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Abstract
The Earth’s atmosphere and oceans are largely determined by periodic patterns of solar radiation, from daily and seasonal, 
to orbital variations over thousands of years. Dynamical processes alter these cycles with feedbacks and delays, so that the 
observed climate response is a combination of cyclical features and sudden regime changes. A primary example is the shift 
from a glacial (ice age) state to interglacial, which is driven by a 100-thousand year orbital cycle, while the transition occurs 
over a period of hundreds of years. Traditional methods of statistical analysis such as Fourier and wavelet transforms are very 
good at describing cyclical behavior, but lack any characterization of singular events and regime changes. More recently, 
researchers have tested techniques in the statistical discipline of change point detection. This paper explores the unique 
advantages of a piecewise linear regression change point detection algorithm to identify events, regime shifts, and the direc-
tion of cyclical trends in geophysical data. It evaluates the reasons for choosing this particular change detection algorithm 
over other techniques by applying the technique to both observational and model data sets. A comparison of the proposed 
change detection algorithm to the more established statistical techniques shows the benefits and drawbacks of each method.
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Introduction

Data sets in geophysical dynamics span from minutes to 
millennia and meters to continents. Scientists rely on analy-
sis tools to view dynamical processes in meaningful and 
insightful ways. Each tool represents time and spatial scales 
in a particular way, and highlights certain aspects of the data 
while obscuring others. A striking example is the application 
of the Fourier transform to paleo-climate data, where the 
Milankovitch orbital cycles of 100 and 41 thousand years 
form obvious spectral peaks (Milankovitch 1941), yet the 
Fourier spectrum provides no information about the exact 
timing, spacing, or speed of glacial to interglacial transi-
tions. Modern climate change research has emphasized the 

importance of characterizing the sources of natural vari-
ability to understand anthropogenic influence on earth sys-
tems. These geophysical processes include El Niño oscil-
lation (Oceanic Nino Index 2018), oceanic circulation, the 
Atlantic meridional overturning circulation  (McManus 
et al. 2004), ice–albedo feedback (Imbrie et al. 1993), and a 
host of others. Traditional statistical methods for large time 
series data from observations and models include the Fou-
rier and continuous wavelet transforms (Talley 2011; Wun-
sch 2015). The Fourier transform, or spectral analysis, of a 
data set allows a user to quickly identify major oscillatory 
components by extracting the most prominent peaks in the 
spectrum (von Storch and Zwiers 2002). In contrast, wavelet 
analysis does not average the amplitude and phase for each 
frequency component over time; it provides a localized esti-
mate for each spectral component at a particular point in 
time (Thomson and Emery 2014). When the frequency of a 
data stream changes abruptly in the middle of the sequence, 
this positional change would be captured by wavelet analysis 
and would be missed by Fourier analysis.

More recently, ocean scientists have incorporated change 
point detection algorithms for data analysis. Change point 
detection, or simply change detection, is a widely used 
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statistical approach for targeted data reduction. It includes 
regression-based methods, Bayesian methods, and multi-
variate methods, among others (Basseville et al. 1993). Time 
series decomposition (Hyndman and Athanasopoulos 2018) 
is one of the more popular change detection techniques for 
climate and ocean data, as it decomposes a signal into trend, 
seasonal/cyclical and noise components. For example, Ver-
besselt et al. (2010) examined satellite images showing 
land cover of vegetation over time to identify three types 
of events that might determine change: seasonal effects, 
gradual climate variability and abrupt change resulting from 
deforestation, fires or floods. Quan et al. (2016) applied time 
series decomposition to recorded land surface temperature 
data over Beijing and performed a comparison to simulated 
data using root mean squared (RMS) error to understand 
differences in observations and model predictions. Goela 
et al. (2016) temporally decomposed sea surface tempera-
ture data from various points off the coast of Portugal. They 
subtracted the seasonal component from the original data 
stream and applied a linear regression fit to the remainder 
to extract prominent change points.

These efforts have thoroughly explored applications of 
time series decomposition to ocean and climate data, but 
time series decomposition in and of itself fails to provide 
significant information to the scientist beyond what a Fourier 
analysis would. In most cases, the seasonal component of 
the time series decomposition is computed by identifying 
the major frequencies in the data, using a Fourier transform 
to identify these frequencies. Additionally, if all the major 
seasonal and cyclical components are not properly extracted, 
they will be reflected in the noise component, possibly cor-
rupting this graph into misidentifying the more sporadic 
events in data history.

This paper introduces the use of a different technique for 
cyclical ocean and climate data analysis: piecewise linear 
regression change point detection. This algorithm identifies 
major regime shifts in cyclical climate data, providing the 
scientist with specific points in time where major geophysi-
cal events have occurred in history. This is a unique type 
of feedback that cannot be provided to the scientist with 
Fourier and wavelet analysis.

Piecewise linear fitting for climate applications has been 
previously explored in Tomé and Miranda (2004). However, 
there are many differences between the implementation of 
the technique presented in this paper and the technique pre-
sented in the related work. Firstly, the related work identi-
fies break points by minimizing the residual sum of squares 
(RSS). The technique presented in the following section uses 
the RSS to define the  F-statistic, but the primary goal of 
the algorithm presented is not to minimize this value but to 
use it to identify local behavior. Additionally, the algorithm 
proposed by Tomé and Miranda (2004) has several restric-
tions including: (1) defining a minimum distance between 

break points, (2) requiring that consecutive line segments 
reverse from increasing to decreasing or vice versa (3) and 
limiting the maximum number of break points to 12. None 
of these are limitations of the algorithm proposed in this 
paper. The algorithm presented does not enforce a minimum 
distance between break points, allowing breaks to be defined 
by both sudden and gradual changes. It also allows multi-
ple consecutive trends to be both increasing or decreasing, 
allowing for break points to occur when the data, for exam-
ple, changes from a gradual decrease to a more dramatic, 
immediate drop. Finally, the algorithm sets no limitations 
on the number of break points, rather allowing the data and 
algorithmic parameters to dictate the number needed to 
describe the variation.

The value of the change detection algorithm presented 
in this paper is explored through five data sets: (1) carbon 
dioxide records from Antarctic ice cores (Bereiter et al. 
2015; (2) sedimentary oxygen-18 isotope records, a proxy 
of temperature, from the Benthic zone (Lisiecki and Raymo 
2005; (3) the Oceanic Niño Index at the Niño 3.4 region; (4) 
the North Atlantic Oscillation (NAO) Index between a sta-
tion in the Azores and one in Iceland  (Hurrell 1995; Jones 
et al. 1997); and (5) ocean eddies in the Agulhas regions 
south of Africa (MPAS-Developers 2013; Ringler et al. 
2013; Petersen et al. 2015). The paper also provides a com-
parison of the piecewise linear regression technique (Myers 
et al. 2016), to Fourier- and wavelet-based analysis to derive 
advantages and disadvantages of these methods. The case 
study for the North Atlantic Oscillation Index data also dis-
cusses the results obtained by the presented algorithm to the 
results shown by Tomé and Miranda (2004) to highlight the 
differences of the two techniques.

Change detection

A change point, in broad statistical terms, refers to a place or 
time such that the observed data follows one distribution up 
to that point and another distribution after that point (Chen 
and Gupta 2011). Change point detection algorithms gener-
ally serve two main purposes: (1) to decide whether there is 
change in the data and (2) to determine the locations where 
this change is present. For geophysical data, the goal in 
using change point detection is to extract time steps of sci-
entific significance.

As  Reeves et al. (2007) discussed in their survey paper 
on the application of various change point algorithms for 
climate data, the type of technique to use depends on the 
data to be analyzed. The Bayesian change point detection 
discussed in Ray and Tsay (2002), for example, determines 
change points by subdividing the data into regions with a 
constant mean. Other techniques (CRAN 2017) determine 
change by penalizing the variance of the data. However, 
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these techniques are not as relevant for cyclical data because 
ocean scientists are generally more interested in examin-
ing properties of change in the data rather than identifying 
uniformity. Piecewise linear regression models, such as the 
one presented in this section, are more appropriate, as they 
look for first-order changes, i.e., points at which the rate of 
change differs from one region to another.

Piecewise linear regression change detection

For the data discussed in this paper, a technique that cap-
tures the changes from the increasing trend to the decreas-
ing trend, and vice versa, is vital. These regime shifts often 
signify noteworthy events in history. Therefore, a piece-
wise linear regression model based on the work presented 
by Myers et al. (2016) is more appropriate. Although origi-
nally designed to analyze pixel values in an image, this 
approach has been adapted to detect changes in other types 
of data. There is a variety of change point methods based 
on piecewise representations, including the trend filtering 
approach proposed by Tibshirani et al. (2014) that uses the 
Lasso technique (Hyun et al. 2016).

A linear regression model estimates the least squares line 
fit to a set of data points. The goal is to estimate the best 
linear relationship between the dependent variable on the 
x-axis, and the independent variable on the y-axis. However, 
if the relationship between the two variables is non-linear, 
then the linear regression model will be a poor representa-
tion of the data. This can be addressed using a piecewise lin-
ear regression model, where line segments are fit to subsets 
of the data. A line segment is used to represent the data as 
long as the error between the data and the fitted line seg-
ment is acceptably small. When the addition of a new data 
point increases the error beyond the acceptable threshold, 
this point is set to be the “change point”, where a new line 
segment begins as illustrated in Fig. 1.

The piecewise linear regression model determines change 
points in the following way. The user first defines a buffer 
size, B, indicative of the number of data points the algorithm 

will consider to find a change point. For example, in a time-
dependent data set, B would correspond to the number of 
time steps to examine. This approach ensures that even with 
very large data sets, calculations can still be performed effi-
ciently by focusing on smaller regions when desired. Given 
a buffer size, B, the algorithm considers the first B time steps 
in the simulation, denoted as curr, and the subsequent B 
time steps, denoted as buff. It computes two residual sum-
of-squares (RSS) terms for a piecewise linear fit; they are:

RSS1 determines the RSS for the combined set of curr and 
buff (a single line was fit to the combination of both sets), 
while RSS2 determines the sum of RSS for each set curr and 
buff (there were separate lines fit to curr and to buff). These 
values are used to calculate the  F-statistic associated with 
the two fits.

where p1 = 2 and p2 = 4 , with p1 and p2 denoting the num-
ber of parameters in each fit; Tcurr∪buff is the total number 
of time steps being considered. The F-statistic is used to 
determine whether one line or two lines would be a better 
representation for the selected region of data.

The user also provides a second input value, � . For any 
data point in curr and buff, when the data point maps to a 
value of the F-distribution that is larger than the given � 
value, this point is considered to be a change point. For cer-
tain data sets, the � criterion for change point detection can 
still identify a larger number of change points than desired. 
Therefore, a third user-defined parameter is considered, �2 . 
The F-distribution is closely related to the variance of the 
two sets of data, and because in most cases, closely located 
data are correlated with each other, the �2 parameter takes 
this correlation into account when detecting change points. 
This parameter directs the algorithm to make it more dif-
ficult to select change points in the presence of auto-corre-
lation of nearby points. For more details on this piecewise 
linear regression model, see Section 3 of Myers et al. (2016).

When applying this technique to ocean data sets, smaller, 
“more discrete” data sets resulted in more abrupt changes 
than the larger data examples used in Myers et al. (2016). To 
address this issue, a wrapper function is added to the algo-
rithm that first searches for regions in the data, where two 
or more consecutive points have the same y-value, that is, 
flat regions of no change. The first data point of a flat region 
is automatically marked as a change point and the region of 
no change is marked as having no additional change points. 

RSS1 =RSScurr∪buff

RSS2 =RSScurr + RSSbuff.

F =

(

RSS1−RSS2

p2−p1

)

(

RSS2

Tcurr∪buff−p2

) ,

Fig. 1   Illustration of piecewise linear regression. The image on the 
left shows a blue line segment fit to the first three data points. The 
fourth point would introduce too much error to the linear regression 
model to be a good fit to the blue line. Therefore, a new line fit starts, 
as shown in green on the right, encompassing the third and fourth 
points. The fourth point is considered the change point
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The piecewise linear regression algorithm is applied to every 
set of remaining data points between these regions of no 
change to determine any additional change points in the 
data. An additional optional parameter, nflat , is introduced, 
ranging from two to n + 1 , where n is the size of the entire 
data set. Only flat regions above that number of points are 
considered and marked as having change points detected, 
with a value of n + 1 indicating that a flat region, regardless 
of size, should not be considered. When searching large data 
sets of hundreds or more points, flat regions of two or three 
points might not necessarily indicate significant change, so 
this parameter allows a user greater control over the change 
points detected. Additionally, the first and last data points of 
a data set are always marked as change points.

Results and discussion

To explore the capabilities of Fourier analysis, wavelet 
analysis and change detection, these methods are applied 
to six different data sets—four observational data sets and 
two simulation model-derived data sets. The simulated 
data examples, an analyses of Cinema databases extracted 
from a Model for Prediction Across Scales-Ocean (MPAS-
Ocean) (MPAS-Developers 2013) simulation (Petersen et al. 
2013), serve as pedagogical examples to illustrate the appli-
cation of the change detection algorithm to simulated ocean 
data. Fourier transform and continuous wavelet analysis of 
this data do not prove to be informative due to the small size 
of the data. To more directly compare Fourier and wavelet 
analysis to change detection, the observational data sets, 
data extrapolated from Antarctic ice cores (Bereiter et al. 
2015), d18O readings from the Benthic zone of 57 globally 
distributed locations (Lisiecki and Raymo 2005), the Oce-
anic Niño Index from the Niño 3.4 region (Oceanic Nino 
Index 2018) and the North Atlantic Oscillation Index (NAO 
2019) proved more valuable. These data sets range in size 
from many decades to millions of years, have well-studied 

periodic behavior and exhibit significant geological events 
throughout the data. The case studies below utilize the fast 
Fourier transform and continuous wavelet transform func-
tions from Matlab. The change detection model is imple-
mented in the R statistical environment.

A pedagogical example: change detection 
at multiple levels of ̨

To demonstrate the usefulness of piecewise linear regres-
sion change detection, it is applied to data derived from an 
MPAS-Ocean simulation. This multi-resolution ocean simu-
lation data set with identifiable eddies, currents and other 
turbulent features is commonly used in the ocean science 
community (Petersen et al. 2019; Golaz et al. 2019). A sum-
mary of the pipeline described in this example is shown in 
Fig. 2. From the MPAS-Ocean data, Cinema image data-
bases (Ahrens et al. 2014) of surface kinetic energy are 
extracted. A Cinema database is a collection of images, 
with each image a perspective projection of the simulation 
data to a 2D image plane. When generating the Cinema 
database, the scientist must ensure that the resolution of 
the images is sufficient for their future analysis, similar to 
how they must ensure the proper resolution of their origi-
nal simulation. For this MPAS-Ocean Cinema data set, the 
simulation is over-sampled to ensure that each component 
of the simulation is represented by several pixels, ensuring 
a high quality of input for image feature analysis. Contour 
features are then detected and extracted, using the method 
described by Banesh et al. (Banesh et al. 2017) to identify 
features of interest, (bright green regions in Fig. 3). The 
contour detection technique takes the grayscale version of a 
Cinema image as input. It applies a user-defined threshold 
value and assigns all pixels in the image above the thresh-
old to a value of one, and all pixels below the threshold to 
a value of zero. Every connected set of pixels with a value 
of one is considered to be a derived contour. The technique 
described is robust enough to track slow moving features 

Fig. 2   A diagram of the pipeline for the application of statistical 
change detection to Cinema databases extracted from an MPAS-
Ocean simulation. From the MPAS-Ocean simulation, temporal 
Cinema databases are extracted at a high image resolution. For each 

image, a set of contour features are extracted at varying isovalues for 
analysis. Finally, for a particular parameter, e.g., isovalue or time, 
and for a particular metric, e.g., number of features detected, change 
detection is applied for statistical insight
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over small deformations such as the curvature of the Earth’s 
surface. Change detection analysis is applied to a metric 
based on these contours. There are multiple reasons why a 
climate scientist might opt to use Cinema databases rather 
than analyzing the raw MPAS-Ocean data. Feature detec-
tion on high-resolution data can be time and labor intensive 
and may also require high-performance computing support 
for analysis (Woodring et al. 2015). Furthermore, many 
image processing techniques that are quick to implement 
and apply to two-dimensional data are much more complex 
and may not be available for three-dimensional data sets. 
The generation of a Cinema data set allows for quick and 
accurate results (Banesh et al. 2017). The application of 
the presented change detection technique to model-derived 
data shows the capability of the overall approach where a 
complex, multi-dimensional model is simplified for effective 
statistical analysis.

Figure 4 shows the results of the change detection algo-
rithm applied to the contour threshold parameter of the con-
tour detection algorithm presented in Banesh et al. (2017). 
By holding the B and �2 values constant, � is varied to iden-
tify various degrees of change. In simulated data studies, 
such preliminary steps might be necessary to narrow the 

parameter space before moving on to time-based analysis. 
Figure 4a detects only the highest levels of change, from 
zero to the maximum number of features detected. Fig-
ure 4b–d gradually detects smaller levels of change until 
users can determine a level that fits their needs. Each of the 
case studies examined in “Results and discussion” explores 
the capability of the change detection algorithm for a par-
ticular data set by varying the alpha parameter. This is meant 
to characterize the method that has been described and to 
show the flexibility of the algorithm through a pedagogical 
illustration. Though the case studies explore the usefulness 
of multiple alpha values, it is not expected that every user 
will find multiple values of alpha useful for their specific 
goals.

A pedagogical example: Eddy detection 
in the Agulhas region

Mesoscale ocean eddies are widely studied in ocean science. 
They influence the ocean’s biological network (Chelton et al. 
2011), can contribute to heat transport over several hundred 
miles (Volkov et al. 2008), affect weather conditions in the 
ocean, and impact various other aspects of ocean dynam-
ics (McWilliams 2008). A wide range of eddy detection 
and tracking techniques have been explored.  Chelton et al. 
(2007),  Williams et al. (2011) and  Petersen et al. (2013) 
employed variations of the Okubo–Weiss criterion to iden-
tify closed regions of uniform vorticity.  Chaigneau et al. 
(2008) and  Chen et al. (2011) used versions of a parameter-
based, geometric streamline clustering method, the winding-
angle method, to find closed streamlines.  Souza et al. (2011) 
compared the Okubo–Weiss and winding-angle approaches 
to a wavelet packet decomposition method [first introduced 
by  Doglioli et al. (2007)] to identify where one method 
might perform better than another.

The goal of this study is to identify when eddies spin 
off from the Agulhas Retroflection, an important task for 
understanding current and mesoscale eddy behavior. To 
accomplish this goal, a database of MPAS-Ocean Cinema 
“raw data” images for 60 time steps, each time step, 5 days 
apart, is explored. In a raw data image, each pixel value is 
set to the value of the underlying MPAS-Ocean simulation 
it represents and is not altered by a color map or shading/
lighting effects. Therefore, a contour detection algorithm 
that is applied to this image provides a more accurate rep-
resentation of the features present in the simulation. This 
study focuses on the region highlighted in Fig. 5 and selects 
a constant contour threshold value of 13 using the contour 
detection algorithm discussed “A pedagogical example: 
change detection at multiple levels of � ”. Time is mapped 
to the x-axis and the number of eddies detected on the y-axis. 
The following change detection parameter values are used: 
B = 3 , � = 1 , �2 = 1 , nflat = 2.

Fig. 3   MPAS-Ocean image from a Cinema database of surface 
kinetic energy, using a log-scale, hot–cold color map (chosen for its 
high discriminative power and minimal color vision issues  (Turton 
et al. 2017; Samsel et al. 2015; Ware et al. 2018)). Contour detection 
was applied with a threshold value of 77. Detected regions are high-
lighted in bright green
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Fig. 4   Contour detec-
tion (Banesh et al. 2017) 
applied to the MPAS-Ocean 
Cinema image shown in Fig. 3. 
The contour threshold value 
is varied from 0 to 255 on the 
x-axis and the number of fea-
tures detected is plotted on the 
y-axis. Change detection is then 
applied to this graph, holding B 
constant at 10 and �2 constant 
at 1, while varying � . The blue 
dots are the change points 
detected, and the red lines show 
the piecewise linear regression 
fits to the data. As � decreases, 
the number of change points 
decreases and only corresponds 
to the higher degrees of change 
in the data. As � increases, 
change points corresponding to 
smaller degrees of change are 
included. The parameter nflat is 
set to 257 as to have no impact 
on these results
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The results of change detection applied to this data are 
shown in Fig. 6, with change points depicted in green, 
orange or blue. Change points are categorized according 
to slope. When the slope from timeStep(change point − 1) 
to timeStep(change point) is positive, the change point is 
marked as green. When the slope is negative, it is marked 
as orange. All other change points are marked as blue. Of 
the 60 time steps analyzed, 10 are marked as change points 
with a positive slope. These generally indicate the start of 
increased activity in this region. The two main types of 
increased activity occur when a new eddy separates from 
the Agulhas Retroflection or when one eddy splits into 
multiple eddies during its trek across the South Atlan-
tic. Of these ten positive-slope change points, six are time 
steps when a new eddy is separating from the Agulhas Ret-
roflection; see Fig. 6b, d. A visual inspection determined 
that no false negatives are detected; time steps when a new 
eddy separates have not been missed. Effectively, this has 
reduced the search space in determining when new eddies 
emerge from the Agulhas Retroflection, from 60 time steps 
to 10. Though this is a smaller, representative example, for 
larger data sets, an automatic detection technique such as 
this can be invaluable.

Case study: carbon dioxide data in Antarctic ice 
cores

Bubbles of air trapped in yearly layers of snowfall in Ant-
arctica and Greenland provide scientists with a nearly 
million-year record of the Earth’s climate. Carbon dioxide 
(CO2 ) measurements show the cycles of ice ages approxi-
mately every 100,000 years and the tight relationship 
between CO2 and proxies for temperature such as oxy-
gen-18 isotopes (Jouzel et al. 2007; Sigman et al. 2010). 
Kilometer-long ice cores document past climate regimes 
and the transitions from glacial ages (ice ages) to intergla-
cial conditions. They are used to validate paleo-climate 
modeling studies and provide insights into the mecha-
nisms of climate dynamics for guiding climate predictions 
(Stocker et al. 2013).

The data used in this case study, Fig. 7a is a reconstruc-
tion of the atmospheric CO2 concentrations for the past 
800ka (kilo-annum, i.e., thousands of years), extracted from 
ice cores from Dome C in Antarctica (Bereiter et al. 2015). 
The values in this data set are a composite of values from a 
large set of ice cores. Figure 7 shows results when perform-
ing change detection for various levels of alpha (b)–(d), and 
it compares these results to results obtained with continuous 
wavelet analysis (e) and Fourier analysis (f). Time 0 is pre-
sent time, and 800ka is past time; events occurred chrono-
logically from the right to the left of the graph.

Since CO2 measurements portray the 100ka cyclical 
behavior very clearly, this is an ideal data set to explore the 
benefits of piecewise linear regression change point analysis. 
One of the advantages of this technique over other methods 
is its capability to provide directional and positional infor-
mation that correlate the change points to events in time. 
Figure 7b, when examining change at the highest levels, 
shows that the change points (black dotted lines) correspond 
to the drastic and almost immediate regime transitions in 
the data, the shifts from a glacial to interglacial period. Fast 
warming is plausible due to the ice–albedo feedback effect—
ice that is melting melts more ice, an effect that compounds 
quickly. However, cooling is much slower, as can be seen 
by the large regions with no change points (e.g., from about 
150ka to about 10ka). Additionally, the change point algo-
rithm provides the scientist with directionality when fitting 
linear segments to the data. These linear segments indicate 
that most of the larger regions without change (indicating 
more gradual change) occur when transitioning from an 
interglacial to glacial period, and very rarely the inverse. 
Change detection also gives users control over the level of 
change they are interested in. Similarly to determining the 
coastline of a continent with higher levels of resolution as 
one zooms in, the change in the data can be determined at 
finer levels of resolution by changing the � parameter, see 
Fig. 7b–d.

Fig. 5   MPAS-Ocean Cinema “raw data” image of kinetic surface 
energy. A log-scale, blue color map is used for visualization purposes 
only; actual analysis is conducted on the underlying data. The boxed 
region in yellow is the region of interest for this example
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In comparison, the continuous wavelet spectrum provides 
localized time-based information for frequencies in the data. 
Unlike the Fourier spectrum, which identifies major cycles 
in a data stream, but cannot correlate that information to 
specific time intervals, the continuous wavelet transform 
identifies at what time intervals certain frequencies are 
more or less prominent. The continuous wavelet transform 
can be thought of as the Fourier transform rotated by 90◦ 
counter-clockwise, so the x values now map to the y-axis, 
and replicated horizontally across time. In Fig. 7f, the Fou-
rier transform highlights the Milankovitch cycles at 100 ka, 
41 ka and 23 ka (red dotted lines) as some of the most promi-
nent cyclical characteristics of this data. However, with the 
continuous wavelet transform, see Fig. 7e, the 100 ka cycle 

is only prominent during the last 450 ka and not clearly 
defined for the time frame prior. This is visually evident in 
the difference in cyclical behavior in the first half of the data 
versus the second half. Though these are both informative 
techniques, they present a global view of the data that is dif-
ficult to relate to specific historical events.

Case study: oxygen isotopes in benthic sediment 
cores

This study examines a collection of oxygen-18 
isotope(d18O) records gathered and synthesized from 57 
deep sediment cores from around the world. The most com-
mon oxygen isotope is 16 O, while 18 O occurs in about 1 of 

Fig. 6   Eddies are tracked in the 
Agulhas Retroflection region 
over 60 time steps. Change 
points are shown as a combina-
tion of blue, green and orange, 
where green change points 
indicate a positive slope from 
the previous step to the change 
point, orange indicates a nega-
tive slope, and blue indicates a 
zero slope. Green change points 
indicate the start of increased 
activity in the region: either a 
new eddy separates from the 
Agulhas Retroflection, as in (b) 
and (d), or one eddy splits into 
multiple eddies, as in (c). The 
new eddies are identified by the 
red dots in (b)–(d)
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Fig. 7   Comparison of statisti-
cal analysis techniques for the 
composite CO

2
 records (NCEI 

2018). Given the data (a), 
change detection at multiple lev-
els (b)–(d) is defined by varying 
� from 1e−36 to 1e−10 . In these 
graphs, the change points are 
defined by the black dotted 
lines, and the liner regression 
fits by the red solid lines. The 
continuous wavelet transform 
(e) and Fourier transform (f), 
give the scientist a global view 
of the major cyclical elements
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500 atoms. The isotope d18O serves as a proxy for tempera-
ture because “heavy water,” H2

18 O, requires more energy 
to evaporate than “light water,” H2

16 O, which has a lighter 
isotope of oxygen. Ocean water is enriched with d18O com-
pared to water in rain and snowfall, and the ratio is a func-
tion of temperature. Sediment and ice core records show 
strong correlation between CO2 concentrations and tempera-
ture proxies over the last million years (Jouzel et al. 2007).

Figure 8 shows the results of the various statistical algo-
rithms applied to the Benthic d18O data set. Time 0 is 
present time, and 4000ka is time in the past (Lisiecki and 
Raymo 2005). The first 800 ka of this data set correlates 
strongly with the data used in the previous case study.

The change detection graphs shown in Fig. 8b–d progress 
from the highest levels of change to the more minute levels 
of change. Similar to the behavior in the previous data set, 
the change points (black dotted lines) in Fig. 8b capture the 
sudden regime shifts from the glacial to interglacial states 
over the past million years, and correspond to known major 
glacial events. The lack of change points in Fig. 8b before 
one million years ago signify a dramatic shift in behavior 
from the previous three million years to the most recent mil-
lion years. This shift is behavior is reflected in the continu-
ous wavelet transform; see Fig. 8e, where the frequencies at 
100 ka are much more prominent for the first million years 
than for the rest of the graph. However, other than noting that 
there is a significant lack of cyclical behavior in data past 
the most recent million years, the continuous wavelet trans-
form says little else about what is happening. In contrast, by 
progression through the change detection series shown in 
Fig. 8, the scientist can extract more information about the 
smaller fluctuations in the data, using break points between 
the rises and falls. In the process, the first few cycles over 
the most recent million years are also decomposed into finer 
components.

Case study: El‑Niño‑Southern Oscillation

The El-Niño-Southern Oscillation (ENSO) is an important 
characteristic of the coupled ocean–atmosphere system. 
Strictly speaking, the ENSO index is the anomaly of the 
monthly average sea surface temperature over a region of the 
equatorial Pacific, relative to the long-term mean, or clima-
tology, for that month (Oceanic Nino Index 2018). This sim-
ple measure has far-reaching correlations with temperature 
and rainfall. In the El Niño state (ENSO 2.4 index greater 
than 0.5), the southern USA is wet and cool, while the north-
eastern USA is warm, while during a La Niño state (ENSO 
2.4 index less than − 0.5) the opposite is true [Fig. 9a, Wang 
et al. (2017)].

ENSO is a classic example of oscillatory climate behav-
ior, with periodic regime shifts from one state to another. 
Typical ENSO cycles last for 2–7 years, as can be seen in 

the Fourier transform (Fig. 9f), but the wavelet transform 
reveals that the exact nature of the periodicity varies from 
decade to decade (Fig. 9e). The correct state of ENSO is a 
critical factor in seasonal predictions, but the exact driving 
mechanisms of the timing remain poorly understood. The 
change point detection analysis adds to the traditional Fou-
rier and wavelet analyses in that it highlights trends and the 
boundaries between them. For a low alpha value of 1e−4 , 
change point detection reveals the fastest changes from El 
Nino to La Nino, and vice versa (Fig. 9b). For the mid alpha 
values the algorithm fits trends of 3–5 years (Fig. 9c), and 
for a high alpha, it fits regular trends of 2–3 years (Fig. 9d). 
The piecewise linear regression at varying alpha values 
highlights the span and direction of ENSO oscillations. As 
the oscillations in this data are not as dramatic as the previ-
ous two case studies, the change detection algorithm may 
sometimes combine smaller peaks into a singular region of 
relatively consistent behavior.

Case study: North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is the most promi-
nent pattern of atmospheric variability at northern latitudes 
during the cold season (November–April). It sets the posi-
tion of the jet stream, and is therefore highly correlated with 
precipitation and surface air temperatures throughout North 
America and Europe. The NAO index is defined as the nor-
malized sea level pressure difference between the Azores in 
the subtropics and Iceland in the North Atlantic.

The data examined in this study is a 12-month moving 
average of the NAO Index (NAO 2019). Figure 10 shows 
the results of applying different change detection parametric 
combinations (b)–(d), and how they compare to a continuous 
wavelet transform plot (e) and to Fourier analysis (f). From 
the Fourier and continuous wavelet analysis, it can be seen 
that the majority of the spectral power lies between 1- and 
10-year periods that the spectrum is slightly red (stronger at 
lower frequencies). The NAO is not periodic at any particu-
lar frequency, because these dynamics arise from climate 
noise rather that oscillatory processes (Hurrell et al. 2003). 
The lack of periodicity can also be seen in the results of the 
change detection algorithm (Fig. 10b–d), where the length 
of the lines vary substantially. In the higher values of alpha, 
Fig. 10c, d, the break points correspond to more drastic 
regime shifts, from very high NAO Index to very low NAO 
Index values (or vice versa).

From these results, it is clear that the algorithm presented 
in this paper leads to a very different set of results when 
compared to Tomé and Miranda (2004) for several reasons. 
First and foremost, this algorithm can be tuned to capture 
the major shifts in the data, the anomalies that highlight the 
points in data history that correspond to the most drastic 
changes. The algorithm presented by Tomé and Miranda 
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Fig. 8   Comparison of statistical 
analysis techniques for the d18O 
Benthic Stack data (Lisiecki and 
Raymo 2005). Given the data 
(a), change detection at multiple 
levels (b)–(d), is defined by 
varying � from 0.1 to 0.9. In 
these graphs, the change points 
are defined by the black dotted 
lines, and the liner regression 
fits, by the red solid lines. The 
continuous wavelet transform 
(e), and Fourier transform (f), 
give the scientist a global view 
of the major cyclical elements
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Fig. 9   Comparison of statisti-
cal analysis techniques for the 
Oceanic Niño Index (NinoData 
2018). Given the data (a), 
change detection at multiple 
levels (b)–(d), is defined by 
varying � from 1e−4 to 1. In 
these graphs, the change points 
are defined by the black dotted 
lines, and the linear regression 
fits by the red solid lines. The 
continuous wavelet transform 
(e) and Fourier transform (f) 
give the scientist a global view 
of the major cyclical elements
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Fig. 10   Comparison of statisti-
cal analysis techniques for the 
12-month moving average of 
the North Atlantic Oscilla-
tion (NAO 2019). Given the 
data (a), change detection 
at multiple levels (b)–(d) is 
defined by varying � from 1e−3 
to 1e−1 . In these graphs, the 
change points are defined by the 
black dotted lines, and the liner 
regression fits by the red solid 
lines. The continuous wave-
let transform (e) and Fourier 
transform (f) give the scientist 
a global view of the major cycli-
cal elements
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(2004) is optimized to identify the larger trends in data 
rather than more localized events. Additionally, because the 
algorithm presented here does not require the user to define 
a minimum time period between each break point, as Tomé 
and Miranda (2004) does, it does not force a ‘pseudo-fre-
quency’ on the results based on that parameter. Our results 
are entirely data driven, whereas defining a minimum time 
between break points injects a underlying periodic assump-
tion to the data. The authors in Tomé and Miranda (2004) 
acknowledge in their paper that defining a minimum time 
between break points can lead to false results, when a break 
point is defined by that restriction rather than the data itself.

Discussion

Based on the presented case studies, it can be concluded 
that a piecewise linear regression change detection algorithm 
provides a unique perspective for geophysical data analysis 
that cannot be attained with Fourier transform or continuous 
wavelet analysis. This tool provides an analytic, reproducible 
method for identifying points of change in a mathematically 
meaningful way. Identifying break points and determining if 
and how they correlate to the Fourier and continuous wave-
let transform results provided the scientists with a unique 
perspective that may lead to a more insightful examination 
of their data. Table 1 summarizes the advantages and disad-
vantages of the discussed techniques.

Conclusions

The four case studies and other examples presented in the 
paper show that piecewise linear regression change point 
detection allows scientists to explore cyclical geophysical 
data in distinctive ways when compared to Fourier or con-
tinuous wavelet transforms. Additionally, it can be inferred 
that linear change detection algorithms are more suited for 
cyclical data because it captures the behavior of regime 

shifts in the data that might not be as apparent with other 
change detection methods. In the future, the comparative 
analysis presented in this paper can be expanded to direc-
tional wavelets and other statistical methods. A mapping of 
the benefits of one technique over another would be useful 
for a scientist looking to add another tool to their analysis 
arsenal. Future work also involves a deeper analysis of the 
results of the change detection algorithm. Results can be 
ordered to understand the largest change in data values, cat-
egorized in a histogram to understand trends in the data and 
compared with known historical events to gain more insight 
from geophysical data. This technique can also be expanded 
to multi-variate, n-dimensional climate and geological data 
for a more advanced analysis.
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