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Abstract
The main aim of this study was to evaluate and compare the results of two data-mining algorithms including support vec-
tor machine (SVM) and logistic model tree (LMT) for shallow landslide modelling in Kamyaran county where located in 
Kurdistan Province, Iran. A total of 60 landslide locations were identified using different sources and randomly divided into 
a ratio of 70/30 for landslide modeling and validation process. After that, 21 conditioning factors, with a raster resolution of 
20 m, based on the information gain ratio (IGR) technique were selected. Performance of the models was evaluated using 
area under the receiver-operating characteristic curve (AUROC), and also several statistical-based indexes. Results depicted 
that only eight factors including distance to river, river density, stream power index (SPI), rainfall, valley depth, topographic 
wetness index (TWI), solar radiation, and plan curvature were known more effective for landslide modeling using training 
data set. The results also revealed that the SVM model (AUROC = 0.882) outperformed and outclassed the LMT model 
(AUROC = 0.737). Therefore, analysis and comparison of the results showed that the SVM model by RBF function performed 
well for landslide spatial prediction in the study area. Eventually, the findings of this study can be useful for land-use plan-
ning, reducing the risk of landslide, and decision-making in areas prone to landslide.
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Introduction

Understanding the mechanism of landslides and mapping of 
areas prone to landslide play a crucial role in disaster man-
agement, and it is possible to be used as a standard tool to 
support decision-making in different areas (Bui et al. 2016). 
Landslide is slope instabilities from the ingredients of hill 
slope. This phenomenon happens when the shear stress on 
slopes is greater than the shear strength of materials on the 
slope (Cruden 1991). Based on the studies conducted by 
European geotechnical thematic network (EGTN), just land-
slide accounts for about 17% of the world’s natural disasters. 

According to the reports of fatal events and financial dam-
ages of landslides in the literatures, recognizing the areas 
prone to landslide and determining their risk level are one 
of the important steps to be taken. Thus, in the last 2 dec-
ades, extensive research has been done on the methods of 
preparing maps for susceptibility and hazard mapping of 
landslides using tools and new technologies for the facilita-
tion and acceleration of this field of inquiry. In general, it 
can be claimed that the landslide hazard map is a proper tool 
for crisis management in mountainous areas (Dahal et al. 
2008). Therefore, to achieve a reliable and an accurate land-
slide susceptibility map, some quantitative methods should 
be tested and evaluated to better management of mountain 
areas.

Several methods and techniques have been developed 
for natural hazard susceptibility mapping such as landslides 
over the world. It can be classified as (1) expert knowledge-
based models (Shirzadi et al. 2017b; Zhang et al. 2016), 
(2) bivariate and multivariate statistical-based models such 
as frequency ratio (FR) (Pham et al. 2015b; Shirzadi et al. 
2017b), statistical index (SI) (Regmi et al. 2014), certainly 
factor (Hong et al. 2017a), logistic regression (LR) (Abedini 
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et al. 2017; Chen et al. 2019; Mousavi et al. 2011; Shirzadi 
et al. 2012; Tsangaratos and Ilia 2016), weights-of-evidence 
(WOE) (Chen et al. 2018b; Dahal et al. 2008; Shirzadi et al. 
2017b; Xu et al. 2012), (3) machine learning models such 
as artificial neural network (ANN) (Pham et al. 2017; Shir-
zadi et al. 2017c), adaptive neuro-fuzz inference system 
(ANFIS) (Shirzadi et al. 2017c), decision tree (DT) (Khos-
ravi et al. 2018; Thai Pham et al. 2018a, b), support vector 
machine (SVM) (Bui et al. 2016; Pradhan 2013; Pourgha-
semi et al. 2013; Tien Bui et al. 2018b; Yao et al. 2008), 
Bayesian logistic regression (BLR) (Chapi et al. 2017; Das 
et al. 2012; Tien Bui et al. 2018d), kernel logistic regres-
sion (KLR) (Chen et al. 2018c), logistic model tree (LMT) 
(Chen et al. 2018b, 2019), alternate decision tree (AD Tree) 
(Shirzadi et al. 2018; Tien Bui et al. 2018d), naïve bayes (He 
et al. 2019; Shirzadi et al. 2017b, c; Tien Bui et al. 2012), 
Bayes net (BN) (Tien Bui et al. 2018d), random forest (RF) 
(Doetsch et al. 2009; Hong et al. 2016; Huang and Zhao 
2018), reduced error pruning tree (REPTree) (Pham et al. 
2019), and hybrid models including machine learning and 
optimization algorithms (Abedini et al. 2018; Ahmadlou 
et al. 2018; Bui et al. 2018; Chen et al. 2018a, b; Hong et al. 
2017b, c, 2018a, b; Miraki et al. 2018; Nguyen et al. 2019; 
Pham et al. 2018a, b, 2019; Shafizadeh-Moghadam et al. 
2018; Shirzadi et al. 2018; Tien Bui et al. 2018a, b, c).

However, evaluation and comparison of landslide using 
SVM and DT models are under researched over the world. 
Among this, Tien Bui et al. (2012) investigated landslide 
susceptibility in Vietnam using SVM, DT, and Bayes-
based methods. Their finding revealed that the SVM 
model by RBF function had the highest prediction power 
(AUROC = 0.954), while the DT model had the lowest per-
formance (AUROC = 0.903) in their study area. Pradhan 
(2013) compared the ability of decision trees, support vec-
tor machines, and fuzzy logic methods in assessing land-
slide susceptibility in Malaysia. Their results concluded that 
the percentage of AUROC for the obtained zoning map in 
fuzzy logic, SVM, and DT were 91.24, 91.67, and 88.36, 
respectively. Hong et al. (2015) predict landslide suscepti-
bility maps using LR, DT, and SVM algorithms in Yihuang 
in China. Comparison and validation of the models were 
evaluated using AUROC index. According to their results, 
AUROC using training data set that shows the performance 
of the models in the LR model was 92.5%, and for the SVM, 
it was 88.8%, and for the DT, it was 95.7%. However, the 
predictive capability using validation data set in the LR 
model, the SVM, and the DT models were 81.1%, 84.2%, 
and 93.3%, respectively.

Although many models and methods have been employed 
for mapping landslide susceptibility around the world, 
however, it is still a debate on which model is the best 
performance. In this research, we compared a functional 
soft-computing benchmark model, a SVM, and a decision 

tree soft-computing benchmark model, a LMT, for shallow 
landslide susceptibility modeling in a part of Kamyaran in 
Kurdistan province, Iran. Although they have been used for 
shallow landslide modelling in other regions over the world, 
however, they earlier have not been explored for the case 
study. Basically, the obtained result can be considerable as 
a reference for evaluating of the obtained results. Therefore, 
the primary aims of the current research are as follows; (1) 
selecting the most important and effective factors in land-
slide susceptibility assessment; (2) application of the tow 
data-mining models including LMT and SVM to achieve a 
reasonable landslide susceptibility map. It is mentioned that 
data preparation and processing was done using ArcGIS 10.2 
and WEKA 2.7.12 software.

Study area characteristics

The study area is located in the eastern part of the Kurdistan 
province, in the eastern longitude from 46˚ 47ʹ 30ʹʹ to 47˚ 
00ʹ 00ʹ, and the northern latitude from 34˚ 47ʹ 00ʹʹ to 34˚ 58ʹ 
30ʹʹ with an area of approximately 516.44 km2 (Fig. 1). In 
terms of topography and physical characteristics, the maxi-
mum, minimum, and average height above the sea level, 
respectively, was 2841, 1388, and 1757 m, and the differ-
ence between the highest and lowest elevation point was 
about 1453 m. Geologically, it included eight groups: (1) 
Quaternary period (Cenozoic era), (2) the end of the Creta-
ceous and the beginning of Paleocene (Mesozoic–Cenozoic 
era), (3) the end of Eocene and the beginning of Oligocene 
(Cenozoic era), (4) Paleocene–Eocene (Cenozoic era), (5) 
The end of the Cretaceous-the beginning of Paleocene (Mes-
ozoic–Cenozoic era), (6) The end of Oligocene–Miocene 
(Cenozoic era), (7) Cretaceous era (Mesozoic era), and (8) 
Jurassic-Cretaceous (Mesozoic era) with the domination of 
alluvial deposits, limestone, sand, frequent shale, Flisch, 
sandstone, and conglomerate. Basically, about 70% of the 
landslides in the area have occurred during these formations. 
In addition, a broadly field survey indicated that the type 
of rotational slip (54.61%) and compound slip (31.53%), 
respectively, had accounted for the highest amount of land-
slides. The maximum length of landslide was 3043 m and 
the minimum length was 55 m. Meanwhile, the maximum 
width of landslide was 6320 m and the minimum width of 
landslide in this area was 87 m. According to Dumbarton 
(23.56) climate classification, this area had a Mediterra-
nean climate. The average rainfall in the study area during 
2000–2012 was about 560 mm per year and the average of 
annual temperature was about 13.69° C.
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Fig. 1  Landslide location map of the study area



 Environmental Earth Sciences (2019) 78:560

1 3

560 Page 4 of 15

Methodology

Landslide inventory map

To study the relationship between the spatial prediction 
of landsides and the relevant conditioning factors, the 
existing landslide inventory map is required. Therefore, 
to come up with a detailed and reliable inventory map 
for the study area, two processes were utilized including 
extensive field surveys and accurate laboratory interpreta-
tions. First, the location of landslides collected from the 
Forests, Rangelands and Watershed Management Organi-
zation (Iran), and then, using field surveys, this loca-
tion was checked and some characteristic of each land-
slide was recorded including length, width, and area of 
landslides using GPS and aerial photographs (1:40,000 
scale), and satellite image interpretations (Fig. 2). Field 
surveys showed that type of landslides of the study area 
was mainly rotational sliding (54.61%), complex (31.53%), 
rotational falling (13.07%), and flow (0.79%), respectively. 
Maximum length of the landslides was 3043 m, while min-
imum length was 55 m. The landslide width varied from 
87 m and 6320 m (Table 1). The largest landslide covered 
an area of about 1.42 × 107 m2, whereas the smallest one 
was around 2.52 × 104 m2. Landslides usually occurred 

on slope materials with mixture soil (alluvium and gravel 
fans) and (mainly consist of Flisch, sandstone, and con-
glomerate formation) in the study area. In addition, results 
of field surveys concluded that the most important and 
effective factors for the landslide occurrence in the study 
area were alternative loose and dense soil layers (61.53), 
erosion and cutting the foot of slopes (29.23), tectonic 
(faults and fractures) (6.17), land-use change (3.07), 
respectively. Furthermore, about 62.30% of the landslides 
were inactive, while only about 37.69% of the landslides 
were active. In the study area, a total number of 60 land-
slides polygons were recognized and then classified into 
70% (40 landslides) as training data set for modelling pro-
cess and 30% (20 landslides) as validation data set for 

Fig. 2  Some photos of shallow landslides in the study area

Table 1  Main characteristic of the landslides in the study area

Statistical measure Landslide length (m) Landslide width (m)

Total range of length 55 ~ 3043 87 ~ 6320
Average 452.81 702.98
S.D 405.82 826.88
Skewness 3.69 3.69
kurtosis 18.86 18.75
Median 344.50 456.60
Mode 225.00 500.00
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validation process of the models (Shirzadi et al. 2018, 
2019). In addition, a total number of 60 non-landslide 
locations were randomly selected over the world, and simi-
lar to the modeling step and validation check, they were 
categorized into two groups of 30% and 70%.

Landslide conditioning factors

Identifying past and present locations of landslide occurrence 
is the first and most important step in the mapping of land-
slide susceptibility (Jiménez-Perálvarez et al. 2011). Landslide 
modeling is based on the statistical hypothesis that future 
landslides will occur under the same conditions as the past 
and present ones (Guzzetti et al. 1999). Landslide dispersion 
map is essential for understanding the effective factors that 
cause slope failure and change of their mechanism (Dai et al. 
2002). In this study, geological map with a scale of 1:100,000 
was obtained from the Iranian Geological Organization, and 
topographic map with a scale of 1:50,000 was obtained from 
the Armed Forces Geographical Organization, and rainfall 
data from nine meteorological stations located in the region 
were used to provide the distribution/inventory map of the 

landslides in the study area. To come up with the landslide 
inventory map, specifying the exact place of landslides and 
creating a spatial data set for landslide risk in future studies are 
essential. At first, determining landslide zones and their loca-
tions according to the interpretation of aerial photographs and 
satellite images was provided from the Google Earth Images. 
After field surveying, the location of each landslide zones was 
recorded by a GPS device and the obtained information from 
Arc GIS 10.2 to prepare the landslide inventory maps. One of 
the basic steps in mapping landslide susceptibility is creating a 
data set and collecting the required data (Kavzoglu et al. 2015). 
For the selection of effective factors in landslide occurrence 
in the study area, almost the majority of variables involved in 
landslide were investigated as primary independent variables 
in the present study, and then, they were linked to the position 
of sliding zones in the inventory map (Table 2). In the next 
step, after identifying the conditioning factors affecting land-
slide in this area, through literature review and investigating 
features in landslide areas, data layers including 21 factors 
were recognized. Accordingly, slope angle, slope aspect, cur-
vature, elevation above the sea level, profile curvature, plan 
curvature, solar radiation, valley depth (VD), Stream Power 

Table 2  Landside conditioning factors and their classes

Factors Classes

Slope (°) (1) < 8; (2) 8–15; (3)15–25; (4) 30–40; (5) 25-35; (6) 35–45; (7) > 45
Aspect 1) Flat; (2) north; (3) northeast; (4) east; (5) southeast; (6) south; (7) southwest; (8) west; (9) northwest
Elevation (m) (1) 0–700; (2) 700–900; (3) 900–1100; (4) 1100–1300; (5) 1300–1500; (6) 1500–1700; (7) 1700–1900; (8) 1900–2100; 

(9) 2100–2300; (10) > 2300
Curvature (1) High concave [(− 76 to − 7.2)]; (2) concave [(− 7.1 to − 2. 4)]; (3) flat [(− 2.3 to 0. 8)]; (4) convex [(0.81–5.6)]; (5) 

high convex [(5.7–60)]
Plan curvature (1) [(− 16 to − 1.8)], (2) [(− 1.7 to − 0.53)], (3) [(− 0.52 to − 0.28)], (4) [(0.29–1.2)], (5) [(1.3–10)]
Profile curvature (1) [(− 16.25 to − 1.384641)]; (2) [(− 1.384641 to − 0.433258)]; (3) [(− 0.433258 to 0.280279)]; (4) [0.280279–

1.231662]; (5) [1.231662–13.95641]
Solar radiation (1) 237000–517000; (2) 518,000–603,000; (3) 604,000–674,000; (4) 675,000–734,000; (5) 735,000–881,000
VD (1) 0–50; (2) 50–100; (3)100–150; (4) 150–200; (5) > 200
SPI (1) 0–10; (2) 10–20; (3)20–30; (4) 30–40; (5) 40–50; (6) 50–60; (7) > 60
TWI (1) 0–10; (2) 10–20; (3)20–30; (4) 30–40; (5) 40–50; (6) 50–60; (7) > 60
LS (1) 0–10; (2) 10–20; (3)20–30; (4) 30–40; (5) 40–50; (6) 50–60; (7) > 60
Land use (1) Barren land, (2) dry-farming land, (3) farming land, (4) pasture, (5) residential area, (6) woodland, (7) water body
NDVI (1) [(− 0.26 to 0.056)]; (2) [(0.057–0.11)]; (3) [(0.12–0.17)]; (4) [0.18–0.28]; (5) [0.29–0.6]
Rainfall (1) < 300; (2) 300–400; (3) 400–500; (4) 500–600; (5) 600–700; (6) 700–800; (7) > 800
Distance to faults (m) (1) > 100; (2) 101–200; (3) 201–300; (4) 301–400; (5) 401–500; (6) 501–600; (7) 601–700; (8) > 700
Distance to roads (m) (1) > 50; (2) 51–100; (3) 101–150; (4) 151–200; (5) 201–250; (6) > 250
Distance to rivers (m) (1) > 50; (2) 51–100; (3) 101–150; (4) 151–200; (5) 201–250; (6) > 250
Faults density (1) Very low (0–0.437); (2) Low (0.438–1.17); (3) moderate (1.18–1.93); (4) high (1.94–2.88); (5) very high (2.88–5.87)
Road density (1) Very low (0–0.428); (2) Low (0.429–1.17); (3) moderate (1.18–1.87); (4) high (1.88–2.7); (5) very high (2.7–4.96)
River density (1) Very low (0–0.00,049); (2) low (0.0005–0.0013); (3) moderate (0.0014–0.0022); (4) high (0.0023–0.0032); (5) very 

high (0.0033–0.006)
Lithology Group 1(Quaternary), group 2 (Late cretaceous–early Paleocene), group 3 (late Eocene-early Oligocene), group 4 

(Paleocene-Eocene), group 5 (late cretaceous-Paleocene), group 6 (late Oligocene–Miocene), group 7 (cretaceous), 
group 8 (Jurassic-cretaceous)
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Index (SPI), Topographic Wetness Index (TWI), and length 
slope were selected. Land-use map and Normalized Difference 
Vegetation Index (NDVI) were prepared by  ETM+ satellite 
image of the study area in 2 May 2005 (the Path and Row of 
this satellite images are 167 and 36, respectively) lithological 
map, distance from fault and fault density of the geological 
map in Kamyaran at a scale of 1:100,000. Rainfall map was 
prepared based on regression relationship between height, and 
long-term average of annual precipitation in nine rain-gauge 
stations inside and outside of the study area. Distance from 
drainage, drainage density, distance from the road network and 
road density maps, respectively, were made based on distance 
from the areas around the drainage and road network in the 
study area. Then, for statistical analysis of the data and algo-
rithms, values of different classes related to each factor were 
entered into the WEKA 2.7.12. Ultimately, the final maps of 
landslide susceptibility in the study area were mapped using a 
combination of effective layers in landslide occurrence.

Modeling using machine learning algorithm

Support vector machine (SVM) function

The algorithm of SVM was proposed by Vapnik (1998) based 
on Statistical Learning Theory (SLT) that follows Structure 
Risk Minimization (SRM). Indeed, it’s an efficient learning 
system based on useful optimization theory that used induc-
tive minimization principle of structural error leading to an 
overall optimal solution (Cristianini and Shawe-Taylor 2000). 
The main idea of SVM algorithm with a dual categorization 
and learning points changes the main entrance area to a higher 
dimensional space to find a suitable cloud page (Peng et al. 
2014). Training points that are close to the desired page are 
called the support vector. When decision level is obtained, it 
can be used to estimate new data (Tien Bui et al. 2012). This 
method is a new class of models for the purpose of classifica-
tion and prediction. Detailed explanations about two classes 
of SVM modeling in the study area are as follows:

Considering a set of linear separate training cells as Eq. (1):

Training cells included two classes of Yi = ±1 , and they 
were specified as the goals of SVM model to search for dif-
ferentiate a hyper-plan of –N dimensional in two classes that 
were determined by their maximum gap. Mathematically, it 
can be said that as Eq. (2):

Subject to the limitations of the following Eq. (3):

(1)Xi = (i = 1, 2,… , n).

(2)1∕2 =
‖‖‖W

2‖‖‖ .

(3)1 ≥ Yi =
((
W ⋅ Xi

)
+
)
.

Here, W2 a rule of normal is hyper-plan of a denominator 
and (.) specifies numerical production. By multi-coefficient 
of Lagrangian, the operational calculation value can be 
defined by the following equation:

In which λi is multi-coefficient of Lagrangian. This solu-
tion can be calculated through minimization of Eq. 1. Valu-
ation of W and B variables was done by standard methods.

Therefore, Eq. (5) changes to the following:

V (0, 1) was introduced for categorization (Hastie et al. 
2002; Schölkopf et al. 2000). In addition, Vapnik (1998) 
introduced a kernel function to count non-linear boundary 
decision selection of kernel function in SVM model which 
is very important, although kernel functions of K (Xi, Xj) 
have been mostly used in the past. Just some of them were 
identified beneficial in a wide range of applications. Those 
that show these attributes are as follows (6), (7), (8), and (9):

Linear function:

Polynomial function:

Radial basis function:

Circular function:

Therefore, r, y, and d are kernel function parameters and 
they are entered manually. Sometimes core functions are 
used as the following parameters [Eq. (10)]:

Here, σ is an adjustable parameter that has the control of 
the kernel function.

If taken up, the exponential pattern becomes linear, and 
where there is the possibility of losing hyper-plans, if they 
are taken down, the decision boundary for the error in the 
training data becomes visible. In this study, + 1 and − 1, 
respectively, refer to landslide and slope stability of the 
place. In recent years, according to non-linear transmis-
sion along with a large special scale, this algorithm has 
been considered as one of the most popular methods for 

(4)−

n�

i=1

�i
��
W ⋅ Xi

�
+ b)−

�
‖W‖ 2 L =

1

2
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1
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(6)K(Xi,Xj) = Xt
i
.Xj.

(7)K(Xi,Xj) = (Y .Xt
i
.Xj + r)d, y > 0.

(8)K(Xi, Xj) = e−y (Xi − Xj)
2, y > 0.

(9)tan h = (y.Xt
i
.Xi + r).

(10)y = 1∕2�
2.
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problem-solving in classification and regression (Kavzoglu 
et al. 2015). On the other word, the performance of SVM 
algorithm differs from other methods of separation and tries 
to construct a series of training points through the plan of 
differentiation. Figure 3 explains the performance of SVM 
algorithm: a) the maximum margin of separation in f(x) 
function, separating the circle points from square; b) clas-
sification of software margin which allows classification of 
some incorrect points; c) inseparable linear case; d) spa-
tial mapping from the main entrance to higher dimensional 
space and separation of linear classes after mapping.

This algorithm follows the maximum margin of separa-
tion between classes  M2 > M1 and it’s based on the construc-
tion of a classified cloud page between the maximum-margin 
(F(x) function in Fig. 3). If the target point is higher than 
the hyper-plan, it is classified as +1 (the square in Fig. 3a); 
otherwise, it is − 1 (the circle in Fig. 3a). Since the set of 
classified data makes more noise, therefore, the SVM algo-
rithm for finding f(x) function locates some points in the 
margin of the separation (Fig. 3b). In fact, the main idea of 
mapping relates to high dimensions and spaces which are 
shown to change non-linear case to the linear one (Fig. 3c 
and Fig. 3d).

Logistic model tree (LMT) classifier

A decision tree (DT) is a new generation of data-mining 
techniques which have been widely developed in the past 
2 decades. This algorithm is a non-parametric method 
that considers the prediction of quantitative variables or 
classification of variables according to a set of predictor 
quantitative and qualitative variables (Pradhan 2013). In 
fact, DT is a hierarchical model of decision-making tools 
that recursively splits independent variables into homo-
geneous zones (Cho and Kurup 2011; Myles et al. 2004; 

Pradhan 2013). DTs used to predict discrete variables are 
called classification trees, because they put the samples 
into categories or classes (Tien Bui et al. 2012). DTs used 
to predict continuous variables are called regression trees 
(Debeljak and Dzeroski 2009). The aim of a DT is to find 
a strategy to offer the obtained results of predictions from 
a set of input variables in the form of a series of rules (Han 
et al. 2011). The results of this model have been success-
fully used in many real-world conditions for classifica-
tion and prediction issues (Murthy 1998). Among many 
classification algorithms including Bayes-based theorem 
algorithms and rule-based algorithms, DT algorithms is 
an efficient and effective one for the classification of large 
data sets (Murthy 1998).

Many algorithms for modeling of DTs have been devel-
oped including classification and regression tree (CART), 
best-first decision tree (BFT), ADT, LMT, RF, REP tree, 
random tree (RT), ID3, Chi-square automatic interaction 
detector decision tree (CHAID), C4.5, and so on. The only 
drawback of this model is that some decision tree meth-
ods can only predict and classify binary variables (yes 
and no or acceptance and rejection), and in some of them, 
when the number of instances of each class is low, error 
rate will be raised. In fact, there is sensitivity to noise, 
training set, and irrelevant characteristics in this model 
(Zhao and Zhang 2008). The progressive development of 
machine learning leads to emerge a new robust decision 
tree algorithm such as the LMT where leaf nodes are sub-
stituted with a regression function instead of a constant 
value. LMT is a mixture of C4.5 decision tree (Quinlan 
1996) and logistic regression functions where the infor-
mation gain is used for splitting, and the LogitBoost algo-
rithm (Landwehr et al. 2005) is employed to fit the logistic 
regression functions at a tree node. To impede the problem 
of over-fitting of the ultimate LMT, the CART algorithm 
is utilized for pruning. The LogitBoost algorithm con-
ducts additive logistic regression with least-squares fits 
for each class of  Ci (landslide or non-landslide) (Doetsch 
et al. 2009). The posterior probabilities in the leaf nodes 
of the LMT are calculated by the linear logistic regression 
(Landwehr et al. 2005) as Eq. (11):

Here, C is the number of classes and the least-square 
fits LC(x) are transformed, so that as Eq. (12):

The flowchart of the methodology of the study area is 
shown in Fig. 4.

(11)P(C∕X) =
exp(Lc(X))∑c

c�=1
exp(Lc� (X))

.

(12)
∑

c=1

cLc (X) = 0.

Fig. 3  a Maximum-margin classifier f(x) separating circles from 
squares in R2; b soft-margin classifier letting some points be mis-
classified; c linearly inseparable case in R1; d mapping original input 
space into feature space of higher dimension (R2). After mapping, 
classes get linearly separable
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Factor selection using information gain ratio (IGR) 
technique

Landslide susceptibility evaluation is based on its deter-
mining factors (Costanzo et al. 2012). There are several 
methods to determine the predictive power of the factors 
affecting landslide occurrence such as Relief Signifi-
cance (Ahmad and Dey 2005), Gain Ratio (Nithya and 
Duraiswamy 2014), and Information Gain Ratio (Bui et al. 
2016; Chapi et al. 2017; Shirzadi et al. 2017b). In the 

present study, the Information Gain Ratio (IGR), proposed 
for the first time by (Quinlan 1993), was used to determine 
the quantitative predictive power of the influencing fac-
tors. Higher IGR values indicate higher predictive power 
of an effective factor for the modeling. IGR technique was 
used to identify the most important factors among the 21 
effective factors affecting landslide occurrence in the study 
area. If F is the training data with n input sample, and n 
( Mi, F ) is the number of samples in the training data of F 

Fig. 4  The flowchart showing methodology of the landslide susceptibility analyses
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belonging to Mi class (landslide, non-landslide), then the 
following equation can be formulated:

Given the factors affecting landslide occurrence, the 
amount of information required to divide F into the series (
F1,F2,…Fm

)
 is estimated through Eq. 14:

The IGR index for a specific effective factor, such as S 
factor (slope), is calculated by Eq. 15:

where split info represents the information generated by 
dividing F of the training data into subset of l calculated 
by Eq. 16:

Results and analysis

Selection of landslide conditioning factors

To assess the predictive power of the landslide models, the 
factors affecting landslide were evaluated by IGR technique 
n the study area. Table 3 and Fig. 5 show the mean results 
of the IGR index for the 21 selected effective factors on the 
surface landslide occurrence in the study area. These results 

(13)Info (F,E) =

2∑

i=1

n(Mi, F)

|F|
log2

n(Mi, F)

|F|
(F).

(14)Info (F,E) =

m∑

j=1

Fj

|F|
Info (F).

(15)

Information gain ratio (F, S) =
Info (F) − Info (F, S)

Split info (F, S)
,

(16)Split Info(F,E) =

l∑

j=1

Fj

|F|
log2

Fj

|F|
.

show that distance to river has the highest predictive capabil-
ity with value (AM = 0.591) for landslide model. It is due 
to that most of landslides have occurred in the proximity of 
rivers. While plan curvature has the lowest affecting on land-
slide occurrences (AM = 0.008) in the study area. Other fac-
tors including river density (AM = 0.456), SPI (AM = 0.138), 
rainfall (AM = 0.123), valley depth (AM = 0.084), TWI 
(AM = 0.063), and radiation (AM = 0.025) also have signifi-
cantly contribution to landslide models, respectively. In con-
tract, 13 conditioning factors (slope angle, aspect, elevation, 
curvature, profile curvature, LS, land use, lithology, NDVI, 
distance to faults, distance to road, faults density, and road 
density) having average merit equal to “0” were removed 
from the landslide modeling. That was because of making 
a noise which negatively decreases the prediction power of 
modeling (Bui et al. 2016).

Model result and analysis

Application of the SVM function algorithm

In this study, the SVM model was evaluated based on radial 
basis function (RBF) using WEKA 2.7.12 software. The 
optimal values of parameters for the SVM model are shown 
in Table 4. The probability of landslide occurrence (PLO) 
in the range between 0 and 1 for evaluation was transferred 
to ArcGIS 10.2. When the PLO was closer to 1, it had more 
probability for landslide occurrence and vice versa. Finally, 
the obtained landslide susceptibility map regarding the level 
of probability to landslides was classified in five classes 
of susceptibility (very low susceptibility, low susceptibil-
ity, moderate susceptibility, high susceptibility, and very 
high susceptibility) (Fig. 5a). The results from the output 
map in the study area showed that areas near the drainage 
were more prone to landslide, and according to IGR tech-
nique, the drainage factor also had the greatest impact on 

Table 3  Average information gain ratio for the landslide conditioning 
factors

Influencing factors IGR Influencing factors IGR

Distance to river 0.591 Curvature 0.000
River density 0.456 Profile curvature 0.000
SPI 0.136 LS 0.000
Rainfall 0.123 Land use 0.000
VD 0.084 Lithology 0.000
TWI 0.063 NDVI 0.000
Solar radiation 0.025 Distance to fault 0.000
Plan curvature 0.008 Distance to road 0.000
Slope angle 0.000 Fault density 0.000
Aspect 0.000 Road density 0.000
Elevation 0.000 –

0 0.1 0.2 0.3 0.4 0.5 0.6

Plan curvature

Radiation

TWI

Valley depth

Rainfall

SPI

River density

Distance to river

Average Merit (AM)

Fig. 5  The predictive power of the most important landslide condi-
tioning factors in this study
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the occurrence. Accordingly, more than 70% of the study 
area was located in high susceptibility class (0.86–0.99) 
which referred to high potential of the study area to land-
slide occurrence.

Application of the LMT classifier algorithm

In the present study, the LMT algorithm was used as a DT 
algorithm. The implementation of this algorithm was done 
by WEKA 2.7.12 software. The optimal values of param-
eters for the LMT model are shown in Table 4. Input and 
output variables depending on the intended purpose in a 
special version of DT, namely regression trees, were investi-
gated (Pradhan 2013). DT algorithm offers a pruning mecha-
nism in the induction stage to control tree growth, and in the 
next stage, the obtained output from landslide susceptibility 
was acquired according to the respective model. Finally, the 
observed and predicted values were obtained in the form 
of landslide susceptibility zoning map of the study area 
(Fig. 5b).

Model performance and validation

In the landslide susceptibility assessment, two evaluation 
processes should be done. The first is for model evaluation 
and another evaluation is for susceptibility maps. In the 
model evaluation, four factors including sensitivity, speci-
ficity, accuracy, and RMSE were used as evaluation criteria 
(Table 5). In areas where landslides exist or are not pre-
sent, the results of modeling criteria are either positive or 

negative. This classification leads to the creation of four pos-
sibilities modes including true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN). If the val-
ues of the above-mentioned criteria have the number of 1 in 
a model, then the model will be an appropriate/ideal model 
(Shirzadi et al. 2017b). The TP and FP are defined as the 
proportion of the number of pixels that are correctly classi-
fied as landslide and non-landslide, respectively. Meanwhile, 
TN and FN are the number of pixels classified correctly 
and incorrectly as non-landslide, respectively (Shirzadi et al. 
2018). Hence, sensitivity is defined as the number of cor-
rectly classified landslides per total predicted landslides. 
Specificity is the number of incorrectly classified landslides 
per total predicted non-landslides (Pham et al. 2016; Shir-
zadi et al. 2017a, 2018). Accuracy is the proportion of land-
slide and non-landslide pixels which are correctly classified 
(Bennett et al. 2013). RMSE shows the error metric between 
the observed and estimated data of models (Bennett et al. 
2013). Validation is an essential part of landslide suscepti-
bility and landslide susceptibility maps without validation 
are worthless (Pradhan 2011). We evaluated performance 
of landslide models by Receiver-Operating Characteristic 
(ROC) curve technique which is a standard technique to per-
form such evaluation (Pham et al. 2016). ROC curve is built 
by plotting “sensitivity” value on the y-axis and “100-speci-
ficity” value on the x-axis. The sensitivity index indicates 
the number of landslide pixels correctly classified as “land-
slide” class. The specificity index indicates the number of 
non-landslide pixels correctly classified as “non-landslide” 
class (Pham et al. 2016; Shirzadi et al. 2017b). In this study, 
evaluation of landslide susceptibility with training data and 
validation check was done by the rate of success index and 
the rate of prediction. Currently, predictability of landslide 
susceptibility in the respective area was examined using the 
area under the curve ROC curve (AROC). Predictability of 
both sets of training data and validation data was obtained. 
With respect to assess the accuracy of a landslide suscepti-
bility map, both training and validation data sets were used. 
Accordingly, when the training data set are used, the curve 
of assessing the accuracy is used for assessing the goodness-
of-fit or performance of the models and when validation 
check data are used, assessing curve of accuracy in spatial 
map of prediction is applicable for power prediction or pre-
diction accuracy. AUROC values are between 0.5 and 1, and 
the most ideal model has the largest area under the curve 

Table 4  Parameters of machine learning algorithms for landslide modelling in this study

Algorithm Parameters

SVM Build logistic model, true; C, 0.95; checks turned off, false; epsilon, 1.0E-12; filter type, normalize training data, kernel, RBF; 
number of folds, − 1; number of random seed, 1; tolerance parameter, 0.001

LMT The minimum number of instances at which a node is considered for splitting, 15; a fixed number of iterations for logitboost, − 1

Table 5  Description of statistic index based evaluations

Name Formula

TP –
TN –
FP –
FN –
Sensitivity SST =

TP

TP+FN

Specificity SPF =
TN

FP+TN

Accuracy ACC =
TP+TN

TP+TN+FN+FN

RMSE
RMSE =

�
(1∕m)

m∑
i=1

�
e
i
− ē

i

�2
�0.5
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(Shirzadi et al. 2017a). When a model cannot estimate the 
possible occurrence of landslides, AUROC value will be 0.5. 
Regarding the ROC curve, when the area under the curve is 
equal to 1, it shows the highest accuracy of the susceptibility 
map. Qualitative–quantitative correlation of AUROC and 
estimate evaluation is as follows: 0.9–1, excellent; 0.8–0.9, 
very good; 0.7–0.8, good; 0.6–0.7, average; 0.5–0.6, weak 
(Yesilnacar and Topal 2005).

Based on the results of Table 6 and using the most effec-
tive factors, the SVM and the LMT models for the training 
and validation data sets were exploited. The results indicated 
that the sensitivity, specificity, and accuracy criteria for the 
training data set in the SVM model were 0.951, 0.966, and 
0.958, respectively. While for the LMT model, these val-
ues were 0.921, 0.965, and 0.942, respectively. On the other 
hand, these values for the validation data set in the SVM 
model were 0.850, 0.850, and 0.851, respectively, while 
for the LMT model, they were 0.810, 0.842, and 0.825, 
respectively. Also, in the training and validation data sets 
of the SVM model, the RMSE had the values of 0.058 and 
0.126, respectively. For the LMT model, they were 0.126 
and 0.185, respectively. These results indicated that all of 
these values in the SVM model were lower than those of the 
LMT model (Table 6).

Preparation of landslide susceptibility maps 
and comparison

Landslide susceptibility mapping is the most significant 
issue in the spatial prediction of landslides (Pham et al. 
2015a). Consequently, landslide susceptibility indexes 
(LSIs) for the LMT and the SVM models were gained 
and then reclassified based on the natural breaks method. 
Although all mathematical classifications such as equal 
interval, quantile, standard deviation, and geometrical inter-
val were tried on classifying the LSIs, the natural breaks 
method was selected as the logical method due to conformity 
with the actual conditions of the environment. Eventually, 

in this study, the LSMs were categorized into five classes 
including very low susceptibility, low susceptibility, moder-
ate susceptibility, high susceptibility, and very high suscep-
tibility (Fig. 6).

In this study, 70% of the training landslides were used 
and ROC curves were plotted for the used models (Fig. 7a). 
Based on Fig. 6a, according to training data set, the area 
under the curve using the SVM-RBF algorithm was about 
0.970. It means that this algorithm is able to predict areas 
susceptible to landslides up to about 97%. However, for 
training data set, the value of the area under the ROC curve 
for LMT-DT algorithm was obtained to be about 0.744. It 
implied that the LMT had a performance of 74.4% for rec-
ognizing the landslides that maybe occurred in the future 
over the study area. The prediction accuracy of the mod-
els was obtained and plotted based on the validation data 
set (Fig. 7b). It indicated that the SVM model had a higher 
accuracy (AUC = 0.882) than the LMT (AUC = 0.737) 
model for spatial prediction of landslide sin the study area.

In addition to the AUC, the performance of the landslide 
models was statistically checked. There are two statistical 
test including Friedman and Wilcoxon signed-rank tests to 
determine the statistical differences between two or more 
models (Bui et al. 2016). The null hypothesis is that there 
is no any significant difference between the SVM and the 
LMT model for spatial prediction of landslides in the study 
area. Friedman tests only showed the significant differ-
ences among all models without any judgment as pairwise 
between two or more models (Bui et al. 2016). To check 
the performance between two or more models as pairwise, 
the Wilcoxon signed-rank test is generally applied in non-
parametric tests. As in this study, only two models were 
used; we only applied the Friedman test to check the perfor-
mance of the models. The result is shown in Table 7. It can 
be concluded that because of significant equaled to 0.000, 
there was a significant difference between the SVM and the 
LMT models for landslide susceptibility mapping. However, 
the obtained result was in agreement with the result of the 
ROC curve.

Discussion and conclusion

Landslide susceptibility mapping plays an important role in 
providing a platform to decision-makers and authorities, par-
ticularly in landslide prone areas. Machine learning methods 
are more notoriously efficient in solving many real-world 
problems compared to conventional methods such as expert 
knowledge methods or analytic methods (Pradhan 2013). 
The present study comparatively examined machine learn-
ing algorithms, namely the SVM and the LMT for landslide 
susceptibility mapping in Kamyaran county where located in 
the province of Kurdistan, Iran. However, during the past 2 

Table 6  Model validation using several statistical evaluation meas-
ures

Index Training dataset Validation dataset

SVM LMT SVM LMT

TP 58 58 17 17
TN 57 55 17 16
FP 2 2 3 3
FN 3 5 3 4
Sensitivity (%) 0.951 0.921 0.850 0.810
Specificity (%) 0.966 0.965 0.850 0.842
Accuracy (%) 0.958 0.942 0.851 0.825
RMSE 0.058 0.149 0.126 0.185
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Fig. 6  Landslide susceptibility maps by machine learning models: a support vector machine and b logistic model tree

Fig. 7  Performance of landslide models with SVM and LMT models using: a success rate curve of the training dataset; b prediction rate curve 
of the testing dataset
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decades, several methods and techniques have been explored 
and developed for the landslide modeling. However, till now, 
the models are limited only to a small number of studies.

Landslide susceptibility maps were prepared with a total 
of 60 landslide locations. Investigation of the results on 
the most effective factors among 21 known factors affect-
ing landslide occurrence in the study area based on the AM 
index of the IGR showed that slope angle, slope aspect, 
elevation, slope curvature, profile curvature, LS, land use, 
lithology, NDVI, distance to fault, distance to road, fault 
density, and road density, due to having zero values were 
excluded from the final modeling process. However, the 
most important factor affecting landslide occurrence in the 
study area in both models was distance to rivers. Distance to 
river was the most important factor for landslide occurrence, 
because most of landslides were occurred near the rivers. 
This result is in concordance with Abedini et al. (2018) and 
Chen et al. (2017) who they reported that the distance to 
river was more significant factor for landslide occurrence. 
The over-performance of SVM is due to it robustness, reduc-
ing more noise and variance of training dataset, and also 
reducing more over-fitting problem than the LMT model 
in the study area. In addition, model validation process was 
performed using some statistical-based measures including 
precision, accuracy, and area under the ROC curve. Mod-
elling process confirmed that the goodness-of-fit and per-
formance of the SVM were found feasible higher than the 
LMT decision tree algorithm in the study area. Yao et al. 
(2008) compared the SVM and LR for landslide suscepti-
bility mapping, and they concluded that the SVM was more 
accurate than the LR model. Tien Bui et al. (2012) com-
pared the SVM, decision tree (DT), and Naïve Bayes (NB) 
algorithms for landslide modelling, and reported that the 
SVM was more powerful and performance than the other 
models. Ballabio and Sterlacchini (2012) also compared the 
SVM, the logistic regression, linear discriminate analysis, 
and naïve Bayes algorithms for spatial prediction of land-
slides. They confirmed the SVM outperformed other algo-
rithms due to more decreasing the over-fitting and variance 
problems.

In addition, interpretation of landslide susceptibility 
maps showed that more areas with high and very high sus-
ceptibility values are located at the end of slope or where 
slope is close to the junction of rivers. Perhaps, the reason 
is the movement of subsurface water from rivers toward 

surrounding slopes, creation of a humidity front, and reduc-
tion of soil shear strength in this area that it provides some 
landslides with less depth of failure.

Overall, both of the investigated landslide models showed 
acceptable performance for landslide susceptibility assess-
ment. However, the SVM model appeared to have a com-
paratively better performance. Therefore, it can be employed 
to assess and develop more efficient landslide susceptibility 
maps for proper landslide hazard management. As a final 
conclusion, the results can provide very useful information 
for decision-making, land planning, crisis management, and 
normal risk reduction in landslide areas.
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