomposition parameters of SAR data that reduce the 

limitation of optical images classification such as spectral con-
fusion and pixel mismatching.
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