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Abstract
Mine water inrush is one of the major geological hazards that threaten safe production in coal mines. The accurate identi-
fication of mine water inrush sources plays a vital role in mine water disaster control, and it is the key to preventing mine 
water inrush incidents. Ninety-three water samples were extracted from the three types of aquifers in the Qinan coal mine. 
The cluster analysis method was then used to analyze 82 of the original water samples, and the other 11 water samples that 
did not meet the requirements were removed. Then, the remaining 82 water samples were regarded as training samples, and 
the principal component analysis was completed. Taking the scores of the principal components as the independent vari-
able and the types of water inrush sources as the dependent variable, the multiple logistic regression recognition model was 
established. Meanwhile, this recognition model was used to recognize the types of mine water inrush sources and verify the 
recognition accuracy for the 82 training samples. The comprehensive recognition accuracy reached 86.6%, which is much 
higher than the traditional recognition methods of water inrush sources. Based on cluster analysis, the multiple logistic 
regression recognition model fully considers the ion content measurement errors and the complex relationships between the 
internal ions, and this recognition model is more reasonable and improves the accuracy of water inrush source recognition. 
This paper provides a new method for recognizing the problem of water inrush sources, which also provides an effective 
basis for mine water inrush prevention and control.

Keywords  Mine water inrush · Recognition of water source · Ion contents · Principal component analysis · Model 
validation

Introduction

Mine water hazards are one of the main geological hazards 
that can threaten the safety of coal mining. Coal mine water 
inrush often causes the partial submergence of a coal mine, 
causing huge economic losses and human casualties (Gui 
and Lin 2016; Hu et al. 2011; Wu et al. 2016). The Qinan 
coal mine is located in the Suxian mining area. Since the 

coal mine has been operational, there have been fewer occur-
rences of water bursting, and the water inflow has not been 
large. However, the Taoyuan coal mine, which belongs to the 
same hydrogeological unit as the Qinan coal mine, experi-
enced a mine water inrush accident with a maximum water 
inflow of 29,000 m3/h in 2013, which caused a serious flood-
ing incident. To prevent the occurrence of similar large-scale 
mine water inrush accidents in the Qinan coal mine, it is 
necessary to carry out mine water prevention and control 
work. Among these tasks, the accurate judgment of mine 
water inrush sources is a prerequisite of coal mine water 
inrush prevention and control work, as well as an important 
part of preventing mine water inrush accidents (Ganyaglo 
et al. 2011; Zhang et al. 2017).

For a long time, experts and scholars had proposed many 
methods for judging water inrush sources in the problem of 
“Recognition of mine water inrush”. Water inrush source 
recognition methods include geological analysis, hydro-
dynamic analysis, hydrochemical characteristics analysis, 
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water temperature, water level dynamic observation and 
geophysical prospecting (Biswas and Sharma 2017; Farn-
ham et al. 2000; Panagopoulos et al. 2016; Keskin et al. 
2015). Among them, the hydrochemical characteristics 
analysis method is a simple and effective way to identify 
a mine water inrush source. Li et al. (2017) used a hydro-
chemical approach to ascertain the mine water sources and 
to locate the potential seawater inrush seepage channels in 
the Xinli Mine. Wei et al. (2015) identifies a water source by 
analyzing hydrochemical characteristic ions at water inrush 
points. But, at present, the methods of multivariate statisti-
cal analysis have been relatively mature. And the following 
methods are applied mostly in multivariate statistical analy-
sis: principal component analysis reduces an original set of 
variables into a smaller number of uncorrelated components 
without losing much information (Jolliffe 2002; Kim et al. 
2005; Meglen 1992; Qian et al. 2016), cluster analysis can 
measure the similarities among samples (Bu et al. 2010; 
Reghunath et al. 2002), discriminant analysis (includes Dis-
tance discriminant, Fisher discriminant and Bayes discrimi-
nant) can establish an intuitive discriminant relation (Chen 
et al. 2009; Huang and Chen 2011; Lu et al. 2012; Huang 
and Wang 2018). Xu et al. (2012) selected six sets of ions 
(K+ + Na+, Ca2+, Mg2+, Cl−, SO4

2−, HCO3
−) and their total 

dissolved solids (TDS) as discriminant factors for design-
ing a GRA–SDA coupled model. Liu et al. (2013) proposed 
a Fisher recognition analysis for identifying a coal mining 
inrush water source under mining-induced disturbances. A 
comprehensive identification model combining hydrochem-
istry analysis, water source detection, and water channel 
exploration was proposed by Liu et al. (2018). Based on the 
constant ion content test results, including the pH values and 
total dissolved solid (TDS), Yin et al. (2006) used systemic 
clustering and stepwise distinguishing to analyze the sources 
of the inrush water in the Wanbei Mining area. The PCA–BP 
neural network model, based on laser-induced fluorescence 
technology, was also used to identify a water inrush source 
by Wang et al. (2017a, b).

However, the current recognition methods of mine 
water inrush sources did not fully consider the measure-
ment errors of the ion content caused by external factors 
and have ignored the complex relationships between the 
ions. These recognition methods have certain deviations 
from the actual identification process for mine water 
inrush sources. Therefore, the objectives of this paper are 
to propose a new method for the accurate identification of 
mine water inrush source, and it is the multiple logistic 
regression recognition model based on cluster analysis, 
which fully considers the measurement errors of the ion 
content and the complex internal relationships of ions. 
This method uses cluster analysis to measure the similari-
ties among original water samples, and its purpose is to 
screen the original water samples. Principal component 

analysis is used to extract the information of hydrochemi-
cal indexes, and multiple correlated indicator variables 
are converted into new independent sample indicators. 
The multiple logistic regression recognition model can 
predict and classify based on existing water samples. So 
it can effectively extract the variation information of the 
original water samples, eliminate the influence caused by 
the superposition of the information among variables and 
realize the recognition of mine water inrush sources. In 
addition, the recognition model was applied to the water 
samples to be discriminated to verify its accuracy. The 
results show that the multiple logistic regression recogni-
tion model based on cluster analysis has high accuracy. 
And it is easy to operate in the actual water source dis-
crimination process, with straightforward discrimination 
results.

Hydrogeological conditions in the study 
area

The Qinan coal mine is located in the middle of Huaibei 
plain, and it is distributed in the Huaihe River valley, posi-
tions shown in Fig. 1. The Huihe River, a tributary of the 
Huaihe River, flows through the mining area, and It has high 
vegetation coverage. The study area belongs to the north 
temperature monsoon region ocean—continental climate 
and has distinctive four seasons. As a typical central plain 
climate, the annual average temperature and annual average 
precipitation are about 14.6 °C and 756 mm, respectively. 
Rainfall is concentrated in July and August. The evaporation 
capacity is higher than the precipitation, and the annual aver-
age relative humidity is 71%.

The Qinan coal mine is located in the southwest region 
of the Sunan syncline. The inclination of the strata in the 
northern coal mine is steep, generally ranging from 20° to 
30°. However, the inclination of the strata in the middle and 
eastern regions of the Qinan coal mine is gentler, generally 
ranging from 7° to 15°. The coal-bearing strata within the 
study area are covered by a loose layer from the Cenozoic 
period.

The groundwater regime in the mining areas of Qinan 
consists of four subsystems: the loose aquifer of the Ceno-
zoic, the coal-bearing sandstone fissure aquifer of the Per-
mian, the limestone-karst fissure aquifer in the Taiyuan for-
mation of the Carboniferous and the limestone karst fracture 
aquifer of the Ordovician. The hydrogeological characteris-
tics of the aquifer and aquifuge are shown in Fig. 2.

Among them, the limestone karst fracture aquifer of the 
Ordovician is furthest away from the coal seam. Thus, under 
normal conditions, there is no direct water filling effect on 
the coal mine.
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Materials and methods

Sampling and test

We collected a total of 93 original water samples from the 
Qinan coal mine during the period of 2000–2017 (positions 
shown in Fig. 1), and the 93 original water samples were 
evenly distributed between 2000 and 2017. These water sam-
ples were used to establish the recognition model. Among 
them, there were 9 water samples of the fourth aquifer in the 
loose layer of the Cenozoic (referred to as “the fourth aqui-
fer”), 39 water samples of the coal-bearing sandstone fis-
sure aquifer of the Permian (referred to as “the coal-bearing 

sandstone aquifer”) and 45 water samples of the limestone-
karst fissure aquifer in the Taiyuan formation of the Carbon-
iferous (referred to as “the limestone aquifer”). In addition, 
16 water samples from the Qinan mining area were taken 
from the site for verification model. Among them, there were 
2 water samples of the fourth aquifer, 4 water samples of the 
coal-bearing sandstone aquifer and 10 water samples of the 
limestone aquifer.

When the water samples were collected, plastic bot-
tles and covers were rinsed three to five times using sam-
pling water. Later, water samples were stored in a clean 
550 ml plastic bottle. Before the test, the water samples 
were processed at low temperature to inhibit the redox 

Fig. 1   Map showing the location of the study area, with the distribution of faults, folds, and sampling sites within the Qinan coal mine
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According to the pumping test data, the unit water inflow q91 is equal
to 0.00044~2.389 L/s·m, and the water-rich is weak to strong. The
permeability coefficient K is equal to 0.011~29.553 m/d, and the
water conductivity is weak to strong. The salinity is 1.955~1.841 g/L,
and the water quality type is SO4

2-·Cl--Ca2+·Na+

According to the pumping test data,the unit water inflow q91 is equal
to 0.0004~0.002L/s·m, and the water-rich is weak. The permeability
coefficient K is equal to 0.00992m/d, the salinity is 0.759~1.721g/L,
and the water quality type is SO4

2-·HCO3
--Na+

The lithology is generally mudstone and siltstone. The lithology of
layer is dense, and the impermeability is better

According to the pumping test data, the unit water inflow q91 is equal
to 0.000091~0.001L/s·m,the permeability coefficient K is equal to
0.000208~0.00321m/d, and the salinity is 0.542~2.272g/L, and the
water quality type is SO4

2-·Cl--Ca2+·Na+ or SO4
2-·HCO3

--Na+

According to the pumping test data,the unit water inflow q91 is equal
to 0.06919~0.4233L/s·m, and the water-rich is weak to medium. The
permeability coefficient K is equal to 0.1853~1.8755m/d, and the
water quality type are SO4

2-·Cl-·HCO3
--K++Na+ and

SO4
2-·Cl--K++Na+·Ca2+

The lithology is generally mudstone and siltstone,with 1 to 2
sandstone, and it is relatively dense. In general, the impermeability is
better

Fig. 2   The synthesis column map of aquifer and aquifuge
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reaction and biochemical action (Chen et al. 2013; Faghih 
Nasiri et al. 2018). The conventional water chemistry tests 
include the contents of K+ + Na+, Ca2+, Mg2+, Cl−, SO4

2−, 
HCO3

− and CO3
2−. Among them, HCO3

− and CO3
2− were 

tested by dilute sulfuric acid-methyl orange titrimetry, 
Cl− and SO4

2− were tested by ion chromatography, Ca2+ and 
Mg2+ were tested by EDTA titration method and K+ + Na+ 
was tested by flame atomic absorption spectrophotometry. 
It was known from hydrogeological data that the 109 water 
samples were taken from drain holes, hydrogeological obser-
vation wells, extracting coal faces and underground road-
ways. The water levels of the observation wells did not show 
any abnormal changes during the collection of water sam-
ples. As such, this study was only concerned with the 109 
water samples from a static perspective. The water sample 
data are shown in Table 1. Among them, X1, X2, X3, X4, X5, 
X6 and X7 represent the contents of K+ + Na+, Ca2+, Mg2+, 
Cl−, SO4

2−, HCO3
− and CO3

2−, respectively.

Cluster analysis

The principle of cluster analysis is that n different sam-
ples are regarded as n different classes, and the two classes 
with the closest properties (or the shortest distance) can be 
merged into the same class. Then, the next two classes with 
the closest properties (or the shortest distance), from the 
n − 1 classes, are combined. This process continues until 
all the samples have been merged into a single class. In the 
cluster analysis, we usually divide it into Q-type cluster 
analysis and R-type cluster analysis based on the differences 
of classification objects. And Q-type cluster analysis is the 
classification of samples, while R-type cluster analysis is 
the classification of variables. The basic algorithm steps of 
cluster analysis are shown below:

1.	 At the beginning, each sample is a separate class, and 
the distance matrix between two pairs of n classes is 
calculated, denoted as:

2.	 Find the minimum distance value dij in the distance 
matrix, and denoted as di1j1 , and combine the i1 and j1 
classes into the n − 1 class.

3.	 Calculate the distance between class n − 1 and other 
classes;

4.	 Merge rows i1, j1 in the initial distance matrix D0 into 
new row, and columns i1, j1 into new column, the num-

D0 =

⎡
⎢⎢⎢⎢⎢⎣

0

d21 0

d31 d32 0

⋮ ⋮ ⋮

dn1 dn2 dn3 … 0

⎤
⎥⎥⎥⎥⎥⎦

.

ber of classes is reduced by one. We can get the new 
distance matrix D1.

5.	 Repeat steps (2) (3) and (4) until n samples are clustered 
into one class.

6.	 The clustering process was made into a cluster analy-
sis diagram. And the original samples were screened 
according to the cluster analysis diagram to eliminate 
the samples that did not meet the requirements.

Principal component analysis

Principal component analysis is a method for original data 
compression and characteristic information extraction. It can 
replace many correlated variables with several comprehensive 
variables. These comprehensive variables not only express a 
great amount of information of the original variables but can 
also remain mutually independent (Jolliffe 2002; Kim et al. 
2005; Meglen 1992; Qian et al. 2016; Huang et al. 2019). The 
basic principle is:

If X1, X2, …, Xn are defined as the original variables and Y1, 
Y2, …, Ym (m ≤ n) are new variables, the relationship between 
the original and new variables is

where Yi is independent from Yj (i ≠ j; i, j = 1, 2, …, m). Y1 is 
the item with the highest variance in all linear combinations 
of X1, X2, …, Xn, and Y2 is the item with the maximum vari-
ance in all linear combinations of X1, X2, …, Xn independent 
from Y1. The rest can be performed in the same way. The 
new variables Y1, Y2, …, Ym are the first, second, …, and 
the m principal component of the original variables X1, X2, 
…, Xn.

Multiple logistic regression analysis

Among n multiple logistic regression analysis models, assum-
ing Pi (i = 1, 2, …, n) is the probability of the sample belonging 
to the type i (i = 1, 2, …, n). Taking the reference type that 
the sample belongs to type n, the multiple logistic regression 
analysis models are as follows (Wang 2010; Wang and Guo 
2001; Zhang 2002):

(1)

Y1 = A11X1 + A12X2 +⋯ + A1nXn

Y2 = A21X1 + A22X2 +⋯ + A2nXn

…

Ym = Am1X1 + Am2X2 +⋯ + AmnXn

⎫⎪⎬⎪⎭
,

(2)

G1 = ln
P1

Pn

= A1X1 + A2X2 +⋯ + AtXt + C

G2 = ln
P2

Pn

= B1X1 + B2X2 +⋯ + BtXt + D

…

Gn = ln
Pn

Pn

= 0

⎫
⎪⎪⎬⎪⎪⎭

.
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Table 1   The water inrush source samples from the Qinan coal mine

N X1 X2 X3 X4 X5 X6 X7 N X1 X2 X3 X4 X5 X6 X7

1 (The fourth aquifer) 3 (The limestone aquifer)
 1 63.6 63.4 34.2 162.4 22.7 32.1 457.9  49 258.1 141.5 82.3 511.1 257.3 600.9 418.8
 2 46.4 48.1 26.3 15.4 10.7 394.1 0  50 249.5 177.9 95.9 526.4 261.6 627.3 449.1
 3 189.8 122.7 84.9 400.2 192.6 486.4 359.8  51 236.0 210.8 91.9 542.0 252.9 672.9 451.6
 4 233.8 143.8 102.9 203.3 648.7 402.7 0  52 250.2 223.4 89.3 565.5 261.6 699.7 463.8
 5 76.71 91.1 60.5 61.7 220.6 399.3 0  53 197.4 189.9 95.9 523.9 265.9 648.3 448.1
 6 207.9 33.8 65.3 309.6 113.4 357.7 292.9  54 257.5 192.8 90.8 545.7 256.6 694.4 418.8
 7 49.8 21.6 35.8 17.9 36.2 258.7 19.2  55 259.0 202.6 87.5 550.8 254.3 704.7 417.4
 8 581.3 94.3 67.6 74.9 1343.5 333.1 0  56 284.9 150.1 85.9 524.4 257.9 622.3 422.3
 9 712.6 24.8 3.3 135.3 1232.7 123.9 31.7  57 314.6 78.2 41.0 227.4 309.5 495.5 0
 A1 86.7 95 56.5 63 218 389.32 0  58 297.6 99.9 68.7 245.7 446.6 449.1 0
 A2 197.9 29 61.3 319 113 357.74 292.9  59 261.3 100.8 85.1 242.3 448.2 441.8 0

2 (The coal-bearing sandstone aquifer)  60 261.3 100.8 85.1 242.3 448.2 441.8 0
 10 602.6 6.7 2.5 611.7 100.7 342.4 993.1  61 353.6 101.9 67.9 239.5 455.2 444.2 0
 11 463.4 3.5 1.5 528.3 98.7 9.1 922.8  62 192.5 103.2 67.6 234.4 269.2 422.3 0
 12 368.2 4.6 3.0 376.5 110.7 6.2 809.4  63 349.5 110.7 71.4 239.6 591.9 461.3 0
 13 136.9 65.9 29.9 232.7 85.1 89.3 453.9  64 295.1 80.4 52.9 219.3 414.1 390.5 0
 14 321.6 3.9 2.6 331.2 116.1 2.5 628.8  65 357.4 19.7 9.1 248.9 199.6 374.8 0
 15 319.5 4.8 3.2 336.9 127.2 13.2 664.9  66 259.4 183.7 94.9 262.3 673.0 422.4 0
 16 438.1 10.8 4.5 454.7 254.1 236.8 418.4  67 229.9 203.9 82.7 253.1 644.6 393.0 0
 17 438.5 10.8 4.6 455.2 253.2 237.9 422.3  68 284.3 157.1 87.1 256.3 646.2 410.7 0
 18 437.7 11.2 4.9 455.1 254.9 237.9 414.9  69 347.2 20.0 12.2 226.0 116.9 500.4 4.9
 19 467.8 12.0 5.7 486.4 251.6 286.9 425.9  70 277.9 189.2 75.4 255.1 650.3 436.3 0
 20 418.9 9.8 4.4 439.3 245.9 205.8 412.5  71 295.4 192.5 73.4 251.1 638.4 497.3 0
 21 302.8 7.4 2.6 313.2 78.14 34.6 593.1  72 483.3 45.6 13.8 225.5 245.3 793.8 0
 22 261.8 20.2 15.5 297.9 117.3 12.4 510.1  73 214.9 173.6 91.8 247.6 611.6 358.1 0
 23 261.0 29.4 26.0 316.9 134.6 66.3 520.9  74 157.7 247.3 109.1 255.4 677.9 422.0 0
 24 399.1 8.9 3.1 411.6 232.8 197.6 378.3  75 162.2 251.2 105.5 253.6 680.8 428.9 0
 25 429.4 6.9 4.9 442.1 254.8 233.4 360.2  76 151.8 248.3 107.7 253.6 667.2 419.7 0
 26 440.3 66.2 28.88 536.9 246.1 494.7 468.6  77 174.1 238.1 110.5 256.2 685.7 433.4 0
 27 396.6 36.8 24.3 459.8 250.5 402.5 351.5  78 161.8 239.5 112.0 251.9 679.1 428.9 0
 28 202.5 16.2 11.6 321.7 160.1 7.41 290.5  79 166.6 244.4 107.3 252.7 684.5 424.3 0
 29 293.5 6.8 6.9 307.8 134.1 123.07 446.7  80 164.7 237.5 110.3 257.1 676.7 415.5 0
 30 668.2 0 2.8 84.1 85.2 578.5 473.0  81 173.7 240.5 106.1 252.7 693.6 413.4 0
 31 375.9 104.2 50.0 232.6 561.0 454.0 0  82 279.5 19.9 14.6 220.9 27.2 463.8 0
 32 250.5 13.6 11.9 89.3 3.7 585.7 10.7  83 28.0 24.6 18.6 220.8 49.4 425.4 23.0
 33 282.2 8.9 4.4 88.3 6.6 583.6 26.3  84 268.9 21.8 15.1 225.4 8.2 418.4 23.7
 34 306.8 4.7 2.4 87.4 12.8 594.2 39.8  85 28.0 24.6 18.6 220.8 49.4 425.4 23.0
 35 264.5 11.0 6.7 80.7 17.7 581.1 13.3  86 391.6 19.8 13.0 221.6 158.9 512.4 34.1
 36 578.1 44.4 21.5 157.7 309.9 1114.3 0  87 370.0 10.3 4.8 152.5 140.4 547.0 25.0
 37 525.4 15.2 17.5 163.1 119.8 923.2 85.1  88 180.5 102.3 82.6 68.0 564.7 317.3 26.4
 38 528.9 7.2 3.0 181.7 407.5 442.4 82.8  89 371.7 73.6 49.0 213.4 514.9 440.8 0
 39 285.5 91.4 65.1 214.2 402.1 485.8 0  90 311.4 18.2 15.4 206.4 113.2 463.9 0
 40 239.6 8.0 7.0 91.2 27.6 468.2 19.6  91 160.2 185.8 105.0 221.6 630.6 337.3 0
 41 242.5 8.9 12.2 144.4 2.9 449.6 18.9  92 30.9 203.4 175.3 235.8 652.4 346.8 0
 42 347.1 40.3 33.2 213.7 417.4 314.9 0  93 210.0 211.4 87.5 248.2 630.6 337.3 0
 43 238.5 24.6 22.1 63.4 78.6 576.0 16.2  A7 276.9 214 81.5 278 667 428.1 5.17
 44 241.8 8.7 17.3 59.9 44.9 541.9 26.4  A8 254.5 198 78.1 243 614 430.5 5.32
 45 366.0 11.9 3.9 138.7 215.7 515.0 0  A9 270.7 215 82.9 265 606 428.1 4.19
 46 248.9 19.8 13.4 68.8 57.2 549.3 25.0  A10 258.4 201 79.3 255 619 394.6 4.53
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Because the sum of the probabilities that the samples 
belong to n types is 1, so we could get Formula (3):

Simultaneous Formulas (2) and (3), we were then able to 
derive the following Formula (4):

where, P1, P1, …, Pn are the probability functions of the 
respective recognition models of types 1, 2, …, n; Xi repre-
sent the value of independent variables; Ai and Bi represent 
the coefficient of constant ion contents, respectively.

Establishment and verification 
of recognition model

The sequence of steps taken using the water inrush source 
recognition methodology is described as follows (Fig. 3).

Q‑type cluster analysis of the original water samples

To reduce the deviation of ion content caused by the exter-
nal factors, for example, polluted water samples, large water 
evaporation because of poor sealing of the container, and 
the measurement deviation caused by human error in the 
testing process, the ion content of the original water sam-
ples were used as the analysis variables, we used MATLAB 
to complete the Q-type cluster analysis of the 93 original 
water samples. The results of the cluster analysis are shown 
in Fig. 4.

(3)P1 + P2 +⋯Pn = 1.

(4)

P1 =
eG1

1 + eG1 + eG2 +⋯ + eGn−1

P2 =
eG2

1 + eG1 + eG2 +⋯ + eGn−1

…

Pn =
1

1 + eG1 + eG2 +⋯ + eGn−1

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

From the results of Q-type cluster analysis of the origi-
nal water samples displayed in Fig. 4 and according to the 
distance between the original water samples (Güler et al. 
2002). We can re-classify the original water samples and 
get new classification results. Among them, there are differ-
ences between the new classification results and the original 
classification results for 93 original water samples, and those 
water samples are 1, 4, 13, 31, 38, 39, 42, 45, 72, 82 and 

X1, X2, X3, X4, X5, X6 and X7 represent the contents of K+ + Na+, Ca2+, Mg2+, Cl−, SO4
2−, HCO3

− and CO3
2−, respectively

Table 1   (continued)

N X1 X2 X3 X4 X5 X6 X7 N X1 X2 X3 X4 X5 X6 X7

 47 200.0 15.0 23.0 75.8 36.6 457.0 29.5  A11 269.9 209 80.5 262 608 425.7 5.95
 48 248.3 8.7 13.5 97.0 0.4 507.8 38.6  A12 256.4 201 76.1 248 596 428.1 5.36
 A3 264.0 29 26.4 317 135 66.34 520.8  A13 386.5 109 46.4 252 349 576.4 5.25
 A4 379.1 9 3.1 412 233 197.6 378.3  A14 371.4 98 45.4 231 376 552.5 5.38
 A5 459.4 7 4.9 442 255 233.4 360.2  A15 327.4 134 58.3 241 404 516.6 4.96
 A6 427.3 66 28.9 537 246 494.7 468.6  A16 287.2 167 79.2 244 600 428.1 4.89

Fig. 3   Flowchart of mine water inrush source recognition methodol-
ogy
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84. In the process of discrimination, these water samples 
will have an impact on the results of discrimination, so we 
eliminate these water samples which are not consistent with 
the original classification results, and improve the accuracy 
of discrimination.

R‑type cluster analysis of training samples

This paper used MATLAB to complete the R-type cluster 
analysis of the training samples. We regarded the content of 
K+ + Na+, Ca2+, Mg2+, Cl−, SO4

2−, HCO3
− and CO3

2− as the 
clustering bases, and the R-type cluster analysis results for 
the three types of aquifer were obtained (Fig. 5).

It can be seen from the results of the R-type cluster analy-
sis that the degree of similarity is high between Ca2+ and 
Mg2+ and between Cl− and CO3

2− in the fourth aquifer. In 
addition, there is a relationship between certain ions in the 
coal-bearing sandstone aquifer, Ca2+, Mg2+ and SO4

2− are 
closely related, as are K+ + Na+ and Cl−. The cause of this 
phenomenon is the origin of the samples: Ca2+, Mg2+ and 
SO4

2− were derived from the dissolution of sulfate rocks, and 
K+ + Na+ and Cl− came from soluble sodium–potassium salt 
rocks. In the limestone aquifer, ions such as Ca2+ and Mg2+ 
as well as K+ + Na+ and Cl− are also closely related. The rea-
son being that Ca2+ and Mg2+ came from the partial dissolu-
tion of insoluble carbonate rocks. However, the relationship 
between CO3

2−, Ca2+ and Mg2+ was relatively small because 
of the reaction of CO3

2− + H2O ⇌ HCO3
− + OH− proceed-

ing in the positive direction when the concentration of 
CO3

2− is increased. Thus, the concentration of CO3
2− in the 

groundwater decreased, and the relationship between Ca2+ 
and Mg2+ was low. It is consistent with the alkalinity of the 
water samples from the limestone-karst fissure aquifer in the 
Taiyuan formation of the Carboniferous.

The ions in coal mine water have certain internal connec-
tions between them, and these inherent connections were 
often ignored in the process of establishing recognition 
models of mine water inrush sources, which led to exces-
sive deviation in the practical applications of recognition 
models for water inrush sources. This deviation has brought 
a series of serious influences on the actual production of coal 
mines. To reduce this deviation, the training samples were 
preprocessed using the method of factor analysis. Finally, 
the recognition model was established.

Principal component analysis of the training 
samples

To verify the results of the R-type cluster analysis, a Pearson 
correlation analysis was conducted on the training samples 
(Chen et al. 2013; Huang and Wang 2018; Kim et al. 2005; 
Qian et al. 2016), and the Pearson correction coefficient 
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Fig. 4   Q-type cluster analysis diagram
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of the three types of water samples were then obtained 
(Tables 2, 3, 4).

From Tables 2, 3 and 4, we could see that the correla-
tions between some ions in each aquifer were remarkable 
(Qian et al. 2016). In the water sample of the fourth aquifer, 
the concentrations of Ca2+ and Mg2+ were positively cor-
related (r = 0.767, p < 0.01), Cl− and CO3

2− were signifi-
cantly correlated (r = 0.971, p < 0.01); In the water sample 
of the coal-bearing sandstone aquifer, both Ca2+ and Mg2+ 
were moderately correlated with SO4

2− (Ca2+ vs. SO4
2−: 

r = 0.399, p < 0.05; Mg2+ vs. SO4
2−: r = 0.359, p < 0.05; 

Table 3), and K+ + Na+ showed positive correlations with 
SO4

2− (r = 0.481, p < 0.01). In addition, Ca2+ and Mg2+ were 
also significant correlations (r = 0.877, p < 0.01) in the water 
sample of the limestone aquifer. Comparing the results of the 
R-type cluster analysis with the Pearson correlation coef-
ficient, the correlation between the ions of each aquifer was 
basically consistent. It was, therefore, fully suggested that 
there is an internal connection between the ions in coal mine 
water.

To solve any problems with the connections among inter-
nal ions, the factor analysis of the training samples was then 
processed using SPSS. We used the principal component 
analysis to reduce the number of factors to 7, and the 7 origi-
nal factors were then combined into 3 independent indicators 
to reflect the hydrochemical information.

Using the principal component analysis in factor analysis, 
the initial factors were extracted from the ion’s correction 
coefficient matrix, and the initial eigenvalue and the vari-
ances explained by the principal component analysis were 
obtained (Table 5).

The number of principle components could be determined 
by the cumulative variance of the principle components. It 
is generally thought that the cumulative variance of extract-
ing principal components is more than 80%, which means 
that the selected number of principal components can fully 
reflect the hydrochemical information of the training sam-
ples (Chen et al. 2013; Wang et al. 2017a, b; Yin et al. 2006; 
Zhang et al. 2017). Therefore, we extracted three princi-
pal components, which were consistent with the results of 
selecting the number of principal components according to 
the eigenvalues. To some extent, the number of principal 
components could be determined using eigenvalues greater 
than 1 as criteria. The eigenvalues of the principal compo-
nents are shown in Fig. 6.

The maximum variance algorithm was used for the 
orthogonal rotation of the initial load matrix of factors so 
that loads of each ion on the same factor were distinctly dif-
ferent. The orthogonal rotation converges after 6 iterations, 
and the orthogonal rotation factor loading matrix (Table 6) 
and the orthogonal rotation factor loading diagram (Fig. 7) 
could then be obtained. After the orthogonal rotation of 
three types of water samples, each principal component 
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Fig. 5   Ion content R-type cluster analysis diagram
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represented the hydrochemical information of different 
ions. Among them, principal component 1 represented Ca2+, 
Mg2+ and SO4

2− and reflected the information of 42.637% 
of the training samples. Principal component 2 represented 
Cl− and CO3

2− and reflected the information of 25.347% 

of the training samples. Principal component 3 represented 
K+ + Na+ and reflected the information of 14.661% of the 
training samples.

Principal component analysis of the 82 training water 
samples was carried out using SPSS, and we obtained scores 

Table 2   Pearson correlation 
coefficients of the fourth aquifer 
water samples

*Represents 0.05 levels of bilateral significant correlation; **represents 0.01 levels of bilateral significant 
correlation

K+ + Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3

− CO3
2−

K+ + Na+ 1
Ca2+ − 0.048 1
Mg2+ − 0.273 0.767* 1
Cl− 0.066 0.372 0.570 1
SO4

2− 0.959** 0.071 − 0.214 − 0.120 1
HCO3

− − 0.615 0.733 0.800* 0.390 − 0.551 1
CO3

2− − 0.137 0.305 0.601 0.971** − 0.322 0.478 1

Table 3   Pearson correlation 
coefficients of the coal bearing 
sandstone aquifer water samples

*Represents 0.05 levels of bilateral significant correlation; **represents 0.01 levels of bilateral significant 
correlation

K+ + Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3

− CO3
2−

K+ + Na+ 1
Ca2+ 0.068 1
Mg2+ − 0.223 0.812** 1
Cl− 0.481** 0.119 − 0.230 1
SO4

2− 0.558** 0.399* 0.359* 0.705** 1
HCO3

− 0.198 0.334 0.399* − 0.583** − 0.155 1
CO3

2− 0.441* − 0.174 − 0.401* 0.792** 0.312 − 0.704** 1

Table 4   Pearson correlation 
coefficients of the limestone 
aquifer water samples

*Represents 0.05 levels of bilateral significant correlation; **represents 0.01 levels of bilateral significant 
correlation

K+ + Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3

− CO3
2−

K+ + Na+ 1
Ca2+ − 0.418** 1
Mg2+ − 0.492** 0.877** 1
Cl− 0.041 0.355* 0.259 1
SO4

2− − 0.228 0.703** 0.711** − 0.318* 1
HCO3

− 0.280 0.069 − 0.062 0.869** − 0.540** 1
CO3

2− 0.056 0.226 0.157 0.954** − 0.435** 0.889** 1

Table 5   Interpreting total 
variance

Principal 
component

Initial eigenvalue Extracted eigenvalue

Summation Variance (%) Cumulative 
variance (%)

Summation Variance (%) Cumulative 
variance (%)

1 2.985 42.637 42.637 2.985 42.637 42.637
2 1.774 25.347 67.984 1.774 25.347 67.984
3 1.026 14.661 82.644 1.026 14.661 82.644
4 0.989 14.129 96.773
5 0.138 1.975 98.747
6 0.058 0.834 99.581
7 0.029 0.419 100.000
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for three principal components from the 82 training water 
samples (Table 7). The scores of the principal components 
were expressed as Y1, Y2 and Y3, respectively. The correlation 
coefficients between the three types of principal components 
and the original variables are shown in Table 8.

According to the principal component score coefficients, 
we could get the expression of principal component scores, 
relational expressions of the three extracted principal com-
ponents Y1, Y2 and Y3 with the original variables X1, X2, X3, 
X4, X5, X6 and X7 were obtained as follows:

where Y1, Y2 and Y3 represent the scores of principal com-
ponent 1, principal component 2 and principal component 
3 of the training samples; X1, X2, X3, X4, X5, X6 and X7 rep-
resent the contents of K+ + Na+, Ca2+, Mg2+, Cl−, SO4

2−, 
HCO3

− and CO3
2−, respectively.

Construction of the recognition model

We regarded the principal component scores Y1, Y2 and Y3 of 
the 82 training water samples as independent variables for 
implementing the multiple logistic regression recognition 
analysis. The parameters of the multiple logistic regression 
recognition model are shown in Table 9.

The recognition function of the solution is as follows:

Formula (6) could be simplified using Formula (5). We 
were then able to derive the following Formula (7).

Finally, the expressions for the probability functions of 
the three types of water inrush sources are as follows:

(5)

Y1 = 0.153X1 + 0.321X2 + 0.296X3 + 0.111X4 + 0.485X5

− 0.015X6 − 0.058X7

Y2 = −0.033X1 + 0.107X2 + 0.079X3 + 0.531X4 − 0.130X5

− 0.146X6 + 0.479X7

Y3 = 0.707X1 − 0.167X2 − 0.208X3 − 0.083X4 + 0.475X5

− 0.185X6 − 0.010X7

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

(6)
G1 = −0.940Y1 − 0.312Y2 + 0.675Y3 − 1.561

G2 = −6.630Y1 + 1.416Y2 + 3.166Y3 − 3.479

}
.

(7)

G1 = 0.343X1 − 0.448X2 − 0.443X3 − 0.326X4

− 0.095X5 − 0.065X6 − 0.102X7 − 1.561

G2 = 0.027X1 − 3.395X2 − 3.254X3 − 1.016X4

− 3.699X5 − 0.314X6 + 0.741X7 − 3.479

⎫
⎪⎪⎬⎪⎪⎭
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Fig. 6   Scree plot of the principal components

Table 6   Orthogonal rotation factor loading matrix

Principal component Communality

1 2 3 Initial Extract

K+ + Na+ − 0.099 0.169 0.898 1.000 0.845
Ca2+ 0.885 0.048 − 0.420 1.000 0.962
Mg2+ 0.857 − 0.013 − 0.472 1.000 0.958
Cl− 0.190 0.928 0.008 1.000 0.897
SO4

2− 0.913 − 0.191 0.298 1.000 0.958
HCO3

− 0.131 − 0.340 − 0.312 1.000 0.230
CO3

2− − 0.269 − 0.905 0.211 1.000 0.936
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Fig. 7   Orthogonal rotation factor loading diagram
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Table 7   The scores of the principal components

Number Y1 Y2 Y3 Actual 
category

Predicted 
category

Number Y1 Y2 Y3 Actual 
category

Predicted 
category

1 − 1.25 − 1.12 − 1.43 1 1 42 0.65 1.44 − 1.06 3 3
2 0.12 0.90 − 1.12 1 3 43 0.72 1.51 − 1.24 3 3
3 − 0.41 − 0.95 − 1.20 1 3 44 0.79 1.59 − 1.20 3 3
4 − 0.51 0.44 − 0.72 1 1 45 0.64 1.44 − 1.36 3 3
5 − 1.22 − 1.00 − 1.24 1 3 46 0.69 1.41 − 1.10 3 3
6 2.20 − 1.49 3.35 1 3 47 0.70 1.43 − 1.11 3 3
7 1.49 − 1.26 4.45 1 1 48 0.51 1.33 − 0.77 3 3
8 − 0.58 2.60 1.48 2 2 49 − 0.06 − 0.59 0.13 3 3
9 − 0.82 2.76 1.12 2 2 50 0.45 − 0.48 0.13 3 3
10 − 0.93 1.68 0.73 2 2 51 0.53 − 0.44 − 0.13 3 3
11 − 0.97 1.20 0.54 2 2 52 0.53 − 0.44 − 0.13 3 3
12 − 0.95 1.28 0.53 2 2 53 0.53 − 0.51 0.44 3 3
13 − 0.44 1.00 1.08 2 2 54 0.02 − 0.39 − 0.69 3 3
14 − 0.44 1.00 1.08 2 2 55 0.82 − 0.57 0.61 3 3
15 − 0.43 0.99 1.08 2 2 56 0.20 − 0.57 0.25 3 3
16 − 0.38 1.08 1.16 2 2 57 − 0.62 − 0.52 0.53 3 2
17 − 0.49 0.96 1.01 2 2 58 1.32 − 0.34 0.04 3 3
18 − 1.05 1.08 0.35 2 2 59 1.22 − 0.33 − 0.10 3 3
19 − 0.88 0.92 0.15 2 2 60 1.14 − 0.40 0.23 3 3
20 − 0.73 0.99 0.05 2 2 61 − 0.78 − 0.64 0.22 3 2
21 − 0.56 0.82 0.92 2 2 62 1.18 − 0.40 0.18 3 3
22 − 0.45 0.85 1.06 2 2 63 1.17 − 0.46 0.20 3 3
23 − 0.04 1.30 0.57 2 2 64 1.10 − 0.33 − 0.19 3 3
24 − 0.25 0.85 0.56 2 2 65 1.55 − 0.24 − 0.66 3 3
25 − 0.85 0.59 − 0.05 2 2 66 1.54 − 0.26 − 0.63 3 3
26 − 0.91 0.71 0.31 2 2 67 1.51 − 0.24 − 0.70 3 3
27 − 0.84 − 0.44 1.90 2 2 68 1.55 − 0.26 − 0.56 3 3
28 − 1.22 − 1.10 − 0.47 2 2 69 1.54 − 0.26 − 0.64 3 3
29 − 1.26 − 1.10 − 0.25 2 2 70 1.54 − 0.26 − 0.59 3 3
30 − 1.25 − 1.10 − 0.10 2 2 71 1.53 − 0.24 − 0.61 3 3
31 − 1.24 − 1.14 − 0.33 2 2 72 1.54 − 0.27 − 0.51 3 3
32 − 0.13 − 1.43 1.12 2 3 73 − 1.20 − 0.44 − 1.52 3 3
33 − 0.66 − 1.06 0.77 2 2 74 − 1.20 − 0.44 − 1.52 3 3
34 − 1.24 − 1.01 − 0.34 2 2 75 − 0.67 − 0.64 0.51 3 2
35 − 1.20 − 0.79 − 0.41 2 2 76 − 0.87 − 0.93 0.43 3 2
36 − 1.01 − 1.17 − 0.45 2 2 77 0.51 − 0.95 − 0.13 3 3
37 − 1.16 − 1.15 − 0.40 2 2 78 0.40 − 0.70 0.80 3 3
38 − 1.11 − 1.13 − 0.36 2 2 79 − 0.83 − 0.67 0.06 3 2
39 − 1.14 − 1.00 − 0.60 2 2 80 1.19 − 0.36 − 0.49 3 3
40 − 1.23 − 0.96 − 0.42 2 2 81 1.66 − 0.14 − 1.53 3 3
41 0.42 1.28 − 0.85 3 3 82 1.24 − 0.28 − 0.21 3 3
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where P1, P2 and P3 are the probability functions of the 
respective recognition models of types 1, 2, and 3; X1, X2, 
X3, X4, X5, X6 and X7 represent the contents of K+ + Na+, 
Ca2+, Mg2+, Cl−, SO4

2−, HCO3
− and CO3

2−, respectively; 
and the final item of the discriminant function is a constant.

Verification of water inrush source recognition 
model

The 82 groups of training samples in Table 7 were inte-
grated into the established multiple logistic regression 
recognition model based on cluster analysis one by one 
for cross-validation (Table 10). The results showed that all 
water samples were discriminated with a discrimination rate 
of 87.8%. Among them, the recognition accuracy of water 
samples from the fourth aquifer is 42.8%, the recognition 

(8)

P1 =
eG1

1 + eG1 + eG2

P2 =
eG2

1 + eG1 + eG2

P3 =
1

1 + eG1 + eG2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

accuracy of water samples from the coal-bearing sandstone 
aquifer is 96.9% and the recognition accuracy of water sam-
ples from the limestone aquifer is 88.1%. The reason for 
the difference in the recognition accuracy of various aqui-
fers lies in the difference in the number of training water 
samples. Because coal mining is less threatened by water 
inrush from the fourth aquifer, the limited number of water 
samples were collected from the fourth aquifer. However, the 
recognition model is established based on a certain amount 
of water samples. Therefore, the recognition accuracy of 
water samples from the fourth aquifer significantly different 
from the coal-bearing sandstone aquifer and the limestone 
aquifer. Meanwhile, this result can be compared to the tradi-
tional multiple logistic regression recognition model, which 
incurred multiple errors in its rediscrimination steps and had 
a correct discrimination rate of less than 78.5%. Therefore, 
the multiple logistic regression recognition model based on 
cluster analysis was more accurate, had a higher degree of 
stability, and could meet the actual requirements of water 
inrush source recognition.

In addition, to further verify the accuracy of the estab-
lished multiple logistic regression recognition model 
based on cluster analysis, 16 water samples to be dis-
criminated from the Qinan mining area were substituted 

Table 8   Principal component score coefficients

Principal component

1 2 3

K+ + Na+ 0.153 − 0.033 0.707
Ca2+ 0.321 0.107 − 0.167
Mg2+ 0.296 0.079 − 0.208
Cl− 0.111 0.531 − 0.083
SO4

2− 0.485 − 0.130 0.475
HCO3

− − 0.015 − 0.146 − 0.185
CO3

2− − 0.058 0.479 − 0.010

Table 9   Multiple logistic 
regression recognition analysis 
model parameters

The reference type is the limestone aquifer water samples, as denoted by 3

Type Variable B Standard error Wald value Degree of 
freedom

Significance level Exp(B)

1 Intercept − 1.561 0.601 6.759 1 0.009
Y1 − 0.940 0.574 2.678 1 0.102 0.391
Y2 − 0.312 0.735 0.180 1 0.671 0.732
Y3 0.675 0.462 2.133 1 0.144 1.965

2 Intercept − 3.479 1.548 5.049 1 0.025
Y1 − 6.630 2.076 10.196 1 0.001 0.001
Y2 1.416 0.728 3.784 1 0.052 4.121
Y3 3.166 1.027 9.498 1 0.002 23.713

Table 10   Classification results of cross-validation

FA fourth aquifer, CBSA coal-bearing sandstone aquifer, LA lime-
stone aquifer

Type Water inrush aquifer types Total

FA CBSA LA

Recognition model
 Count FA 3 0 4 7

CBSA 0 32 1 33
LA 0 5 37 42

 Correct rate % FA 42.9 0 57.1 100
CBSA 0 96.9 3.1 100
LA 0 11.9 88.1 100
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into the multiple logistic regression recognition model for 
discrimination (Table 11). Table 11 shows that 16 water 
samples are classified accurately by the established multi-
ple logistic regression recognition model based on cluster 
analysis and only one sample is wrongly discriminated, 
showing an accuracy of 93.8%. Water sample A2 is actu-
ally the fourth aquifer water sample, but it is discrimi-
nated as the coal-bearing sandstone aquifer water sample 
in the model. Through comprehensive comparison, the 
multiple logistic regression recognition model based on 
cluster analysis was seen to be more accurate and to have 
greater extensive applicability than those of the traditional 
multiple logistic regression recognition model. Therefore, 
the multiple logistic regression recognition model based 
on cluster analysis has significant engineering relevance.

Results and discussion

Based on the hydrogeological conditions of the mining area, 
cluster analysis of water quality samples was carried out in 
this paper. The analysis results were then utilized to analyze 
and extract typical water samples. At last, the multiple logis-
tic regression recognition model based on cluster analysis 
was established. According to the results of the model rec-
ognition and the engineering application, the conclusions 
were drawn as follows:

1.	 Through the cluster analysis of the original water sam-
ples, the nonconforming water samples were eliminated. 
The 82 water samples that accurately reflect the hydro-

chemical characteristics of the water inrush aquifer 
were screened from 93 original water samples, and they 
were used as training samples to establish the recogni-
tion model, which reduced the influence of the errors 
caused by the water quality analysis on the accuracy of 
the mode.

2.	 In the process of establishing recognition model, to 
eliminate the internal connections between the ions, this 
paper adopted the principal component analysis method 
to cut down the dimension of the initial seven types of 
variables and combine the original seven factors into a 
few independent indexes to comprehensively reflect the 
hydrochemical information.

3.	 The overall recognition accuracy of the multiple logistic 
regression recognition model based on cluster analysis 
reaches 87.8% and has high accuracy. It is easy to oper-
ate in the actual water source discrimination process, 
with straightforward discrimination results. This recog-
nition model provides a new way to discriminate mine 
water inrush sources and has important guiding signifi-
cance for mine water prevention and control work.

4.	 Because the recognition model is based on hydrological 
data from a certain amount. And the quantity of water 
sample has certain influence on the accuracy of the rec-
ognition model. Therefore, we should collect more water 
sample data to improve accuracy. In addition, given the 
complexity of hydrogeological conditions, temperature, 
and human activities on aquifers in the study area, future 
studies should fully consider the impact of these facto-
ries to promote the applications of the model.

Table 11   Classification results 
of the water inrush source 
discriminant model

Number Constant ion content (mg/l) Actual result Pre-
dicted 
resultNa+ + K+ Ca2+ Mg2+ Cl− SO4

2− HCO3
− CO3

2−

A1 86.7 95 56.5 63 218 389.32 0 1 1
A2 197.9 29 61.3 319 113 357.74 292.92 1 2
A3 264.0 29 26.4 317 135 66.34 520.83 2 2
A4 379.1 9 3.1 412 233 197.62 378.34 2 2
A5 459.4 7 4.9 442 255 233.46 360.22 2 2
A6 427.3 66 28.9 537 246 494.7 468.68 2 2
A7 276.9 214 81.5 278 667 428.17 5.17 3 3
A8 254.5 198 78.1 243 614 430.56 5.32 3 3
A9 270.7 215 82.9 265 606 428.17 4.19 3 3
A10 258.4 201 79.3 255 619 394.68 4.53 3 3
A11 269.9 209 80.5 262 608 425.77 5.95 3 3
A12 256.4 201 76.1 248 596 428.17 5.36 3 3
A13 386.5 109 46.4 252 349 576.47 5.25 3 3
A14 371.4 98 45.4 231 376 552.55 5.38 3 3
A15 327.4 134 58.3 241 404 516.67 4.96 3 3
A16 287.2 167 79.2 244 600 428.17 4.89 3 3
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