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Abstract
This study presents a novel ensemble group method of data handling (EGMDH) model based on classification for the 
prediction of liquefaction potential of soils. Liquefaction is one of the most complex problems in geotechnical earthquake 
engineering. The database used in this study consists of 212 CPT-based field records from eight major earthquakes. The 
input parameters are selected as cone tip resistance, total and effective stress, penetration depth, max peak horizontal accel-
eration and earthquake magnitude for the prediction models. The proposed EGMDH model results were also compared to 
the other classifier models, particularly the results of the group method of data handling (GMDH) model. The results of this 
study indicated that the proposed EGMDH model has achieved more successful results on the prediction of the liquefaction 
potential of soils compared to the other classifier models by improving the prediction performance of the GMDH model.
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Introduction

One of the most complex problems in soils that can be seen 
during and/or after an earthquake and whose results can be 
extremely damaging is known as liquefaction. Liquefaction 
is defined as the transformation of a granular material from 
a solid to a liquefied state as a consequence of increased 
pore-water pressure and reduced effective stress (Marcuson 
1978). According to this definition, the shear resistance of 
the soil disappears at a certain stage and it starts to act like a 
liquid. Due to the large problems encountered during the soil 
liquefaction especially of the 27th of March 1964 Alaska and 
the 16th of June 1964 Niigata earthquakes, followed by the 
1971 San Fernando, 1976 Tangshan, 1985 Mexico city, 1989 
Loma Prieta, 1994 Kobe and 1999 Golcuk (Turkey) earth-
quakes (Xue and Xiao 2016; Xue and Liu 2017; Chern et al. 
2008; Erzin and Ecemis 2015; Mughieda et al. 2009), many 
researchers have turned to observe the conditions that affect 

the liquefaction phenomenon. For this reason, the determi-
nation of the factors causing liquefaction, the liquefaction 
potential in vulnerable areas and the prediction of possible 
damages are among the most important research topics in 
geotechnical earthquake engineering.

The liquefaction potential depends on the geotechnical 
properties of the grounds, topography, seismicity, groundwa-
ter level and geological history (Youd and Perkins 1978). As 
a result of researches on liquefaction, useful empirical meth-
ods based on experimental and probabilistic calculations 
have been developed to determine the liquefaction potential 
(Kramer and Mayfield 2007). Liquefaction potential can be 
determined in laboratory by cyclic tri-axial, cyclic shear, 
shaking table tests, the standard penetration test (SPT), 
the cone penetration test (CPT), and seismic experiments 
in the field [see Kramer (1996), Ishihara (1996), Liu and 
Qiao (1984), Elgamal et al. (1989), Lambe (1981), Husmand 
et al. (1988), Seed and Idriss (1971), Tokimatsu and Yoshimi 
(1983), Iwasaki et al. (1981), Suzuki et al. (1997), Robert-
son and Wride (1998), Stokoe et al. (1988) and Andrus and 
Stokoe (2000)]. However, since the laboratory tests are time-
consuming and expensive, methods in which SPT and CPT 
data are used are preferred. For many years, the methods 
based on SPT in the assessment of liquefaction were pre-
ferred by geotechnical engineers, but especially in the last 
20 years, CPT-based methods have become widespread due 
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to their properties of being fast, continuous, and accurate soil 
parameter measurements. Although many methods based on 
CPT (Robertson and Campanella 1985; Seed and De Alba 
1986; Shibata and Teparaska 1988; Andrus and Youd 1989; 
Stark and Olson 1995; Robertson and Wride 1998; Juang 
et al. 2003; Idriss and Boulanger 2004; Kokusho et al. 2005) 
have been suggested for the evaluation of liquefaction, the 
most widely accepted of these is the one proposed by Rob-
ertson and Wride (1998). However, Robertson (2009) has 
developed an unified approach for interpretation of cone 
penetration tests. In addition, CPT-based soil behavior type 
(SBT) classification systems were updated in Robertson 
(2016) to use behavior based descriptions.

Recently, soft computing methods, especially the artificial 
neural networks (ANNs), have become popular in the practi-
cal solutions of geotechnical engineering problems such as 
the bearing capacity of shallow and pile foundations, slope 
stability, settlement behavior, and compressibility param-
eters of soils (Nejad et al. 2009; Lee and Lee 1996; Kiefa 
1998; Sakellariou and Ferentinou 2005; Wang et al. 2005; 
Kuo et al. 2009; Abdalla et al. 2015; Chenari et al. 2015; 
Kalinli et al. 2011; Sulewska 2011; Chik et al. 2014). Addi-
tionally, the liquefaction potential of soils has been tried to 
be predicted using different artificial intelligence applica-
tions in the last 20 years (Goh 1994, 1996, 2002; Juang and 
Chen 1999; Rahman and Wang 2002; Baziar and Nilipour 
2003; Kim and Kim 2006; Hanna et al. 2007; Chern et al. 
2008; Ramakrishnan et al. 2008; Mughieda et al. 2009; 
Samui and Sitharam 2011; Erzin and Ecemis 2015; Xue 
and Xiao 2016; Xue and Liu 2017; Hoang and Bui 2018). 
Goh (1994, 1996, 2002) suggested different ANN mod-
els to predict the liquefaction potential of soils based on 
actual field records using SPT, CPT and shear wave veloc-
ity data. Juang and Chen (1999) evaluated the liquefaction 
resistance of sandy soils with various ANN models using 
historical database including CPT measurements. Rahman 
and Wang (2002) developed fuzzy neural network models 
for the evaluation of liquefaction potential with SPT-based 
large databases of liquefaction case histories. Baziar and 
Nilipour (2003) used ANN with back propagation algorithm 
to determine the occurrence of liquefaction in different sites 
based on CPT results. Hanna et al. (2007) proposed a general 
regression neural network model to predict the liquefaction 
potential in soil deposits with SPT-based data including 
field tests from the Turkey and Taiwan major earthquakes in 
1999. Chern et al. (2008) developed a fuzzy-neural network 
model to assess the liquefaction potential of soils with CPT 
field database including actual liquefaction records from 
more than 11 major earthquakes between 1964 and 1999. 
Mughieda et al. (2009) suggested three ANN models to eval-
uate the liquefaction potential of soils based on CPT data. 
Samui and Sitharam (2011) proposed two machine learn-
ing methods, ANN and SVM, to predict the liquefaction 

susceptibility of soils based on the SPT data from the 1999 
Chi–Chi, Taiwan earthquake. Erzin and Ecemis (2015) pro-
posed different ANN models to predict the cone penetration 
and liquefaction resistance. Xue and Xiao (2016) proposed 
two techniques, hybrid genetic algorithm (GA) and support 
vector machine (SVM), to predict the liquefaction potential 
of soils with CPT-based field data from major earthquakes 
between 1964 and 1983. Xue and Liu (2017) proposed two 
optimization techniques, genetic algorithm (GA) and particle 
swarm optimization (PSO), to improve the neural network 
model performance on predicting the liquefaction suscepti-
bility of soils with CPT-based field data from major earth-
quakes between 1964 and 1983. Hoang and Bui (2018) pro-
posed a novel soft computing model named KFDA-LSSVM, 
(combines kernel Fisher discriminant analysis with a least 
squares SVM) to evaluate the earthquake-induced soil lique-
faction. They used three historical data sets based on shear 
velocity, CPT and SPT including real cases of earthquake-
induced soil liquefaction.

In this paper, an alternative and novel approach is pro-
posed using the group method of data handling (GMDH) 
model, which is a type of ANN. The GMDH model, which 
is a self-organizing, machine learning method, was first pro-
posed by Ivakhnenko (1971, 1976). The GMDH creates an 
optimum network by trying a lot of networks in different 
architectures depending on the number of input variables 
during the self-organization. Recently, the GMDH method 
has begun to be applied in some geotechnical problems 
(Kordnaeij et al. 2015; Ardakani and Kordnaeij 2019; Has-
sanlourad et al. 2017; Jirdehi et al. 2014). In this regard, a 
novel ensemble GMDH (EGMDH) model based on clas-
sification with different activation function bases has been 
developed to best explain the relationship between input and 
output variables on predicting the liquefaction potential of 
soils with CPT-based field data from eight major earth-
quakes between 1964 and 1989. The results of the proposed 
EGMDH model were also compared with other classifier 
models such as ANN, GMDH, SVM, logistic regression 
(LR) and random forest (RF).

Group method of data handling (GMDH)

The GMDH algorithm is a self-organizing approach based 
on evaluating performance on multiple input—single output 
data pairs. GMDH, proposed by Ivakhnenko in the 1970s 
(Vissikirsky et al. 2005), is an architectural class of polyno-
mial neural network models. Since the GMDH network has 
a flexible structure, hybrid methods have been developed 
with intuitive methods such as genetic, evolutionary, particle 
swarm optimization (Ghanadzadeh et al. 2012). The main 
implication of the GMDH model is to define an analytical 
function that enables weights to be obtained on a regression 
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basis in forward feed neural networks using square neurons. 
In the GMDH network, neurons in a layer are bound to the 
next layer through a quadratic and triquadratic polynomial to 
form new neurons in the next layer. In this model, the input 
variables are mapped to the output variable. In this mapping, 
the goal is to construct the function f() which will estimate 
the output value ŷ using the input vector X = (X1, X2, X3,…, 
Xn) (Kordnaeij et al. 2015). This function estimates the val-
ues as close as possible to real ŷ output values. When con-
sidering multiple input–single output, the function between 
them is expressed as follows (Ardakani and Kordnaeij 2019):

where yi is dependent variable and xi is independent variable. 
Thus, it is possible to estimate the output value ŷ using the 
input vector X = (X1, X2, X3,…, Xn). The prediction equation 
can be written as:

To solve this problem, the GMDH generates the general 
relation between output and input variables in the form of a 
mathematical definition also referred to as a reference. The 
aim here is to minimize the difference between the actual 
output values and the estimated values:

The general connection between input and output vari-
ables can be expressed as a complex discrete form of a series 
of Volterra functions as below (Ardakani and Kordnaeij 
2019; Zhu et al. 2012):

The above equation is known as the Kolmogorov-Gabor 
polynomial. This function is written as follows. GMDH uses 
a recursive polynomial regression procedure to synthesize 
any model. Polynomial regression equations can produce 
a high order polynomial model using effective predictors:

The mathematical relation between the input variables of 
the generated network and the output variable is formed by 
Eq. (4). The weights of the equation in Eq. (5) are calculated 
by regression methods. Thus, the difference between real y and 
estimated ŷ is minimized for input pairs xi and xj . The weights 
are obtained by least squares method. In this way, the weight-
ing coefficients of the quadratic function ( Gi) are obtained so 
as to optimally fit the output set of all input–output data pairs. 
In the GMDH model, it is tried to estimate the output variables 

(1)yi = f (xi1, xi2, xi3,… , xin) (i = 1, 2, 3,…M),

(2)ŷi = f̂ (Xi1,Xi2,Xi3,… ,Xin) (i = 1, 2, 3,…M).

(3)
M∑
i=1

[f̂ (xi1, xi2, xi3,… , xin) − yi]
2
→ minimum.

(4)

y = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=1

wijxixj +

n∑
i=1

n∑
j=1

n∑
k=1

wijkxixjxk +… ,

(5)
Quadratic: ŷ = G(xi, xj) = w0 + w1xi + w2xj + w3xixj + w4x

2
i
+ w5x

2
j
.

best way by taking all the input variables (two variables at a 
time) and creating a second-order polynomial equation (Eq. 5) 
in the training process. Each input vector pair (attributes) will 
form a second quadratic regression polynomial equation. For 
the first layer, the L (L = m (m − 1)/2) number of regression 
polynomial equations are obtained. Here, L is the number of 
polynomial equations to be obtained in any layer, and m is the 
number of variables that come to the layer. For example, if 
the input variable number m = 4, L = 6 regression polynomial 
equations will be obtained in the first layer. New variables 
are obtained for the next layer from the first layer using these 
equations. In this way, new variables are obtained for the other 
layers in each layer. Thus, new variables are generated which 
best explain the output variable from the input variables. If 
the minimum error value in the current layer is greater than 
the error value in the previous layer, the model becomes com-
plicated. In other words, it is expected that the error value in 
a certain layer is smaller than the error value in the previous 
layer. GMDH network architecture is given in Fig. 1.

Each input data pair forms a regression equation. Outputs of 
the regression equations form new inputs to the next layer. The 
final output consists of the regression equations selected from 
all the layers. In GMDH model, the aim is to have a minimum 
of error squares as specified in Eq. (6). The sum of the squares 
of the differences between the actual output values ( yi) and 
the estimated values Gi(xi, xj)) is expected to be the smallest:

GMDH network is constructed using all possible binary 
combinations of n input variables to construct the polynomial 
regression equation (in Eq. 4) that best predicts the inde-
pendent y variable with the least squares method. From the 
observed {(yi, xip, xiq), (i = 1, 2, 3,…M)} samples, the first 
layer of the GMDH network is constructed using n (n − 1)/2 
quadratic polynomial neurons:

Here, p and q are the any two variables that come into the 
layer. The Eq. (4) can be written in matrix form as follows 
using the input–output variables mentioned above:

where W is the vector of the unknown weight coefficients of 
the quadratic polynomial and Y specifies the vector of the 
output values:

(6)E =

∑M

i=1
(yi − Gi(xi, xj))

2

M
→ minimum.

(7)

⎡⎢⎢⎢⎣

x1p x1q y1
x2p x2q y2
⋮

xmp

⋮

xmp

⋮

ym

⎤
⎥⎥⎥⎦
.

(8)AW = Y ,

(9)W = {w0,w1,w2,w3,w4,w5}
T ,
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The weights are solved in matrix form using multiple 
regression equations as follows:

where W is the weight vector to be estimated, A is the input 
matrix, and Y is the output vector. The flowchart for the 
GMDH algorithm is shown in Fig. 2.

Ensemble GMDH model

The main goal in the ensemble classification is to achieve a 
result by combining the values obtained by different classifiers. 
The combination of the classifiers consists of the processes of 
performing the classification process in the direction of the 
estimates resulting from the training of the resampled train-
ing sets and the classifiers separately. In general, it is stated 
that the accuracy of classification with the classifier obtained 
as a result of combining is better when each classifier is used 
singularly. For this reason, while a single classifier can have a 
higher test error, the diversity of classifiers usually compen-
sates for the mistakes of a single classifier. Therefore, fewer 
test errors are obtained with the combination of classifiers (Pal 
and Mather 2003). The main goal in the ensemble classifica-
tion is to produce a result by combining the values previously 
obtained by different classifiers. During this process, it is tried 

(10)Y = {y1, y2, y3, y4, , y5,… yM}
T ,

(11)A =

⎡
⎢⎢⎢⎢⎣

1 x1p x1q x1px1q x2
1p

x2
1q

1 x2p x2q x2px2q x2
2p

x2
2q

⋮ ⋮ ⋮

1 xmp xmq xmpxmq x2
mp

x2
mq

⎤
⎥⎥⎥⎥⎦
.

(12)W = (ATA)−1ATY ,

to make a calculation by giving certain weight points to the 
other classifiers. The main problem here is to combine differ-
ent classification algorithms and decide which ratios to use. 
One of the most important advantages of the method is that it 
can get better values by combining the single models (Augusty 
and Izudheen 2013).

In this study, the GMDH has been ensembled using differ-
ent activation functions under the same conditions (learning 
rate, number of hidden layers, weights, number of neurons in 
hidden layer). Activation functions are used to better explain 
the relationship between input and output (Kondo and Ueno 
2012). These activation functions are given below:

(13)Sigmoid =
1

1 + e−y
,

Fig. 1   GMDH network architecture

Fig. 2   The flowchart for the GMDH algorithm
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The diagram of the proposed ensemble GMDH (EGMDH) 
model is shown in Fig. 3. Outputs of five GMDH models oper-
ated under the same conditions are produced with different 
activation functions. Each model makes its own output deci-
sion for the example data. However, the output of EGMDH is 
the community decision of these five models.

Performance criteria

Accuracy, precision, recall and F-criterion were used to dem-
onstrate the performance of the methods proposed in the study. 
These success criteria are calculated as follows:

(14)Radial basis = e−y
2

,

(15)Polynomial = y,

(16)Tangent = tan h(y),

(17)Sinus = sin(y).

(18)Accuracy =
TP + TN

TP + TN + FP + FN
,

(19)Precision = TP∕(TP + FP),

(20)Recall = TP∕(TP + FN),

(21)
F-criterion = 2(recall × precision)∕(recall + precision).

In these equations, T, F, P, and N express true, false, 
positive, and negative, respectively. For example, TP indi-
cates the number of positive samples correctly classified; FN 
indicates the number of false negative samples misclassified.

Accuracy is the most popular and simple method used to 
determine success and is defined as the ratio of the number 
of correctly classified (TP + TN) samples to the total number 
of samples (TP + TN + FP + FN). Precision gives the degree 
of precision of the classifier result and is defined as the ratio 
of the positive labeled samples number (TP) to the propor-
tion of total samples (TP + FP) that are classified as posi-
tive. Recall is the ratio of positively labeled samples (TP) to 
the total number of truly positive samples (TP + FN). The 
F-criterion is calculated using the precision and recall met-
rics. It is used to optimize the system towards the direction 
of precision or recall.

Data processing

It is known that liquefaction does not occur on all soil lay-
ers in the field. Therefore, it is necessary to first examine 
whether the conditions necessary for the liquefaction to 
occur are present in the analysis of the liquefaction hazard. 
The liquefaction depends on many factors such as parti-
cle size and distribution, geological age and sedimenta-
tion conditions, volume change potential, permeability, 
water table level, earthquake magnitude and duration and 

Fig. 3   The algorithm of EGMDH model
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epicentral distance. In general, loose sandy soils that are 
saturated with water are more sensitive to liquefaction 
during large earthquakes [see Kramer (1996) and Coduto 
(2003)]. Liquefaction can only occur if all affecting factors 
such as loose soil, water saturation, large and long-term 
earthquake magnitude, etc., are present at the same time.

In this study, the database belongs to the CPT-based 
liquefaction assessment, which was preferred for predict-
ing the presence of liquefaction by the EGMDH model. 
In this context, 212 CPT-based field data from 8 major 
earthquakes between 1964 and 1989 (Chern et al. 2008) 
were used. Chern et al. (2008) have made a liquefaction 
estimation study based on CPT using fuzzy- neural net-
work by 466 CPT-based case records from major earth-
quakes between 1964 and 1999 in their work. Among these 
records, the CPT tests results from the sites where relevant 
earthquakes occurred are included. During the data selec-
tion for the current study, firstly the data of earthquakes 
with magnitudes M ˃  6.0 were preferred, among 466 data, 
due to the higher probability of liquefaction occurrence. It 
is important to achieve high success with a small number 
of data in the prediction of some engineering parameters 
of soils with artificial intelligence methods. As mentioned 
in the introduction section, Xue and Liu (2017) proposed 
optimization techniques for the prediction of liquefaction 
susceptibility of soils with CPT-based field data. They 
used only 166 of 466 case records published in Chern 
et al. (2008) and obtained successful results in their study. 
Similarly, it was aimed to use approximately half of the 
total data published in Chern et al. (2008) in the current 
study and only 212 case records were selected among the 
466 field data for the CPT-based liquefaction prediction 
model. The case records used in this study belong to the 
1964 Niigata earthquake (M = 7.5), 1971 San Fernando 
Valley earthquake (M = 6.4), 1975 Haicheng earthquake 
(M = 7.3), 1976 Tangshan earthquake (M = 7.8), 1977 
Vrancea earthquake (M = 7.2), 1979 Imperial Valley earth-
quake (M = 6.6), 1983 Nihonkai-Cho earthquake (M = 7.7) 
and 1989 Loma Prieta earthquake (M = 7.1). 80 of the 
records were classified as non-liquefied and 132 of them 
as liquefied.

The input parameters used in the EGMDH model are 
the effective stress ( �′

vo
 ), total stress (σvo), cone tip resist-

ance (qc), penetration depth (d), maximum peak ground 
acceleration (amax) and magnitude of earthquake (Mw) 
while the output is the occurrence of liquefaction. The 
selected input parameters are the necessary parameters in 
CPT-based liquefaction assessments. In addition, these 
parameters were used as input parameters in most of the 
studies related to the CPT-based liquefaction prediction 
with different artificial intelligence models such as Chern 
et al. (2008), Goh (1996, 2002), Xue and Xiao (2016), Xue 

and Liu (2017), Erzin and Ecemis (2015), Juang and Chen 
(1999) and Baziar and Nilipour (2003), etc.

Conventional CPT‑based liquefaction 
assessment

The determination of the liquefaction resistance of soils 
based on analysis results requires calculation or estimation 
of two variables. The first parameter is the ratio of cyclic 
stress (CSR) which indicates the level of cyclic loading that 
can be caused by the earthquake, and the second parameter 
is the rate of cyclic resistance (CRR) that indicates the resist-
ance of the soil against the liquefaction.

The ratio of cyclic stress generated during earthquakes 
(CSR) is defined by Seed and Idriss (1971) as in Eq. (22):

Here is, amax, the peak horizontal acceleration at the 
ground surface during the earthquake; g, gravitational 
acceleration; �v and �′

v
 total and effective stress; rd, stress 

reduction coefficient. The average values are used for the 
rd depending on the depth in the Eq. (23) in engineering 
applications (Liao and Whitman 1986):

Here, (z) is the depth (in meter).
The rate of cyclic resistance (CRR) is also defined by 

Robertson and Wride (1998) as below.
In this method, it is necessary to make some adjustments 

in the use of the cone penetration tip resistance corrected 
for overburden stress (qc1N) when determining the liquefac-
tion resistance. The parameter qc1 is normalized as shown in 
the following equations using the top layer load correction 
coefficient (CQ):

Here; where qc is the measured cone tip penetration resist-
ance CQ is the top layer load correction coefficient for cone 
penetration resistance, Pa is the reference pressure in the 
same units as �′

vo
 (i.e., Pa = 100 kPa if �′

vo
 in kPa), and Pa2 is a 

reference pressure in the same units as qc (i.e., Pa2 = 0.1 MPa 
if qc is in MPa), n is coefficient varying with soil type and 
typically equal to 0.5. A maximum value of CQ = 2 is gener-
ally applied to CPT data at shallow depths. The normalized 
cone penetration resistance, qc1N, is dimensionless.

(22)CSR = 0.65 ×
amax

g
×
�v

�
�

v

× rd,

(23)rd =

{
1.0 − 0.00765z, z ≤ 9.15m

1.174 − 0.0267z, 9.15 < z ≤ 23m
.

(24)qc1N =

(
qc

Pa2

)
CQ =

qc1

Pa2

,

(25)CQ = (Pa∕�
�
vo
)n.
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It was highlighted in Robertson and Wride (1998) that 
the CPT friction ratio (ratio of the CPT sleeve friction to the 
cone tip resistance) increases with increasing fines content 
and soil plasticity. The grain characteristics sandy soils can 
be estimated directly from CPT data using any of these soil 
behavior charts as shown in Fig. 4 (Robertson 1990). Using 
the CPT chart by Robertson (1990), the soil behavior type 
index, Ic, can be defined as follows:

where Q = normalized tip resistance, F = normalized friction 
ratio, the exponent n is typically equal to 1.0, �v0 and �′

v0
 are 

the total and effective overburden stresses, respectively. The 
boundaries of soil behavior type are given in terms of the 
index, Ic, as shown in Table 1.

The proposed equation to obtain the equivalent clean sand 
normalized CPT penetration resistance, (qc1N)cs, is a function 
of both the measured penetration resistance, qc1N, and the 
grain characteristics of the soil, as follows:

(26)Ic = [(3.47 − Q)2 + (log F + 1.22)2]0.5,

(27)Q =

(
qc − �vo

Pa2

)(
Pa

��
vo

)n

,

(28)F = [fs∕(qc − �vo)] ⋅ 100 (%),

Here, (Kc) is the correction coefficient which expresses the 
granular structure of the soil and determined using Eqs. (30) 
and (31) as follows:

If Ic > 2.6, the data should be plotted directly on the Rob-
ertson chart (and assume qc1N = Q). However, if Ic ≤ 2.6, the 
exponent to calculate Q should be changed to n = 0.5 (i.e., 
essentially calculate qc1N using Eq. (24), since σvo < < qc) and Ic 
should be recalculated based on qc1N and F. If the recalculated 
Ic remains less than 2.6, the data should be plotted on the Rob-
ertson chart using qc1N based on n = 0.5. If, however, Ic iterates 
above and below a value of 2.6, depending on which value of n 
is used, a value of n = 0.75 should be selected to calculate qc1N 
[using Eq. (24)] and plot data on the Robertson chart.

The Eqs. (26), (29), (30) and (31) can be combined to esti-
mate the equivalent clean sand normalized penetration resist-
ance, (qc1N)cs, directly from the measured CPT data. Then, 
using the equivalent clean sand normalized penetration resist-
ance (qc1N)cs, the CRR (for M = 7.5) can be estimated using the 
following simplified equation:

Results

GMDH model

In this study, the occurrence of liquefaction in soils has 
been tried to estimate firstly using the GMDH algorithm. 

(29)(qc1N)cs = Kcqc1N.

(30)If Ic ≤ 1.64, Kc = 1.0,

(31)
If I

c
> 1.64 K

c
= − 0.403I

4

c
+ 5.581.

I
3

c
− 21.63. I

2

c
+ 33.75. I

c
− 17.88.

(32)

If 50 ≤ (qc1N)cs < 160, CRR = 93

[
(qc1N)cs

1000

]3
+ 0.08,

(33)If (qc1N)cs < 50, CRR = 0.833

[
(qc1N)cs

1000

]3
+ 0.05.

Fig. 4   Normalized CPT soil behavior type chart, as proposed by Rob-
ertson (1990)

Table 1   Boundaries of soil behavior type (Robertson 1990)

Soil behavior type index, Ic Zone Soil behaviour type (see Fig. 4)

Ic < 1.31 7 Gravelly sand to dense sand
1.31 < Ic < 2.05 6 Sands: clean sand to silty sand
2.05 < Ic < 2.60 5 Sand mixtures: silty sand to 

sandy silt
2.60 < Ic < 2.95 4 Silt mixtures: clayey silt to silty 

clay
2.95 < Ic < 3.60 3 Clays: silty clay to clay
Ic > 3.60 2 Organic soils: peats
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GMDH is a nonlinear regression method, but is also model 
that carries the characteristics of supervised and unsuper-
vised ANNs. Regression is a statistical model that exam-
ines the cause-and-effect relationship between independent 
variables and dependent variables. The linear regression 
model is modeling the relationship between one or more 
independent variables and dependent variables.

The input and output variables in all models were nor-
malized with the following equation in this study:

Here, Anormalized represents the normalized values of A, 
Aactual expresses the actual values of the variable, Amax 
and Amin express the largest and smallest values in the 
variables. 132 samples classified as 1 (liquefied) while 80 
samples classified as 0 (non-liquefied) in the database of 
212 samples. Trials with GMDH model were conducted 
according to different training—test set ratios. The perfor-
mance results are given in Table 2.

Due to no criteria in literature as to which rates of 
training-test sets should be made, the authors have experi-
mented with training-test sets at different rates. It can be 
seen on Table 1 that the trials were conducted for data 
sets with different ratios in the form of 50–50%, 60–40%, 
70–30% and 80–20% training-test. The highest success 
was achieved as 95.08% for the 70–30% training-test data 
set. The success rate for the 80–20% data set was slightly 
lower, although the success rate seemed to increase as the 
training data rate increased. Performance measures are cal-
culated from the confusion matrix. The confusion matrix 
for the 70–30% training-test set is given in Fig. 5. It is 
seen that the success rate is 100% for output “1” (lique-
fied class). All of the 40 test samples seem to be correctly 
classified. However, since 18 of the 21 samples are cor-
rectly classified, the overall success rate was observed to 
be 85.70% for output “0” (non- liquefied class).

The GMDH can be used in architecture built in different 
numbers of layers and with different numbers of neurons in 
each layer. The performance measures obtained as a result of 
trials with different hidden layer numbers in GMDH archi-
tectures are given in Table 3. Since the number of input vari-
ables is low, the trials have been performed for the hidden 

(34)Anormalized =
Aactual − Amin

Amax − Amin

.

layer numbers 1, 2 and 3. As a result of these trials, it is seen 
that when the hidden layer number increases, the success 
rate also increases. The highest success is achieved when 
the hidden layer number is 3 (Table 3).

The performance measures obtained as a result of trials 
using different numbers of neurons in the hidden layers of 
a three-layered GMDH model are given Table 4. The per-
formance for three or more neurons was unchanged in the 
hidden layers. The best success rate was 95.08% (Table 4).

Table 2   Success rates of GMDH model according to different train-
ing-test ratios

Train-test rate Accuracy (%) Precision Recall F-measure

50–50% 85.44 0.8478 0.8444 0.8460
60–40% 89.02 0.9093 0.8686 0.8809
70–30% 95.08 0.9286 0.9651 0.9435
80–20% 95.00 0.9000 0.9688 0.9283

Fig. 5   Confusion matrix by GMDH for 70–30% training-test data

Table 3   GMDH success rates for different hidden layer numbers with 
70–30% training-test set (with 10 neurons)

#Hidden 
layer

Accuracy Precision Recall F-measure

1 90.16 0.8750 0.9302 0.8911
2 91.80 0.8913 0.9419 0.9082
3 95.08 0.9286 0.9651 0.9435

Table 4   GMDH success rates of different neurons in hidden layers 
with 70–30% training-test set (with 3 hidden layer)

#Neurons Accuracy Precision Recall F-measure

1 90.16 0.8750 0.9302 0.8911
3 95.08 0.9286 0.9651 0.9435
5 95.08 0.9286 0.9651 0.9435
10 95.08 0.9286 0.9651 0.9435
15 95.08 0.9286 0.9651 0.9435
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Table 5   The test set of 70–30% 
training-test data set and 
estimated values with GMDH

No Mw d (m) σ (kPa) σ′ (kPa) qc (MPa) amax (g) Actual Predicted 
by GMDH

1 7.7 3.1 56.9 47.1 9.81 0.23 0 0
2 7.7 3.8 71.6 53 15.69 0.23 0 0
3 7.7 5 94.1 63.7 15.08 0.23 0 0
4 7.7 2.8 53 45.1 1.76 0.23 1 1
5 7.7 3.4 62.8 51 4.02 0.23 1 1
6 7.7 5.1 94.1 65.7 7.8 0.23 1 1
7 7.7 6 111.8 73.5 8.8 0.23 1 0
8 7.1 5.9 115.1 83.1 14.5 0.24 0 0
9 7.1 5.3 103.4 77.4 15.2 0.24 0 0
10 7.1 5.9 115.1 85.1 1.3 0.24 1 1
11 7.1 2.8 54.6 50.6 1.9 0.24 1 1
12 7.1 8.4 172.2 143.2 5.9 0.24 0 0
13 7.1 3 57 45 3.8 0.25 1 1
14 7.1 3 57 45 3 0.25 1 1
15 7.1 4.4 83.6 65.6 5.4 0.25 1 1
16 7.1 4 76 70 16.4 0.25 0 0
17 7.1 2.5 47.5 40.5 7.7 0.25 1 1
18 7.1 9.5 180.5 103.5 25 0.25 0 0
19 7.1 1.4 26.6 26.6 3 0.25 1 1
20 7.1 3.9 74.1 53.1 11.7 0.25 0 0
21 7.1 8 152 90 20 0.25 0 0
22 7.1 1.9 36.1 34.1 10.4 0.25 0 0
23 7.1 5 95 63 9 0.25 1 0
24 7.1 6.8 129.2 79.2 20.8 0.25 0 0
25 7.1 6.5 123.5 75.5 18.2 0.25 0 0
26 7.1 3.5 66.5 49.5 15.5 0.25 0 0
27 7.1 4.1 77.9 62.9 13 0.25 0 0
28 7.1 2.5 47.5 40.5 10.4 0.25 0 0
29 7.1 2.1 39.9 33.9 2.5 0.25 1 1
30 7.1 2.6 49.4 40.4 10 0.25 0 0
31 7.1 4.1 77.9 55.9 6.2 0.25 1 1
32 7.1 4.1 77.9 55.9 4.3 0.25 1 1
33 7.1 4.7 89.3 72.3 4.1 0.25 1 1
34 7.1 4.2 79.8 64.8 4.9 0.25 1 1
35 7.1 2.9 55.1 38.1 6.6 0.25 1 1
36 7.1 2 38 28 3.1 0.25 1 1
37 7.1 2.2 41.8 29.8 3.1 0.25 1 1
38 7.1 2.9 55.1 39.1 5.1 0.25 1 1
39 7.1 3.6 68.4 44.4 7.8 0.25 1 1
40 7.1 8.3 157.7 88.7 4.3 0.25 1 1
41 7.1 8.6 163.4 90.4 4.3 0.25 1 1
42 7.1 9.8 186.2 110.2 3.8 0.25 1 1
43 7.1 4.4 83.6 54.6 8.2 0.25 1 1
44 7.1 5.5 104.5 77.5 1.9 0.25 1 1
45 7.1 6 114 79.7 2.2 0.16 1 1
46 7.1 6 114 79.7 2.1 0.16 1 1
47 7.1 6.3 119.7 77.5 4.1 0.28 1 1
48 7.1 7 133 84 8.5 0.28 1 0
49 7.1 6 114 84.6 6.4 0.28 1 1
50 7.1 9.5 180.5 116.8 12.1 0.28 0 0
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The input–output variables of the test samples for the 
70–30% training-test set are given in Table 5. Additionally, 
the output variables estimated by the GMDH are shown in 

Table 5. It is observed that there are three incorrect estimates 
for samples 7, 23 and 48.

EGMDH model

In this study, a GMDH-based new approach was proposed 
in the prediction of soil liquefaction. A novel ensemble 
GMDH (EGMDH) model with different activation functions 
has been developed to best explain the relationship between 
input and output variables by changing the GMDH algo-
rithm. The GMDH model was used for each of the sigmoid, 
radial basis, sin, tangent and polynomial functions. Then, 
each GMDH classifier model with an activation function 
was combined to produce a common output. In general, it 
is stated that the classification accuracy with the classifier 
obtained as a result of combining is better than using each 
classifier singly. Because the diversity of classifiers usually 
compensates for the mistakes of a single classifier, which 
can have a higher test error when used singly. Thus, less 
test error is achieved with the combination of classifiers. 
The success rates obtained with the EGMDH model for the 
70–30% training-test set are given in Table 6.

It is seen that the EGMDH model is more successful 
than the GMDH model on the estimation of soil liquefac-
tion when Table 5 is examined. A high classification success 
rate as 98.36% was obtained with EGMDH. The output con-
fusion matrix for the EGMDH model is given in Fig. 6. As it 
can be seen in Fig. 6, only one sample of “0” (non-liquefied) 
state is misclassified. All samples representing the state “1” 
(liquefied) are correctly classified. The input–output vari-
ables of the test samples for the 70–30% training-test set 
and the output variables estimated by EGMDH are given 
in Table 7.

Table 5   (continued) No Mw d (m) σ (kPa) σ′ (kPa) qc (MPa) amax (g) Actual Predicted 
by GMDH

51 7.1 2.5 47.5 42.6 3.4 0.27 1 1
52 7.1 3.3 62.7 50 6.2 0.27 1 1
53 7.1 5.7 82.4 73.4 2.2 0.53 1 1
54 7.1 7.3 114.7 86.4 4.5 0.53 1 1
55 7.1 6 99.8 79 3.9 0.53 1 1
56 7.1 2.1 28.4 22.5 1 0.21 1 1
57 7.1 3.3 57.5 32.5 1 0.21 1 1
58 7.1 2.1 32.7 27.1 1.3 0.21 1 1
59 7.1 2.7 42.1 33.1 1 0.21 1 1
60 7.1 7.3 116.3 96.9 4 0.49 1 1
61 7.1 6.8 128.3 118 3.7 0.53 1 1

Table 6   EGMDH model success rates for different numbers of the 
hidden layers with 70–30% training-test set (with 10 neurons)

#Hidden 
layer

Accuracy Precision Recall F-measure

1 93.44 0.9091 0.9535 0.9256
2 95.08 0.9286 0.9651 0.9435
3 98.36 0.9737 0.9884 0.9806

Fig. 6   Confusion Matrix by EGMDH for 70–30% training-test data



Environmental Earth Sciences (2019) 78:339	

1 3

Page 11 of 14  339

Table 7   Test set of 70–30% 
training-test data set and 
estimated values with EGMDH

No Mw d (m) σ (kPa) σ′ (kPa) qc (MPa) amax (g) Actual Predicted 
by EGMDH

1 7.7 3.1 56.9 47.1 9.81 0.23 0 0
2 7.7 3.8 71.6 53 15.69 0.23 0 0
3 7.7 5 94.1 63.7 15.08 0.23 0 0
4 7.7 2.8 53 45.1 1.76 0.23 1 1
5 7.7 3.4 62.8 51 4.02 0.23 1 1
6 7.7 5.1 94.1 65.7 7.8 0.23 1 1
7 7.7 6 111.8 73.5 8.8 0.23 1 0
8 7.1 5.9 115.1 83.1 14.5 0.24 0 0
9 7.1 5.3 103.4 77.4 15.2 0.24 0 0
10 7.1 5.9 115.1 85.1 1.3 0.24 1 1
11 7.1 2.8 54.6 50.6 1.9 0.24 1 1
12 7.1 8.4 172.2 143.2 5.9 0.24 0 0
13 7.1 3 57 45 3.8 0.25 1 1
14 7.1 3 57 45 3 0.25 1 1
15 7.1 4.4 83.6 65.6 5.4 0.25 1 1
16 7.1 4 76 70 16.4 0.25 0 0
17 7.1 2.5 47.5 40.5 7.7 0.25 1 1
18 7.1 9.5 180.5 103.5 25 0.25 0 0
19 7.1 1.4 26.6 26.6 3 0.25 1 1
20 7.1 3.9 74.1 53.1 11.7 0.25 0 0
21 7.1 8 152 90 20 0.25 0 0
22 7.1 1.9 36.1 34.1 10.4 0.25 0 0
23 7.1 5 95 63 9 0.25 1 1
24 7.1 6.8 129.2 79.2 20.8 0.25 0 0
25 7.1 6.5 123.5 75.5 18.2 0.25 0 0
26 7.1 3.5 66.5 49.5 15.5 0.25 0 0
27 7.1 4.1 77.9 62.9 13 0.25 0 0
28 7.1 2.5 47.5 40.5 10.4 0.25 0 0
29 7.1 2.1 39.9 33.9 2.5 0.25 1 1
30 7.1 2.6 49.4 40.4 10 0.25 0 0
31 7.1 4.1 77.9 55.9 6.2 0.25 1 1
32 7.1 4.1 77.9 55.9 4.3 0.25 1 1
33 7.1 4.7 89.3 72.3 4.1 0.25 1 1
34 7.1 4.2 79.8 64.8 4.9 0.25 1 1
35 7.1 2.9 55.1 38.1 6.6 0.25 1 1
36 7.1 2 38 28 3.1 0.25 1 1
37 7.1 2.2 41.8 29.8 3.1 0.25 1 1
38 7.1 2.9 55.1 39.1 5.1 0.25 1 1
39 7.1 3.6 68.4 44.4 7.8 0.25 1 1
40 7.1 8.3 157.7 88.7 4.3 0.25 1 1
41 7.1 8.6 163.4 90.4 4.3 0.25 1 1
42 7.1 9.8 186.2 110.2 3.8 0.25 1 1
43 7.1 4.4 83.6 54.6 8.2 0.25 1 1
44 7.1 5.5 104.5 77.5 1.9 0.25 1 1
45 7.1 6 114 79.7 2.2 0.16 1 1
46 7.1 6 114 79.7 2.1 0.16 1 1
47 7.1 6.3 119.7 77.5 4.1 0.28 1 1
48 7.1 7 133 84 8.5 0.28 1 1
49 7.1 6 114 84.6 6.4 0.28 1 1
50 7.1 9.5 180.5 116.8 12.1 0.28 0 0
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Discussion and conclusions

Due to the occurrence during the earthquake and many fac-
tors influencing it, the liquefaction is one of the most com-
plex soil problems. Therefore, the determination or predic-
tion of the liquefaction potential of soils has a very great 
importance. In this study, it was aimed to develop a novel 
prediction model for the liquefaction potential of soils using 
the ensemble group method of data handling (EGMDH) 
algorithm based on the GMDH model. Totally 212 CPT-
based field records obtained from 8 major earthquakes were 
used for this study. Recently, the GMDH model has been 
used in many geotechnical problems with high success.

The GMDH model has been converted to an ensemble 
model for different activation functions. The main goal in the 
ensemble classification is to achieve a result by combining 
the values obtained by different classifiers. The combination 
of classifiers consists of resampled training sets, training 
of classifiers separately and realization of the classification 
process in the direction of the emerging estimates. The accu-
racy of the classification made with the classifier obtained as 
a result of combining is better when each classifier is used 
singularly.

In this study, the success rate of the liquefaction predic-
tion achieved with the classical GMDH model was 95.08%, 

while it increased to 98.36% with EGMDH. The EGMDH 
model is also compared with different classifier models 
such as ANN, SVM, LR and RF. Performance values for 
all models are shown in Table 8. It is obvious that the worst 
performance was obtained with the SVM model and the 
most successful performance belongs to the EGMDH model 
proposed in this study. Despite the fact that there are many 
studies in literature on the prediction of liquefaction with 
different artificial intelligence techniques, as also mentioned 
in this study, the authors believe that new models for the 
predicting of the liquefaction phenomena will continue to be 
developed just as the EGMDH model, proposed in this study.
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