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Abstract

Debris flows are a moving mass composed from water and solids mixture, mainly in form of sediments, with a high destruc-
tive power. The debris volume that is transported and deposited outside the drainage system of a watershed has a great
importance in the definition of its hydrological response. The objective of this work was to propose predictive models gen-
erated through the adjustment of multivariate statistical techniques, to estimate the sediment volumes deposited by debris
flows. Measurements and calculations of the morphometric parameters of the watersheds and drainage networks have been
performed with the support of GIS software and spreadsheets. The relationships between morphometric parameters and
sediment volumes have been analyzed by applying multivariate statistical techniques such as linear correlation analysis. The
principal component analysis and multiple linear regression analysis have been performed with principal components, which
allowed the generation of predictive models. From the predictive models generated for the sediment volumes deposited by the
debris flow event of December 1999, raised results closer to reality with better Pearson’s correlation coefficients from those
related to the gradient and shape of the watershed relief and extension of the drainage network morphometric variables. For
the estimation of deposited sediment volumes due pre- and post-1999 event conditions, only the predictive models generated
with the gradient and shape of the watershed relief variable have had good results.

Keywords Morphometry - Sediment volume - Debris flow - Hydrological response - Predictive model - Multivariate
statistical

Introduction and runoff-related transport, which are often able to generate
extreme floods and debris flows (Van Steijn 1996; Coussot

In watersheds developed in mountainous environments such and Meunier 1996; Vallance and Scott 1997; Jakob et al.

as natural hydrological systems, flows are represented by ~ 2005; Tichavsky and Silhan 2015).

volumes of water and solids that generally constitute debris These observable and measurable effects on watersheds

as a result of rains captured in their areas of origin. These = outflows are what are known as their hydrological responses

activate hydro-geomorphological processes such as erosion  (Santi et al. 2011; Ballesteros-Canovas et al. 2015; Palau
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Fig. 1 Overview of deposits and effects of December 1999 debris
flow event in Venezuela’s Vargas state: a deposits (white color) of the
event on the alluvial fans (from left to right) Macuto, Punta El Cojo,
Camuri Chiquito, Punta El Caribe and Punta Cerro Grande, b impact
of debris flows on the population (Los Corales sector) and ¢ debris

et al. 2017). One of the quantifiable and important param-
eters in its definition, particularly in the case of debris flows,
is the volume of debris that has been transported and depos-
ited outside the watershed. In this regard, sediment volume
refers to the amount of sediment, debris or solid charge
present in a stream (Costa 1984, 1988; Iverson 1997). The
sediment load of a debris flow is deposited due to a sud-
den decrease of the channel slope. This occurs when the
debris flow leaves the mountainous sector and enters in a
topographically flatter area. In many cases, these flat areas
are alluvial fans, whose genesis is linked to the occurrence
of these same hydro-geomorphological processes (debris
flows).

The activation of debris flows depends on several factors
such as precipitation (distribution, duration, and intensity),
relief, topographic slopes, drainage network, alteration and
depth of the ground cover, lithology, vegetation cover, and
anthropogenic interventions. Among these factors, vegeta-
tion (types of plant formations in terms of their density and
coverage) and lithology play a fundamental role in the gen-
esis of debris flows, which has been widely demonstrated
in the literature and in various localities worldwide. How-
ever, the purpose of this study is not to demonstrate that
this is the case, but rather to focus on other elements of the
system (morphometry of the watersheds and their drainage
systems) for which little documentation has been provided
on their relationship with the volumes and/or magnitudes of
the deposits by debris flows.

On the other hand, the surface and vertical distribution
of the different vegetal formations present in the study area,
from the coastline to the summit of the studied mountain
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flow deposits in the main channel of the Camuri Chiquito creek
(stretch over alluvial fans), dissected after the event. Satellite image
IKONOS from Centro de Procesamiento Digital de Imagenes [CPDI]
(1999)

front, presents a fairly similar pattern in all watersheds. Like-
wise, lithological types, in which most superficially exposed
rocks are foliated metamorphic, with some slight changes.

The type, structure and nature of the rocky outcrops, are
determinants for the sediment granulometry generated by the
action of meteorological and erosive processes, but there are
also other variables that operate spatially at greater scales,
such as for example, the morphometry of watersheds and
their drainage systems, which ultimately determines the vol-
umes of sediments that a watershed as a whole can contrib-
ute to a debris flow event.

The results obtained from the multivariate statistical ana-
lyzes and the models generated in this research, document
interesting findings. It is demonstrated which are the specific
morphometric parameter groups that have a significant rela-
tionship with the volumes of sediments of the debris flows.

The study area was chosen to be the watersheds of the
north slope of the El Avila massif, in the Vargas state, Ven-
ezuela, for the development and application of predictive
models of sediment volumes. This site has been located on
a relatively rugged mountainous slope, which is suitable for
a torrential character with sudden and aggressive hydrologi-
cal reactions, as evidenced by the sudden floods and debris
flows that occurred in December 1999 (Larsen et al. 2001a,
b; Pérez 2001; Garcia-Martinez and Lépez 2005; Nadim
et al. 2000) (Fig. 1).

A series of studies have been conducted to estimate the
volumes of sediments produced in watersheds, transported
and deposited by rivers of the northern slope of the El Avila
massif, using a variety of other methodologies (Cérdova
and Gonzalez 2003; Artigas et al. 2004, 2006; Hernandez
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Fig.2 Location of the watersheds of the study area: (A) Piedra Azul
Creek, (B) Osorio Creek, (C) Cariaco Creek, (D) San José de Galipan
River, (E) El Cojo Creek, (F) Camuri Chiquito Creek, (G) San Julian
Creek, (H) Seca Creek, (I) Cerro Grande River, (J) Uria River, (K)

2006; Lopez et al. 2006; Artigas and Cérdova 2010; Mar-
tinez 2010) and more recent methods for estimating sedi-
ment volumes from debris flows and other types of mass dis-
posal processes (Bremer and Sass 2012; Tiranti et al. 2016;
Legorreta Paulin et al. 2017; Martha et al. 2017; Martin
et al. 2017).

Other recent efforts in the study of the debris flows, have
focused on analyzing and understanding the genesis of these
flows linked to the occurrence of rainfall events, propos-
ing models taking into account aspects such as thresholds,
extreme events, rainfall intensity-duration and probabilities
(Chen et al. 2016; Giannecchini et al. 2016; Marra et al. 2016;
Bel et al. 2017; Destro et al. 2017; Dietrich and Krautblatter
2017; Fan et al. 2017; Ma et al. 2017; Wei et al. 2017).

The main objective of this study has been to explain the
relationships between volumes of sediment deposited by water
courses (debris flows) of mountainous environments and the
morphometric parameters of watersheds and drainage systems
that generate them, using multivariate statistical techniques. In
addition, we seek to reduce the dimensionality of independ-
ent variables (morphometric parameters), to produce effective
predictive models applicable to the studied watersheds as well
as others located in similar physiographic contexts .

Study area

The watersheds selected for this study, due to their hydro-
geomorphological interest resulting from the catastrophic
event of December 1999, are located in the central-northern
Region of Venezuela, more precisely in the central part of

10°37°47” N

o LA GUAIRA

N CARIBBEAN SEA ...

MACUTQge

Esy, N
4Do AROAS

&
DO ANDN

10°37°47° N AN

CARIBBEAN SEA

66°41°27"

Naiguatd River and (L) Camuri Grande River. Cartographic base
from Instituto Geografico de Venezuela Simén Bolivar [IGVSB]
(2003); satellite image LANDSAT 7 ETM from CPDI (2002)

the Vargas state, and extend on the northern slope of the El
Avila massif, at its western end, occupies an area of about
198.89 km? (Fig. 2). This area is part of the Coastal Moun-
tain Range, part of the Caribbean Mountainous System, in
its central section. It is located in the eastern sector of the
northern slope of the Serrania del Litoral. Specifically, on
the El Avila massif (Fig. 3).

The area borders the Caribbean Sea to the north, where
the main water courses flow into the corresponding water-
sheds. To the south, it borders the watersheds of the southern
slope of the El Avila massif and the city of Caracas. To the
east appear the Care and Anare river watersheds, La Cortada
row and the Naranjal and La Cruz topographic summits, and
to the west the Las Pailas and the Tacagua watersheds as
well as the Tacagua pass.

Watersheds considered to be exorheic hydro-geomorpho-
logical systems in which three relief unit’s characteristic of
these systems have been distinguished: a catchment area, a
main drainage channel and an alluvial fan, each with its own
morphological characteristics and processes. Topographi-
cally, they are depressed morphology units more or less
similar to funnels, a basic configuration that determines the
torrential behavior of these systems. Hence, the topographic
features (steep slopes between 15% and more than 45%;
average slopes between 24.32 and 34.13%; heights between
25 and 2770 m.a.s.1.) indicate strong irregular terrain condi-
tions, morphodynamic instability and sudden hydrological
responses. Creeks and rivers in the studied area have very
short watercourses (between 3.55 and 13.55 km) from their
nascent to the mouth in the mountain front, along which
they flowed, presenting steep slope variations, typical of
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Fig.3 3D reconstructed surface with shading overlay, on which one can appreciate the alluvial fans and watersheds of the northern slope of the

El Avila massif in the study area

torrential systems in mountainous environments with very
pronounced reliefs.

Geology

The geology is represented by outcrops of lithodemic units
belonging to the strips of the Avila Metamorphic Associa-
tion (Pefia de Mora Augengneis, San Julidan Complex, Caruao
Metatonalite and Naiguatd Metagranite) and the La Costa
Metamorphic Association (Serpentinite bodies, Nirgua
Amphibolite, Tacagua Schist and Antimano Marble) (Urbani
1999, 2000, 20024, b, c, d, Urbani et al. 2006). These include:

(a) Peria de Mora Augengneis (Paleozoic—Precambrian),
with augengneises, quartzite layers, aplite dykes, mar-
ble lenses and quartz-muscovite schists.

(b) San Julidan Complex (Paleozoic—Precambrian), with
schists and quartz-plagioclase-micaceous gneisses.

(¢) Caruao Metatonalite (Pre-Mesozoic), with meta-
igneous rocks corresponding to tonalites, amphibo-
lites, diorites, trondhjemites, granites, granodiorites,
gneisses and amphibole schists.

(d) Naiguata Metagranite (Pre-Mesozoic), with medium-
grained leuco-syenite-granite with slight banding.

(e) Serpentinite bodies, including various types of serpen-
tinites, amphibolites and rodingites.

(f) Nirgua Amphibolite (Mesozoic), with various types
of amphibolites, schists, marbles, quartzites, gneisses,
epidocites and serpentinites.

@ Springer

g) Tacagua Schist (Jurassic—Cretaceous), with dark gray

and light green schists.

(h) Antimano Marble (Cretaceous), with massive marbles
of clear gray color with layers of quartz-micaceous
schists, associated with concordant bodies of amphi-
bolic rocks.

(i) Alluvium (Holocene) with overlying discordance on
the rocks of the La Costa Metamorphic Association in
the lower parts of the watersheds. They are shaped by
alluvial fans and valley bottom deposits.

Vegetation

The vegetation formations are well described in Steyermark
and Huber’s studies (1978), Huber and Alarcon (1988),
Amend (1991) and Vareschi (1992), and for which some of
their main characteristics are described below:

(a) Littoral vegetation, situated between sea level and
50 m.a.s.l., it is composed of very low species, mainly
herbaceous, subfrutic and halophytic crawlers.

(b) Cardonal and spine, located between 50 and
300 m.a.s.l., is a community of low to medium size
(0.5-5 m), adapted to the drought, of variable den-
sity between open to very closed, strongly armed and
columnar cactus.

(c) Deciduous forest, low to medium height (10-20 m),
with 1-2 arboreal strata and a dense understory, which
is generally located between 300 and 600 m.a.s.1., has
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a high percentage of deciduous tree species, and others
that can reach heights between 15 and 20 m.

(d) Semi-deciduous forest, located between 600 and
800 m.a.s.l., of medium height and comprising 2-3
dense arboreal strata. They are composed of decidu-
ous and evergreen trees.

(e) Transitional forest, located between 800 and
1500 m.a.s.l., medium to high heights (25-30 m) with 2
or 3 arboreal strata, abundant epiphytes and a relatively
dense understory.

(f) Cloudy forest, located between 1200 and 2200 m.a.s.1.,
the trees are very highs and evergreen, with a great
variety of epiphytic species on their trunks.

(g) Sub-pdramo, heights higher than 2200 m.a.s.1.

(h) Gallery forest, they accompany the courses of rivers
and creeks, the shrub and herbaceous strata are well
developed.

(i) Secondary vegetation, atypical species of the region,
the result of human intervention or reforestations.

Materials and methods

With basic cartographic information (Direccién de Car-
tografia Nacional [DCN], 1958, 1979; Gobernacidn del Dis-
trito Federal [GDF], 1984; Servicio Auténomo de Geografia
y Cartografia Nacional [SAGECAN], 1995) at scales of
1:5000 (39 topographic plans) and 1:25,000, (6 topographic
charts), the base maps have been assembled with which the
polygons corresponding to the study area (watersheds) have
been delineated. Both map covered the entire study area.
This information has been rasterized and digitized using the
ArcGIS 9.2 software with its ArcHydro and Spatial Analysis
modules. With this last module and using the of 1:25,000
base map, the Digital Elevation Model (DEM) of the study
area was generated afterwards. Then from this, we were able
to establish the longitudinal and transverse topographic pro-
files of the relief, as well as those of the river and creek
channels.

The measurements and calculations of the morphometric
parameters of the watersheds and their drainage networks
were made on a digitized map at scale of 1:5000 and the
DEM, obtaining basic linear, longitudinal, surface, eleva-
tion and clinometric parameters. This scale of work (1:5000)
provided more accurate and approximate values for most of
the basic morphometric parameters. Then, with the informa-
tion obtained and the corresponding mathematical equations
that define the rest of the parameters, we proceeded to their
respective estimates (Table 1).

The hydrological information has been represented by the
corresponding sediment volumes, namely the debris flows
event of December 1999, before to the debris flows event
of 1999 (Tr=100 years) and after the debris flows event of

1999 (tr =100 years), as previously suggested by Cérdova
and Gonzalez (2003) and Artigas and Cérdova (2010). Cor-
dova and Gonzélez (2003) had previously estimated these
hydrological parameters (sediment volumes) for the same
watersheds of the study area, by calibrating and applying
the method developed by the U.S. Army Corps of Engineers
(USACE), which takes into account the volumes of debris
observed after a debris flow event, as well as a set of physi-
cal and natural variables. The volumes of debris observed
were estimated by topographic—cartographic methods.

To interpret the degree of relationship between the mor-
phometric parameters and the sediment volumes, a linear
correlation analysis (LCA) has been performed. It is based
on the estimation of the Pearson’s correlation coefficient by
the product of moments method, using the Xlstat comple-
ment of Microsoft Excel.

A principal component analysis (PCA) has been devel-
oped (Pearson 1901; Hotelling 1933) with the morphomet-
ric parameters, to reduce its dimensionality and to identify
those that each has significant weight in their relationships
with sediment volumes. Hereby, the type of PCA that has
been performed is based on the correlations method. The
PCA has been run using the SPSS Statistics Version 17.0
statistical package, for each set of parameters grouped in
the same morphometric variable. The standardized scores
for each watershed have been used as the values of the new
variables representative of the morphometric parameters.
We performed with them multiple linear regression analysis
(MLRA).

The MLRA have been performed using the SPSS Statis-
tics version 17.0 statistical package.

MLRA has been performed for each of the groups of prin-
cipal components (PC), each of which represents groups of
morphometric parameters as independent variables or pre-
dictors. Once the results of the MLR have been obtained,
the PC’s of the morphometric parameter groups that gave
adequate results in their relationships with the sediment vol-
umes have been identified, and those PC that did not satisfy
the generated models have been then rejected. Predictive
statistical-mathematical models have been constructed with
the non-standardized coefficients (/) of the constants and the
PC’s generated by the MLRA. The magnitudes of the sedi-
ment volumes deposited by the main watercourses (debris
flows) have been estimated according to these new models.

Results and discussion

Morphometry of watersheds and their drainage
networks

Based on the morphometric parameters of the watersheds
and their drainage networks (Table 2), and more particularly

@ Springer
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Table 2 Morphometric parameters of the watersheds and drainage networks

Statistic Am?)  Aspe km?)  Asge (km®) P (km)  Lkm) W, (km) W, (km) D(km) Aer(km’) Pc(km)
Maximum value  31.38 25.55 8.83 25.10 8.70 3.74 6.18 6.32 51.79 19.86
Minimum value 2.89 1.63 1.26 6.80 2.88 1.00 1.40 1.92 4.03 6.03
Mean 13.89 9.23 4.65 16.15 6.08 2.06 3.26 3.97 22.05 12.46
Statistic h (masl) H(masl) H,,(masl) H,(masl) h,(masl) R, (m) R@mkm) S, (m/m) Cms Sms, (m/m)
Maximum value 125 2770 1316.76 2550 125 2745 442.50 0.34 0.71 041
Minimum value 25 1280 547.71 1200 25 1230 270.83 0.24 0.00 0.20

Mean 48.85 2122.08 939.70 2040.38 48.85 2073.23 353.45 0.30 0.39  0.27
Statistic Rms,, (m)  Tfms Sts,, (m/m)  HI Cm (masl/km?)  Co Rr (m/km) MRn E Prc
Maximum value 2525 1367.37  0.82 0.55 195.57 154,518.28 180.88 0.91 0.68 2594
Minimum value 1150 666.30  0.50 0.35 34.74 36,620.01 92.20 0.42 0.48 16.00
Mean 1991.54 1020.23  0.65 0.43 98.66 84,764.85 136.94 0.63 0.57 21.38
Statistic Kc I Ih Is Ff Cl Re Rc If I,
Maximum value 1.43 3.01 0.77 4.38 0.46 2.08 0.76 0.79 2.03 1.13
Minimum value 1.12 1.36 0.51 1.01 0.23 1.48 0.54 0.48 1.60 1.13
Mean 1.29 2.03 0.64 1.89 0.33 1.77 0.64 0.60 1.84 1.13
Statistic Cf Cr Lms (km) Lv,, (km) Lts (km) S St Sh Gc (km) Dd (km/km?)
Maximum value 0.46 3.40 13.55 11.00 255.55 1.66 1.34 13.55 11.00 255.55
Minimum value 0.23 1.72 3.55 3.00 34.03 1.09 1.02 3.55 3.00 34.03

Mean 0.33 2.50 7.86 6.75 123.33 1.33 1.13 7.86 6.75 123.33
Statistic Dt (km™1) Cmc (km¥km)  E_ (km)  Lsf (km) Tt Di (km) R, N, u Rb,,
Maximum value 1136.46 0.18 0.04 0.10 1.52 5.21 2.80 1120 6 4.99
Minimum value 87.08 0.07 0.02 0.03 1.06 2.75 1.83 169 4 3.58
Mean 430.41 0.11 0.03 0.05 1.30 4.09 2.27 497.54 5.15 4.10
Statistic R, Rs,, Fs,, (N/km?) Ct (N,/km?) Cs M (Ny)
Maximum value 2.84 1.66 76.92 60.85 0.58 886
Minimum value 1.92 1.16 15.48 11.72 0.50 127
Mean 2.26 1.41 40.83 31.51 0.55 384.54

those referred to the watershed scale variable, these hydro-
geomorphological systems fall into the category of micro-
watersheds due to their small dimensions. Regarding the
parameters of the gradient and shape of the watershed relief
variable, they are defined as topographically very rugged
areas with steep slopes and large altitudinal roughness. The
watershed shape parameters indicate that they are semi-cir-
cular to semi-elongated planimetric morphologies, while in
the case of the extension of the drainage network parameters,
they indicate branched drainage systems, and considerable
densities at short lengths and small sinuosity channels being
rectilinear. In the case of the order and magnitude of the
drainage network variable, its parameters indicate networks
of high magnitudes and orders, as well as high levels of
torrentially.

The geometry of the systems (watershed scale param-
eters) are the ones that determine in greater proportion

the specific conditions that favor the occurrence of flash
floods, with hydrographs of sharp peaks and short dura-
tion. They also occur as shorter concentration times in
the presence of significant storms in intensity, duration
and dimensions, as they determine are the areas where
rainwater is collected. In addition to the morphometric
parameters grouped in the scale watershed variable, others
corresponding to variables defining different attributes of
these hydro-geomorphological systems, contribute in the
same way to a significant weight in controlling the ampli-
tudes and characteristics of the hydrological and morpho-
dynamic responses of the watersheds.

These morphometric parameters are represented in
specific by the slopes of the longitudinal profiles of the
main creeks and rivers, the prominent mountainous relief
(massiveness coefficient, orographic coefficient and Mel-
ton roughness number), the short lengths of the main
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Table 3 Correlation coefficients between the sediment volumes and the morphometric parameters of the watersheds and drainage networks

Hydrological response parameter Sediment volume (event Sediment volume prior to the debris ~ Sediment volume after the debris
Morphometric parameter of December 1999) (Vs- flows (Tr=100 years) (VSyior.qf) flows (Tr=100 years) (Vs,ger.ap)
Dec1999) (m®) (m®)
(m*)
Area (km?) 0.71* 0.73 0.73
Larger slope area (km?) 0.66 0.73 0.73
Smaller slope area (km?) 0.70 0.57 0.55
Perimeter (km) 0.69 0.72 0.70
Length (km) 0.66 0.66 0.63
Mean width (km) 0.75 0.78 0.77
Maximum width (km) 0.67 0.68 0.68
Diameter (km) 0.74 0.75 0.74
Equivalent rectangle area to the 0.67 0.67 0.66
watershed (km?)
Circle perimeter equal to the water- 0.74 0.75 0.74
shed area (km)
Minimum height (masl) 0.40 0.24 0.25
Maximum height (masl) 0.42 0.33 0.31
Mean height (masl) 0.48 0.42 0.40
Main stream rising height (masl) 0.34 0.30 0.29
Main stream outlet height (masl) 0.40 0.24 0.25
Maximum relief (m) 0.38 0.30 0.29
Relief ratio (m/km) -0.73 —-0.80 —0.78
Mean relief slope (m/m) —0.08 -0.15 -0.16
Concavity of the main stream longi- 0.13 0.14 0.16
tudinal profile
Mean slope of the main stream longi- —0.73 —-0.77 —-0.75
tudinal profile (m/m)
Main stream maximum relief (m) 0.30 0.28 0.26
Main stream topographic factor -0.17 -0.23 -0.23
Mean slope of the drainage network  —0.19 -0.21 -0.21
total streams (m/m)
Hypsometric integral 0.25 0.35 0.31
Massiveness coefficient (masl/km?) — —0.76 -0.75 —-0.74
Orographic coefficient -0.73 —-0.71 -0.73
Relative relief (m/km) —-0.73 —-0.81 —-0.80
Melton roughness number —0.80 -0.83 —-0.83
Elongation 0.68 0.69 0.71
Relative crenulation perimeter —0.50 -0.37 —0.41
Compactness coefficient —0.49 -0.35 —-0.40
Lengthening index —0.50 —-0.48 —-0.51
Homogeneity index 0.21 0.24 0.24
Symmetry index 0.43 0.63 0.63
Form factor 0.67 0.69 0.72
Caquot lengthening —0.68 —-0.67 —-0.70
Elongation ratio 0.68 0.69 0.71
Circularity ratio 0.45 0.29 0.35
Form index —-0.49 -0.35 -0.40
Form coefficient 0.67 0.69 0.72
Roundness coefficient —-0.68 —0.66 —0.69
Main stream length (km) 0.51 0.57 0.56
Main stream valley mean length (km)  0.63 0.67 0.65
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Table 3 (continued)

Sediment volume (event
of December 1999) (Vs-

Hydrological response parameter

Morphometric parameter

Sediment volume prior to the debris
flows (Tr=100 years) (VSyior.qf)

Sediment volume after the debris
flows (Tr=100 years) (VSger.ap)

Dec1999) (m%) (m%)
(m*)
Total length of the drainage network 0.53 0.58 0.58
streams (km)
Main stream total sinuosity -0.23 -0.07 —0.06
Main stream topographic sinuosity 0.32 0.45 0.47
Main stream hydraulic sinuosity -0.72 —-0.61 —0.63
Main channel gravity center (km) 0.51 0.57 0.56
Drainage density (km/km?) -0.58 -0.52 —0.50
Drainage texture (km™') —0.46 -0.38 -0.36
Channel maintenance coefficient 0.65 0.65 0.62
(km?/km)
Surface runoff mean extent (km) 0.65 0.65 0.62
Surface flow length (km) 0.58 0.60 0.57
Topographic texture -0.63 —0.60 —0.58
Drainage intensity (km) -0.54 -0.52 -0.49
Mean remoteness -0.69 -0.55 —0.58
Watershed order 0.41 0.51 0.50
Total number of drainage network 0.37 0.44 0.44
streams
Mean bifurcation ratio -0.26 -0.44 —-0.42
Mean stream length ratio -0.12 -0.29 -0.25
Mean slope ratio 0.04 —0.09 -0.07
Mean frequency of the drainage -0.52 —-0.47 —-0.44
network total streams (Nl/kmz)
Torrentiality coefficient (N 1/kmz) -0.49 —-0.44 —-0.42
Storage coefficient 0.29 0.33 0.38
Watershed magnitude (N,) 0.36 0.44 0.43

*Significant correlation coefficients (p value <0.05)

watercourses, the high orders of the watersheds consider-
ing that they are small systems, the total number of drain-
age system streams and their magnitudes.

Hydrological response: sediment volumes

The hydrological response parameters to which this study
refers are fundamentally related to sediment volumes, as
expressions of hydrologic dynamics that distinguish the
hydro-geomorphological systems of mountainous environ-
ments and their torrential behaviors. The sediment volumes
transported during the debris flows event of December 1999
ranged from 839,182 to 2,636,280 m?, with an average of
1,685,968.42 m>. For volumes of sediment produced under
pre- and post-debris flows conditions of December 1999 and
for a 100 years return period, these values ranged between
484,302 and 1,313,876.60 m in the first case, and between
559,328.60 and 1,450,556.80 m> for the second, with aver-
age values of 867,840.55 m® and 1,023,799.75 m? respec-
tively .

These magnitudes refer to the solid discharges in the
watersheds hydrological responses, representing significant
amounts that demonstrate the aggression, the hydrologic and
morphodynamic power of the debris flows events that have
occurred and could occur in the future in the studied sector,
under the combination of triggering effects such as extraor-
dinary rainfall and conditions of high susceptibility of the
physical environment such as lithology, slope, landforms,
vegetation, drainage, and soils.

Linear correlation analysis

The LCA provided a first approximation of the degree of
relationship between the dependent variables (morphomet-
ric parameters) and independent variables (volumes of sedi-
ments) involved in the study and allowed us to identify the
specific morphometric parameters first, that have greater
significance in terms of their impact or control on the hydro-
logical response (debris flows) of the watersheds.
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Fig.4 PC diagrams of the morphometric parameters corresponding to the variables a watershed scale, b gradient and shape of the watershed
relief, ¢ watershed shape, d extension of the drainage network and e order and magnitude of the drainage network

The coefficients obtained from the scores (weights) for  and according to each PC in which they have been grouped,
each parameter of each morphometric variable, which have  allowed to rank them in order of importance (Fig. 5).
been regrouped according to the PC (new variables), we
observed that in the watershed scale variable, all its param-  Multiple linear regression analysis
eters have similar scores. For the other morphometric vari-
ables, significant differences have been observed regarding ~ The models generated by the MLRA between the PC of the
their score coefficients for each morphometric parameter, watershed scale variable and sediment volumes produced

good correlation coefficients (between 0.730 and 0.742)
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Fig.5 PC diagrams in rotated space of the morphometric parameters corresponding to the variables a gradient and shape of the watershed relief,
b watershed shape, ¢ extension of the drainage network and d order and magnitude of the drainage network

and low determination indices (between 0.533 and 0.551).
The significance demonstrated low values (between 0.006
and 0.007) and the Durbin—Watson test gave values greater
than 1.4, indicating that there were no serious or important
autocorrelations, so the variables considered in the model
appear to be independent. Better results have been obtained
with the gradient and shape of the watershed relief variable,
indicating that these morphometric parameters are good pre-
dictors of debris volumes. For the shape of the watershed
shape variable, the statistical evaluators of the efficiency of
the models presented less optimal values, indicating a less
reliable variable as a predictor of sediment volumes.

Very good results have been obtained with the exten-
sion of the drainage network variable, although slightly less
adapted than the gradient and shape of the watershed relief
variable, with which these models are considered as quite
acceptable predictors. The resulting models with the order

@ Springer

and magnitude of the drainage network variable showed
very low correlation coefficients and determination indices.
With very high significance and Durbin—Watson test val-
ues greater than 1.4, the data reveal that the morphometric
parameters of this variable cannot be considered as predic-
tors of sediment volumes.

In the results of MLRA-generated f-coefficients between
the PC of each one of the morphometric parameters groups
and the sediment volume parameters, we observed that for
the watershed scale variable, all the predictive models have
been presented as acceptable alternatives for estimating the
magnitudes of sediment volumes, since the 95% confidence
intervals for B occupy ranges or amplitudes greater than
zero. As a result, all these predictive models are satisfied
with the single PC generated for such variable.

The predictive models, which correspond to the gradi-
ent and shape of the watershed relief variable, satisfy only
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Table 5 Predictive statistical-mathematical models (equations) of sediment volumes

Hydrological response
parameter

Morphometric variable

Predictive statistical-mathematical model of sediment volumes

Sediment volume (event Watershed scale
of December 1999) (Vs-

3
Dec1999) (m”) Gradient and shape of the watershed relief

Watershed shape

Extension of the drainage network

Sediment volume prior to the ~ Watershed scale
debris flows (Tr=100 years)

C 3
(VSprior.ap) (M) Gradient and shape of the watershed relief

Watershed shape
Extension of the drainage network

Sediment volume after the Watershed scale

debris flows (Tr=100 years)
3
(VSaer.qp) (M7) Gradient and shape of the watershed relief

Watershed shape

Extension of the drainage network

Y=py+p1X,

Vs-Dec1999 = 1,664,659.595 + 387,055.437(PC1)

Y=PFy+ P X0+ 3X3

Vs-Dec1999=1,774,218.744 + (— 456,631.453(PC2)) + (— 361,128.173(PC3))

Y=py+p1X,

Vs-Dec1999 =1,689,853.701 + 300,943.038(PC1)

Y=Po+ 51X+ 5%+ 3X;

Vs-Dec1999=1,710,616.073 + (— 249,259.773(PC1)) +224,241.079(PC2)
+(— 328,038.396(PC3))

Y=[y+pX,

VSprionar=856,136.743 +212,589.038(PC1)

Y=py+ X, + :X;

VS yiorar=914,395.354+ (— 258,457.229(PC2)) +(~ 160,091.436(PC3))

Y=py+p X,

VS orar = 869.802.192 + 178,301.838(PC1)

Y=po+p,X,

VSprionar=872:484 + 152,077.774(PC2)

Y=py+p1X,

VS, erar= 1,011,982.558 +214,648.581(PC1)

Y=PFy+ X0+ P3X3
VSyenar= 1,073,998.700 4+ (= 266,846.725(PC2)) + (— 169,819.436(PC3))

Y=py+p1X,
VS,erar=1,025,933.695 + 188,337.200(PC1)

Y=o+ p,X,

VS, epar= 1,028,949.535 + 155,519.996(PC2)

PCs 2 and 3, reaching 95% confidence intervals for 3, but
biased towards negative values, whereas PC 1 and 4 have
been excluded from the models, since zero is included within
their 95% confidence intervals for . The watershed shape
variable, of the two PCs representative of their morphomet-
ric parameters, only the first satisfies the predictive models,
with 95% confidence intervals for p, which is towards the
positive values.

In the predictive models of the extension of the drainage
network variable, it is perceived that for the sediment vol-
umes parameter of the December 1999 debris flows event,
the three representative PCs of the morphometric param-
eters satisfy these models, with the intervals of 95% con-
fidence for f of PC 1 and 3 less than zero and that of PC 2
greater than this value. In the case of the sediment volumes
before and after the December 1999 debris event, only the
PC 2 satisfies the models. Therefore, PCs 1 and 3 have been
discarded for the construction of such. For the order and
magnitude of the drainage network variable, none of the
three PCs representative of their morphometric parameters
satisfies their respective predictive models, since the 95%
confidence intervals for f in these cases include the zero
value in their ranges.

Predictive models of debris volumes

Predictive models with linear equations have been con-
structed with the PC of each morphometric variable and
for each sediment volume parameter (Table 5). The magni-
tudes of the latter have been estimated, by comparing them
later with the magnitudes taken as input data in the analysis
statistics, by adjusting the Pearson’s correlation coefficients
(Table 6).

These models only worked with the watershed scale, gra-
dient and shape of the watershed relief, watershed shape
and extension of the drainage network variables. The sedi-
ment volumes from December 1999 debris flow event, its
best predictive models have been represented by the gradi-
ent and shape of the watershed relief and extension of the
drainage network variables, while with the watershed scale,
watershed shape and order and magnitude of the drainage
network variables, their correlation coefficients indicate
that these models have not been very efficient as predic-
tors. With the sediment volumes before and after the debris
flows event of December 1999, only those generated with
morphometric parameters of the gradient and shape of the
watershed relief variable functioned as good predictive
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Table 6 Sediment volume magnitudes estimated with the predictive models

Watershed Sediment volume (event of December Sediment volume (event of December 1999) (Vs-Dec1999) (m?) estimated by the
1999) (Vs-Dec1999) (m?) predictive models generated by the MLRA
Watershed scale Gradient and shape of ~ Watershed shape Extension of the
the watershed relief drainage network

Piedra Azul Creek 2,217,861 1,925,063.29 2,277,070.78 2,159,918.65 2,188,299.54
Osorio Creek 839,182 1,229,814.17 894,098.72 1,457,742.28 911,380.99
Cariaco Creek 1,000,866 1,281,404.69 914,472.71 1,443,841.72 1,380,026.32
San José de Galipan River 1,616,197 1,715,099.69 1,536,783.07 1,631,065.51 1,569,855.09

El Cojo Creek 1,142,693 1,313,750.28 1,620,437.71 1,236,462.07 949,554.75
Camuri Chiquito Creek 1,789,882 1,515,614.55 1,573,113.13 1,282,778.15 1,690,184.48
San Julian Creek 2,636,280 1,969,484.30 2,505,443.51 1,794,523.78 2,285,280.11
Seca Creek 1,616,905 1,134,825.87 1,426,682.20 1,586,751.31 1,310,878.51
Cerro Grande River 1,680,163 2,147,120.38 1,762,363.27 1,750,455.89 2,012,930.76
Uria River 1,396,063 1,637,631.65 1,414,705.43 1,944,049.63 1,719,094.03
Naiguata River 2,070,029 2,323,234.67 2,114,649.91 2,222,464.94 1,905,491.36
Camuri Grande River 2,225,500 2,038,577.48 2,205,064.76 1,735,883.93 2,308,645.07
Correlation coefficient 0.73 0.94 0.58 0.89

Watershed

Sediment volume prior to the debris flows
(Tr=100 years) (Vs,ior.qp) (M)

Sediment volume prior to the debris flows (Tr=100 years) (Vs yjor.qr) (m3) estimated by

the predictive models generated by the MLRA

Watershed scale  Gradient and shape of =~ Watershed shape ~ Extension of the
the watershed relief drainage network

Piedra Azul Creek 1,313,876.6 999,162.69 1,216,658.95 1,148,304.88 909,752.83
Osorio Creek 484,302.0 617,299.20 444,196.55 732,281.51 709,350.73
Cariaco Creek 598,214.6 645,635.13 450,843.25 724,045.74 699,402.64

San José de Galipan River 949,533.7 883,840.81 794,429.03 834,971.54 1,036,887.86

El Cojo Creek 645,815.8 663,400.85 789,944.06 601,178.07 806,957.72
Camuri Chiquito Creek 790,841.8 774,274.20 802,438.18 628,619.28 867,507.73

San Julién Creek 1,167,764.1 1,023,560.80 1,226,590.56 931,816.81 842,415.62
Seca Creek 701,950.7 565,127.16 716,326.57 808,716.39 705,172.34
Cerro Grande River 726,539.7 1,121,126.88 939,402.05 905,707.60 1,050,305.94
Uria River 594,491.5 841,291.72 778,451.95 1,020,407.44 850,902.72
Naiguaté River 1,171,900.4 1,217,857.13 1,122,092.11 1,185,362.12 1,174,135.18
Camuri Grande River 1,268,855.7 1,061,510.02 1,163,948.49 897,074.04 976,490.02
Correlation coefficient 0.74 0.90 0.63 0.59

Watershed Sediment volume after the debris flows Sediment volume after the debris flows (Tr= 100 years) (Vs,ge.q0) (M) estimated by
(Tr=100 years) (Vs,ger.qp) (M) the predictive models generated by the MLRA
Watershed scale Gradient and shape of ~ Watershed shape Extension of the
the watershed relief drainage network

Piedra Azul Creek 1,450,556.8 1,156,394.13 1,384,269.23 1,320,111.35 1,067,061.93
Osorio Creek 559,328.6 770,831.17 585,678.27 880,672.93 862,123.80
Cariaco Creek 763,351.3 799,441.63 593,040.31 871,973.64 851,950.55
San José de Galipan River 1,105,391.8 1,039,955.02 948,663.16 989,142.67 1,197,074.61
El Cojo Creek 785,742.1 817,379.46 949,333.52 742,190.60 961,940.10
Camuri Chiquito Creek 955,779.3 929,326.94 958,216.14 771,176.28 1,023,860.62
San Julidn Creek 1,339,209.2 1,181,028.60 1,406,726.63 1,091,438.68 998,200.57
Seca Creek 924,004.9 718,153.70 869,639.72 961,409.80 857,850.84
Cerro Grande River 855,618.0 1,279,539.90 1,096,573.52 1,063,859.97 1,210,796.41
Uria River 773,861.3 996,993.72 926,735.08 1,185,015.46 1,006,879.77
Naiguata River 1,379,301.3 1,377,207.26 1,286,902.26 1,359,254.28 1,337,428.47
Camuri Grande River 1,393,452.4 1,219,345.48 1,331,070.34 1,054,740.49 1,135,309.69
Correlation coefficient 0.73 0.90 0.65 0.59

Bold values represent the best correlation coefficients obtained between the initial sediment volumes estimated by Cérdova and Gonzalez (2003)
and those estimated by the predictive models obtained in this research
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models. The rest of the morphometric variables obtained
very poor quality adjustments, as evidenced by the low cor-
relation coefficients.

Conclusions

The sediment volumes, which have been previously esti-
mated and taken as input in this study, reveal important
magnitudes in the yield, transport and deposition of sedi-
ments, related to the occurrence of extreme rainfall events,
clearly demonstrating the hazard. It is obvious that flash
floods represent these hydro-geomorphological systems.

The LCA revealed good correlations between the sedi-
ment volumes and most of the morphometric parameters
corresponding to the watershed scale variable, as well as
some parameters of the gradient and shape of the watershed
relief variable.

The PCA has reduced the dimensionality of the mor-
phometric parameters groups, defining as new variables the
components or factorials created for each group or initial
morphometric variable.

The MLRA with PC of the morphometric variables gave
very good correlation and determination indices between the
sediment volumes and the PC’s of the gradient and shape of
the watershed relief variable, as well as good indices with
the PC’s of the extension of the drainage network and water-
shed scale variables.

For each sediment volumes parameter considered in this
study, predictive models of such hydrological responses have
been obtained from the MLRA. Each model responds to
the PC’s with a set of morphometric parameters grouped in
morphometric variables. In this way, the estimations of mag-
nitudes of the sediment volumes with the predictive models
generated in this research, and compared with the magni-
tudes taken as input data, revealed that the most suitable
models are those corresponding to the gradient and shape
of the watershed relief variable.

Among some interesting aspects to develop in future
research studies, related to factors and/or elements of the
physical environment as predictors of the occurrence of
debris flow events, we expect to: (a) analyze the particular
relations morphometric parameters of the drainage networks
with each of the lithological outcrops and each vegetation
formation. This will support the understanding of the weight
of each type of rock and vegetation in sediments produc-
tion and, in its differential contribution to the generation of
debris flows; (b) to study in detail and in a comparative way
the depth of the alteration profiles, the volumes of rego-
lith and its mineralogy, developed on each type of rock, to
identify lithologies that contribute most in the activation
of debris flows; and (c) analyze the density and depth of
the root system of each vegetation formation in the soils, in

terms of the relative stability they offer to the materials of
the slopes, considering the topographic slope as a condition-
ing element.
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