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Abstract
The drilling and blasting technique is among the common techniques for excavating tunnels with different shapes and sizes. 
Nevertheless, due to the dynamic energy involved, the rock mass around the excavation zone experiences damage and reduc-
tion in stiffness and strength. One of the most common and important issues that occurs during the tunneling process is the 
overbreak which is defined as the surplus drilled section of the tunnel. It seems that prediction of overbreak before blasting 
operations is necessary to minimize the possible damages. This paper develops a new hybrid model, namely, an artificial 
bee colony (ABC)–artificial neural network (ANN) to predict overbreak. Considering the most important parameters on 
overbreak, many ABC–ANN models were constructed based on their effective parameters. A pre-developed ANN model was 
also developed for comparison. In order to evaluate the obtained results of this study, a new system, i.e., the color intensity 
rating (CIR), was introduced and established to select the best ABC–ANN and ANN models. As a result, the ABC–ANN 
receives a high level of accuracy in predicting overbreak induced by drilling and blasting. The coefficients of determination 
(R2) for the ANN and ABC–ANN are 0.9121 and 0.9428, respectively, for training datasets. This revealed that the ABC–ANN 
model (as a new model in the field of this study) is the best one among the models developed in this study.

Keywords  ABC–ANN · ANN · Overbreak · Blasting

Introduction

Tunnels are typically excavated for various applications such 
as road construction and water transfer in civil and mining 
works. Although new mechanized excavation techniques 
using tunnel boring machines (TBMs) have been used for 
tunnel excavation, traditional techniques such as drilling 
and blasting are still applicable for excavation of tunnels 
with different shapes and sizes (Bhandari 1997). In fact, due 
to its advantages of high flexibility and low cost, it is still 
considered as a common excavation technique (Raina et al. 
2014). Nevertheless, damages to the peripheral rock mass 
around the excavation are inevitable because of the excessive 
dynamic energy associated with the blasting operation. After 
the blasting operation, the excavation cross section may have 
two major problems, namely, overbreak and under-break 
(Fig. 1). The overbreak is defined as the excavated area in 
excess of the final profile of the tunnel, and the under-break 
is defined as the portion of the rock that needs to be removed 
to reach the final tunnel profile.
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One of the most important issues that occurs in the exca-
vation process of a tunneling project is always the overbreak 
phenomenon. Nowadays, with the progression and introduc-
tion of new technologies to tunneling industry, new methods 
are used instead of traditional methods (drilling and blast). 
Even with the use of more advanced equipment in the tun-
neling industry, overbreak is still common and reported. The 
main reasons for overbreak include unpredictability of the 
rock formation and the rock heterogeneity. In small tunnel 
projects with low excavation volumes, contractors are typi-
cally unwilling to invest in new mechanized equipment and 
rely on traditional methods. Therefore, it can be argued that 
for small- to medium-scale projects, the traditional meth-
ods, especially drilling and blasting, are the most common 
tunnel excavation methods. There is currently no existing 
experimental and analytical method for the determination 
of overbreak in the tunnels. Overbreak and under-break 
often are not measured in tunnels or underground mines, 
because existing methods are too complicated, expensive, 
inaccurate, or time-consuming (Maerz et al. 1996). There 
are currently three methods of actually measuring profiles: 
surveying techniques—manual or laser-based—and photo-
graphic light sectioning methods. The current state of the 
art for determination of the overbreak is to use predictive 
models. The prediction models, depending on the dataset 
being used for prediction, that can be used can have higher 
accuracy, lower cost and require less time.

Recently, artificial intelligence (AI) methods such as arti-
ficial neural networks (ANNs), fuzzy inference system (FISs) 
and adaptive neuro-fuzzy inference systems (ANFISs) have 
been employed in solving geotechnical problems (Hasani-
panah et al. 2018; Koopialipoor et al. 2018b, d). AI meth-
ods were used to predict the uniaxial compressive strength 
(UCS) of rock by several researchers (Raina et al. 2004; 
Marto et al. 2014; Hajihassani et al. 2015; Jahed Arma-
ghani et al. 2016). Alvarez Grima et al. (2000) developed 

an ANFIS to predict the penetration rate of TBMs. Momeni 
et al. (2015) applied the ANN technique to predict the bear-
ing capacity of piles. In addition, this method was utilized to 
solve the problem of ground settlement induced by tunneling 
in the study carried out by Ocak and Seker (2013). Gordan 
et al. (2016) predicted the stability of homogeneous slopes 
combining particle swarm optimization (PSO) and an ANN.

Parameters influencing the overbreak can be classified 
into three groups: (a) rock mass characteristics; (b) geo-
metric properties of the explosion pattern; and (c) blast-
ing operation properties (Mandal and Singh 2009). Several 
researches have worked on overbreak in mines and tunnels. 
Monjezi and Dehghani (2008) considered the ratio of stem-
ming to burden, charge of the last row to total charge, special 
charge, special charge per delay and the number of explo-
sion rows in each stage as the most influential factors for 
overbreak in the GOL-GOHAR mine, Iran. Jang and Topal 
(2013), by using ANNs, predicted the overbreak of the Gyby 
tunnel in South Korea with a correlation coefficient (R) of 
0.945 between the output of the model and the actual data. 
The correlation coefficient (R) is a measure of the difference 
between the overbreak computed through a certain func-
tional and the measured (observed) overbreak. The inputs 
in this model included the UCS of the rock mass, quality 
index of rock mass, rock weathering conditions, groundwa-
ter conditions, and geomechanical classification index values 
of rock mass.

To develop a comprehensive ANN model, Monjezi et al. 
(2013) used parameters of UCS, special drilling, under-
ground water content, burden, hole spacing, stemming, the 
diameter of the hole, stair height, and special charge and 
consumer charge in every delay as model inputs. They per-
formed a sensitivity analysis on the mentioned parameters 
and concluded that burden and underground water content 
are the most important and least important parameters, 
respectively. Ebrahimi et al. (2016) demonstrated that the 
most influential parameters on overbreak are burden, spacing 
and charge per delay. By developing an ant colony optimiza-
tion algorithm, Saghatforoush et al. (2016) concluded that 
the optimum values of overbreak and flyrock can be reduced 
significantly.

Gates et al. (2005) demonstrated that insufficient delay 
time and number of explosive rows are the most effective 
factors for overbreak. Esmaeili et  al. (2014) suggested 
that the last row of charge and special charge are the most 
important factors for overbreak, while the ratio of burden to 
spacing, stiffness and density are the least important ones. 
Ibarra et al. (1996) reported that the charge factor of an envi-
ronment from explosives can create under-break, and poor 
quality of rock may cause overbreak in tunnels. Mandal and 
Singh (2009) showed that in addition to the rock conditions, 
in situ stress influences significantly the overbreak. Several 
empirical models have been suggested by researchers to 

Fig. 1   Overbreak and under-break induced by drilling and blasting 
method
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estimate overbreak (Lundborg 1974; Roth 1979). Singh and 
Xavier (2005) carried out a series of small experiments on 
the physical scale models to predict the blast damage. The 
most effective parameters for overbreak in their assumption 
was the characteristics of the rock mass [UCS and rock mass 
rating (RMR)] and the explosive material (special charge, 
burden and spacing). Recently, Koopialipoor et al. (2017) 
proposed a genetic algorithm (GA)-ANN model to predict 
overbreak induced by tunneling operations.

It can be concluded from the existing literature that due 
to the multiplicity of effective factors as well as the com-
plex relationship between these parameters, there is a need 
to develop a new technique to predict and control tunnel 
overbreak. Therefore, it is necessary to evaluate the prob-
ability of an overbreak phenomenon for each project before 
conducting blasting operations. The present study attempts 
to predict overbreak induced by drilling and blasting opera-
tions at Gardaneh Rokh tunnel, Iran by using an artificial bee 
colony (ABC)–ANN approach. Note that several researchers 
have used ANN and ABC approaches for prediction and 
optimization purposes (Ebrahimi et al. 2016; Saghatforoush 
et al. 2016; Ghaleini et al. 2018; Koopialipoor et al. 2018a). 

The work presented in this paper is a new combination that 
has not been used/developed for prediction of overbreak in 
tunnels. To demonstrate the capabilities of the proposed 
hybrid model, an ANN model is also constructed and com-
pared with the hybrid model. Finally, an examination of the 
ABC–ANN model is conducted to predict overbreak in a 
tunnel.

Case study and collected data

The Gardaneh Rokh tunnel is an important strategic tunnel 
in West Iran, connecting Esfahan and Chaharmahal-Bakh-
tiari provinces. The road on which the tunnel is located is 
a critical highway from economic and strategic aspects. 
This tunnel has a length of 1300 m and width of 13 m. The 
location of the area studied in this work is shown in Fig. 2. 
Excavation of this tunnel, as shown in Fig. 3, was performed 
in two sections; the top one was excavated using the drill-
ing and blasting method, and the bottom one was excavated 
using hydraulic hammers.

Fig. 2   Location of the study 
area
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Similar explosive patterns were used to excavate the top 
section of the tunnel. Although some minor changes were 
made in the pattern of explosions in this project, the changes 
were not varied enough to be considered in different arrange-
ments for each stage of the explosion. Table 1 shows general 
specifications of excavation at the top section of the tunnel.

In this study, eight parameters were selected as model 
inputs for prediction of overbreak. A total of 255 datasets of 
RMR, advanced length, special charge, hole periphery bur-
den, end row burden, periphery spacing, end row spacing, 
and number of applied delays were used for this analysis. A 
simple description of these parameters (input and output) is 
provided in Table 2.

Methods

This section describes the methods used in this study. As 
discussed earlier, AI techniques are used in this research 
for application in the field of tunnel engineering and deter-
mination of overbreak. Given the fact that various param-
eters influence the overbreak, finding a new solution can be 
useful for researchers and engineers in this technical field. 
Therefore, developing a relationship to accurately predict 
the overbreak is essential. These models are coded in the 
software and output files on different devices (mobile and 
computer), and can be used as an application. Further details 
are provided in the following sections.

Artificial neural network

The artificial neural network (ANN) was developed by 
McCulloch and Pittsin (1943). This flexible technique is a 

Fig. 3   Cross section of the studied tunnel

Table 1   General specifications 
of excavation at the top section 
of the tunnel using drilling and 
blasting

Feature Description

Shape Horseshoe
The cross section of the top 32.15 m2

The tunnel periphery at the top section 15.052 m
Hole diameters 45 and 51 mm
The type of consumption explosive Gelatin dynamite
Number of holes 45–85
Detonator consumption Delay 0.5 s—with different numbers
Hole depth 1.2–3 m
Arrangement of holes in the cutting area Wedge shape
Cut of the hole angle relative to a line perpendicular to the axis of 

the tunnel
69–72°

The total weight of consumption explosives 48–118 kg
Charge of holes Continuous
Stemming length According to the conditions of stone 

from 15 to 60 cm

Table 2   Statistical description of input and output data

Parameter Symbol Maximum Minimum Standard 
deviation

Number of delay ND 10 4 1.2
Periphery burden (m) B1 2 0.6 0.2
End row burden (m) B2 1.8 0.6 0.22
Periphery spacing (m) S1 1.7 0.3 0.17
End row spacing (m) S2 1.25 0.6 0.17
Special charge (kg/m3) Q 1.65 0.49 0.23
Advanced length (m) AL 3.96 0.9 0.58
Rock mass rating RMR 39 30 6.47
Overbreak (m2) OB 8.37 3.05 2.47
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type of AI system which can solve problems faster with a 
high degree of accuracy. Furthermore, it can be used to solve 
nonlinear problems where input and output parameters are 
considered unknown (Garrett 1994). The ANN is an imita-
tion of the mechanism of data analysis of biological cells. 
The brain is a high complex network which can act as a 
parallel processor. Such networks are designed mainly for 
a series of nonlinear mapping between inputs and outputs. 
ANNs learn from previous experiences and are generalized 
using training samples. These techniques can change their 
behavior based on the environment and are appropriate for 
the required algorithms for mapping. In ANN systems, the 
data used to create models are known as training data. In 
other words, ANNs use training data to learn patterns in the 
data which can prepare them to achieve different outputs 
(Fausett and Fausett 1994). The structure of ANNs is created 
by processor units (neurons or nodes), which are responsible 
for the organization. These neurons can be combined with 
each other to form a layer. There are different ways to link 
neurons in an ANN. Feed-forward (FF)–back-propagation 
(BP) is a common procedures in ANNs and has been suc-
cessfully implemented and reported by many researchers 
(Engelbrecht 2007; Momeni et al. 2015). Each neuron has 
multiple inputs. These inputs are combined and then the 
combination provides an output after processing. Network 
cells are connected to each other according to which output 
of each cell is considered as the next cell input. The first 
layer on the left side of the input layer does not play any role 
in processing, and only inputs that are imported in this sec-
tion are sent to the next layer of the process through existing 
communications. The end layer (right layer) is the output 
layer that provides network response. The layers between 
the input and output layers are called hidden or intermediate 
layers (Haykin and Network 2004).

One of the most widely used learning algorithms in 
ANNs is the learning algorithm of error BP (Jahed Arma-
ghani et al. 2015). The algorithm works on the basis of the 
error correction learning rule, which can be considered an 
extended algorithm of least average. In general, learning 
propagation consists of two steps: forward step and back 
step. In the forward stage, the inputs are forward layer 
by layer in the network, and, finally, a series of network 
outputs will be obtained as predicted values. During the 
forward stage, synaptic weights will be achieved. On the 
other hand, in the backward stage, the error of weights are 
set by the error regulating laws. The difference between 
predicted response and network response (expected), 
which is called the error signal, will be released in the 
opposite direction of network connections, and the weights 
change in a way that predicted response becomes closer to 
favorable response. Since the recent distribution is made 
in contrast to the weighted connections, error back-prop-
agation is chosen to explain the modification behavior of 

the network. Different performance indices can be used 
in order to evaluate system results (Fausett and Fausett 
1994):

(A)	 The correlation coefficient (R2)
(B)	 The root mean square error (RMSE)

Artificial bee colony (ABC)

The ABC optimization algorithm, developed by Karaboga 
(2005), is inspired by the social life of bees. In an ABC, 
each bee is a simple component. If these simple components 
form a colony of bees together, they will have a coherent and 
complex behavior which is be able to create an integrated 
system for discovering and exploiting the nectar of flowers. 
Each colony of bees consists of three bee colonies which 
have a duty. The first group of bees are scouts. These bees 
are tasked with discovering new sources. The scout bees will 
randomly search the peripheral environment, and after find-
ing a food source, they store it in their memory. After each 
bee returns to the hive, the hive will share the source infor-
mation in a waggle dance with other bees in the hive and 
hire some of them to exploit the sources. The second group 
consists of bees in a hive which are called employed bees. 
The employed bees are responsible for exploiting preset 
food sources. The third group of hive bees is onlooker bees. 
These bees in the hive await other bees, and after exchanging 
information with other bees in the waggle dance, choose one 
resource based on the fitness of the answer for exploitation.

This algorithm can solve many engineering, industrial 
and mathematical issues, such as optimization of the loca-
tion of wells in oil reservoirs (Nozohour-Leilabady and 
Fazelabdolabadi 2016), optimization of water discharge 
from dams (Ahmad et al. 2016), data clustering (Zhang et al. 
2010), scheduling of machines (Rodriguez et al. 2012), acci-
dental failure of a nuclear power plant (de Oliveira et al. 
2009). Also, with its hybrid combined with ANNs, it solves 
additional issues, such as prediction of the pressure at the 
bottom of a well along a network (Irani and Nasimi 2011). 
The only observed application of this algorithm in geotech-
nical engineering is to predict and optimize the back-break 
caused by blasting (Ebrahimi et al. 2016; Gordan et al. 2018; 
Koopialipoor et al. 2018c).

This algorithm consists of the following steps (Karaboga 
and Basturk 2007):

•	 Initialize
•	 Repeat
•	 Send employed bees to food sources
•	 Send onlooker bees to food sources
•	 Send scout bees to search for new food sources
•	 Up to (the desired situation is obtained).
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Step 1 In the ABC algorithm, for the first time, half of 
the population of bees are employed bees and the other 
half are non-employed bees. For each food source, there 
is only one bunch of employed bees. In other words, the 
number of employed bees is equal to the number of food 
sources around the hive. Therefore, an employed bee is 
assigned to each food source, which means that within 
the scope of the answer, the number of food sources cre-
ate an initial solution. After creating the initial solutions, 
the value of each solution must be calculated using the 
relationship of the problem.

Step 2 In this section, for each problem solution, a new 
answer is created using the relationship:

where xi,j is the parameter j from the answer i, vi,j is the 
parameter j in the new answer, i is the number of one to 
the number of solution problems, φ is a random number in 
a range of [−1, 1], k is a random number of one the num-
ber of answers to the problem, BN is the number of initial 
answers for the problem, and D is the number of optimiza-
tion parameters.

After creating a new answer, if the value of this answer 
is more than the value of the previous answer, it will be 
replaced; otherwise, this answer will be forgotten.

Step 3 In this stage, the probability of receiving bees 
from each site is calculated by the following equation:

where fiti is the source of the fitness of source i and pi is the 
probability of choosing the source i by the onlooker bees. 
Considering the fitness of each item, a number of bees are 
allocated. In this step, all the bees may be assigned to a 
food site according to fitness. After calculating the value of 
each source, using the relation (1), a new answer is gener-
ated for the selected answers. If this answer receives more 
value than the previous answer, this answer will replace the 
previous answer or otherwise it will be fined. The purpose 
of the fine is to count the number of failures to improve the 
response, and if the answer is not improved, one unit will 
be added to it.

Step 4 In this stage, if the counter of non-improvement 
answers reaches the preset limit (Cmax), this answer will 
be replaced by a random answer. Also, at this stage, the 

(1)

vi,j = xi.j + �i.j(xi.j − xk.j)

i ∈ {1. 2.BN}

j ∈ {1. 2…D}

k ∈ {1. 2…BN} and k ≠ i

� ∈ [−1.1],

(2)pi =
fiti

∑SN

n=1
fitn

,

conditions for the end of repetitions are also checked. If 
the conditions for the end of the algorithm are established, 
repetitions will end; otherwise, it will return to step two. 
More explanations regarding ABC structure and how it 
works can be found in similar studies (Karaboga 2005; 
Karaboga and Akay 2007; Karaboga and Basturk 2007). 
Figure 4 illustrates a general view of the ABC algorithm.

Developing the ANN model

In the current study, based on the complex nature of the 
problem, the perceptron ANNs were used to solve the prob-
lem. Herein, the Levenberg–Markvart (LM) learning func-
tion was used to teach the ANN. The number of layers of 
a neural network model was selected in accordance with 
several researches (e.g., Hornik et al. 1989). These layers 
include an input layer with nine nodes and an output layer 
with one output and a hidden layer. A hidden layer can solve 
any nonlinear function according to Hornik et al. (1989). 
Several studies explored the number of hidden layer neu-
rons and there is a need to do trial and error to obtain the 
appropriate values for hidden neuron number. In Table 3, 
six relationships are presented to determine the number of 
hidden neuron numbers. In this table, Ni is the number of 
inputs, and No is the number of outputs of the model.

According to the values of relationships presented in 
Table 3, for all neural network learning algorithms, between 
2 and 18 neurons for hidden neuron number was considered. 
Considering the importance of R2 and RMSE of each series 
of training and testing models, a comparison was made 
among them to select the best model. This comparison is 
based on a technique proposed by Zorlu et al. (2008), where 
each section is evaluated and assigned a score. Based on this 
method, every performance index (R2 or RMSE) was calcu-
lated in its own class, and the best of them received the high-
est rating. For instance, values of 0.913, 0.913, 0.904, 0.908, 
0.902, 0.912, 0.912, 0.913, 0.913, 0.902, 0.898, 0.931, 
0.925, and 0.915 were obtained for section of R2 training 
dataset for models 1–14, respectively. Ranking results of the 
mentioned 12 models were respectively obtained as 31, 31, 
27, 28, 26, 30, 30, 31, 31, 26, 25, 40, 37, and 32. It should 
be noted that scores are generated for 42 models, the high-
est score of which is assigned to the best section, and if the 
two section are the same, the same score is awarded to them. 
Finally, the score of each row is aggregated from the models 
and is considered as a total score. Table 4 presents the results 
of this neural network. As shown in Table 4, model no. 6 
created with the LM learning algorithm was selected as the 
best model based on the highest score. As it can be seen, R2 
values of 0.910 and 0.893 for training and testing show the 
ability of the ANN model in predicting overbreak. In fact, 
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the ANN model can provide a high level of prediction capac-
ity for estimation of overbreak with low error.

In the following, the ABC–ANN model for prediction of 
overbreak in the tunnels will be described.

Prediction of overbreak by the ABC–ANN 
model

An ABC algorithm was used to improve the performance of 
the ANN in this study. In general, the BP algorithm is used 
to train the ANN. This algorithm has some defects that can 
reduce the ANN’s performance. One of the most important 

Fig. 4   General view of the 
ABC algorithm to optimize the 
overbreak in tunnels

Initialization the solution randomly

Calculate the problem value

Calculate the problem value and 	itness and the 

probability of receiving an onlooker bee for it

Create the scout bee

Replace the previous answer

Assign the onlooker bee

Calculate the probem value

Replace the previous answer with new random answer

End condi�on is sa�sfied?

End

Start

Answers is better ?

Yes

No

Answers is better ?

Yes

Add counter

Replace the previous answer

Has the couner reached the limit?

Add counter

No

Yes

Yes

No

No

Table 3   Existing relationships to determine hidden layer neurons

Relationships References

⩽ 2× Ni + 1 Hecht-Nielsen (1989)
(Ni + No)/2 Ripley (1993)
2+ No × Ni+0.5 No ×(No

2+ Ni)−3

Ni+No

Paola (1994)

2Ni/3 Wang (1994)
√

Ni × No
Masters (1993)

2Ni Kaastra and Boyd (1996) and 
Kanellopoulos and Wilkinson 
(1997)



	 Environmental Earth Sciences (2019) 78:165

1 3

165  Page 8 of 14

problems is the trapping of local minima in the search space. 
When a local minimum is reached, it announces to the sys-
tem that these coefficients are the best coefficients, while this 
is a bug in a BP algorithm. In this situation, optimization 
algorithms are used to find the best minimum which is also 
the global minimum. In this research, an ABC algorithm is 
used to optimize network coefficients to reduce the RMSE 
error.

In this algorithm, after generating the initial coefficients 
for each solution, using Eq. (1), a series of new coefficients 
was created. After calculating the prediction and error 
values, in case of improvement, the new coefficients will 
replace the previous ones. Otherwise, the coefficients will 
be fined and the new coefficients will be forgotten. After cal-
culating the probability of choosing coefficients, new items 
were created around the coefficients with greater merit. In 
this case, if the error rate is reduced, new coefficients will be 
replaced; otherwise, new coefficients will be forgotten. The 
reason for this procedure is that in the next few queries, the 

search does not arrive at space and no more time is spent. By 
doing this, finding speed is improved and the ABC internal 
system is also optimized. In the last step of the algorithm, 
when the penalty amount of each of the coefficients reaches 
a predetermined value, new coefficients will be generated 
randomly. In Fig. 5, a comparison can be seen between 
BP and ABC algorithms for finding optimal coefficients. 
As it can be seen, Fig. 8 shows part of the system space 
that BP is able to locate, while the ABC is able to find the 
global minimum. For this reason, an intelligent hybrid of 
the ABC–ANN model was used and developed to predict 
overbreak induced by drilling and blasting.

Considering a proposed ANN model with seven neurons 
(obtained from the developed ANN), many ABC–ANN 
models were built. Here, the ABC algorithm attempts to 
find suitable weights and optimize them in the search space. 
By increasing the number of bees, they can, in fact, cover a 
larger search space. This process continues until reaching the 
lowest level of error. Each time the choices take place, the 

Table 4   Prediction values of 
overbreak using the ANN model

Model no. No. neurons Train Test Train rating Test rating Total rank

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 2 0.876 0.0904 0.882 0.0979 4 3 9 5 21
2 3 0.882 0.0918 0.872 0.1049 7 2 7 2 18
3 4 0.880 0.0903 0.895 0.0951 6 4 13 8 31
4 5 0.897 0.0836 0.895 0.0793 10 10 13 14 47
5 6 0.884 0.0865 0.895 0.0915 8 7 13 12 40
6 7 0.910 0.0793 0.893 0.0918 14 12 12 11 49
7 8 0.901 0.0816 0.893 0.0941 11 11 12 9 43
8 9 0.903 0.0791 0.887 0.0939 12 13 11 10 46
9 10 0.904 0.0788 0.882 0.0968 13 14 9 7 43
10 11 0.889 0.0861 0.904 0.0860 9 8 14 13 44
11 12 0.878 0.0840 0.885 0.0995 5 9 10 3 27
12 14 0.872 0.0903 0.882 0.0973 3 4 9 6 22
13 16 0.876 0.0893 0.856 0.1105 4 5 6 1 16
14 18 0.882 0.0873 0.876 0.0985 7 6 8 4 25

Fig. 5   A comparison between 
the results of the BP and ABC 
algorithms to find the minimum 
for ANN models
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values will remain constant until a better result is obtained 
for the network weights. In this study, different models were 
constructed with 500 repetition numbers and different num-
ber of bees, ranging from 10 to 80 (see Fig. 6).

From all these iterations, the number of bees was equal to 
30, which has a very little difference in comparison with oth-
ers, and produced the best optimum pattern in this research. 
In other words, 30 bees is the optimum number of bees that 
will also reduce the computation time needed for the analy-
sis. Moreover, based on RMSE results, 200 iterations can 
be utilized instead of 500 iterations to optimize the analy-
sis time. Utilizing the determined values for the number of 
bees and iterations, five ABC–ANN models were built, and 
further discussion in this regard is provided in the following 
section.

Evaluation of the results

In this research, various ABC–ANN and ANN models were 
constructed to evaluate/predict overbreak in tunnels. Here, 
all 330 sets of data were selected randomly and classified 
into 5 different parts. These sets were randomly assigned 
20% and 80% for training and testing, respectively. Then, five 
ANN models and five ABC–ANN models were constructed 
and evaluated based on R2 and RMSE results. These values 
are rated according to the new system. Here, the authors 
assigned an exclusive color to each of the rows of models. 
In this way, the model with the higher score is assigned a 
higher red color intensity in each column. The lesser the 
color intensity (lighter colors), the lower rate (weight) of 
the parameters/factors. For example, the no. 4 ABC–ANN 
model (see Table 5) receives the highest intensity of red in 
the R2 column of the training section. In this way, the best 
are specified in each column and in the last column, a case 
that is collectively better (in terms of the intensity of the red 

color) is selected. In this way, the new method is used to 
select the best models. It should be noted that the same result 
can be obtained by rating. However, this new way of finding 
the best models can be a new and smart solution for select-
ing and categorizing models. This categorization method 
is called the color intensity rating (CIR) system. In order 
to evaluate the proposed CIR system, a published study by 
Jahed Armaghani et al. (2016) was considered and the CIR 
system was applied to their ranking method (see Table 6). 
Based on the obtained results of CIR, it was found that there 
is a match between ranking technique and the CIR system. 
Therefore, it can be concluded that the proposed CIR system 
is implemented correctly, and it can be introduced as a new 
technique to select the best model.

As shown in Table 5, in general, the ABC–ANN val-
ues are darker red, which indicates the superiority of this 
method compared to the ANN. The best model according 
to Table 6 is model no. 4 of the ABC–ANN models, where 
the R2 and RMSE values for training and testing model no. 
4 were 0.9428 and 0.0628, and 0.9396 and 0.0696, respec-
tively. Therefore, the use of the ABC–ANN method is rec-
ommended to improve the overbreak prediction results in 
tunnels. Finally, the values of R2 and RMSE for ANN and 
ABC models for five data sets are plotted in Figs. 7 and 8.

The results of selected ANN and ABC–ANN models 
are presented in Figs. 9, 10, 11 and 12. By implementing 
the ABC algorithm, the performance of the network can 
be increased significantly, especially in results of training 
datasets.

Conclusions

In the present study, using AI models, prediction of over-
break in tunnels was conducted. After identifying the effec-
tive parameters in the overbreak phenomenon, eight input 

Fig. 6   The best costs of over-
break
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Table 5   CIR system to 
determine the best models of 
overbreak prediction in tunnels 
using ANN and ABC–ANN 
methods

Model
type

Model
no.

Train Test Train ra�ng Test ra�ng

Total 
rankR2 RMSE R2 RMSE R2 RMSE R2 RMSE

ANN

1 0.9121 0.0761 0.8987 0.0915 5 5 5 3 18

2 0.9006 0.0796 0.9044 0.0904 3 3 6 4 16

3 0.8949 0.0825 0.893 0.0939 2 1 3 2 8

4 0.9082 0.0763 0.8855 0.0951 4 4 2 1 7

5 0.9006 0.0808 0.8968 0.0897 3 2 4 5 14

ABC-
ANN 

1 0.9332 0.065 0.9235 0.0787 7 7 7 6 27

2 0.9312 0.0664 0.9235 0.0775 6 6 7 7 26

3 0.9395 0.0643 0.9351 0.0699 9 9 8 8 34

4 0.9492 0.0622 0.9428 0.0668 10 10 9 9 38

5 0.9351 0.0646 0.9467 0.0647 8 8 10 10 36

Table 6   An example to evaluate 
the performance of the CIR 
system

Model 
no. Nimp

Train Test Train ra�ng Test ra�ng
Total 
rankR2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 5 0.829 0.047 0.82 0.046 10 11 8 12 41

2 10 0.848 0.045 0.856 0.041 13 13 13 13 52

3 15 0.843 0.045 0.848 0.046 12 13 12 12 49

4 20 0.833 0.046 0.789 0.052 11 12 5 7 35

5 25 0.791 0.052 0.822 0.046 3 6 9 12 30

6 30 0.823 0.049 0.836 0.041 8 9 10 13 40

7 35 0.807 0.051 0.78 0.049 5 7 2 9 23

8 40 0.829 0.046 0.837 0.048 10 12 11 10 43

9 45 0.805 0.049 0.785 0.055 4 9 4 5 22

10 50 0.823 0.048 0.789 0.05 8 10 5 8 31

11 55 0.828 0.047 0.784 0.053 9 11 3 6 29

12 60 0.818 0.049 0.803 0.047 7 9 6 11 33

13 65 0.812 0.05 0.806 0.046 6 8 7 12 33

Nimp number of imperialism
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parameters were used to create a neural network of three 
types of learning functions. A rating system was applied 
to identify and select the best model for optimization. The 
R2 and RMSE values of the best selected ANN model were 
0.921 and 0.4820, and 0.923 and 0.4277 for training and 
testing, respectively. The ABC algorithm, one of the new 
optimization algorithms, was used to optimize the weights 
of the ANN. Considering that overbreak is one of the main 
problems in tunneling, the accurate prediction of this amount 
can contribute to a more efficient and economical tunnel 
excavation.

Different models of the ABC–ANN network were cre-
ated. Subsequently, considering that the number of bees 

to determine the optimum value of errors and finding the 
global minimum are important, the number of effective 
bees was evaluated. Thirty bees were selected as the opti-
mum number of bees. Finally, the developed ANN and 
ABC–ANN models were utilized for five data sets. In 
this situation, model no. 3 was chosen as the best predic-
tion model. The values of R2 and RMSE for the training 
and testing of model no. 3 were 0.9428 and 0.0628, and 
0.9396 and 0.0696, respectively. To evaluate the developed 
models, the CIR method was implemented. The improved 
results of the ABC–ANN compared to the ANN showed 
that the use of hybrid algorithms could provide better 
results for prediction of overbreak in tunnels.

Fig. 7   Values of R2 for ANN 
and ABC–ANN models

Fig. 8   Values of RMSE for 
ANN and ABC–ANN models
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Fig. 9   Prediction values of 
overbreak for training model no. 
6 using the ANN

Fig. 10   Prediction values of 
overbreak for testing model no. 
6 using the ANN

Fig. 11   Prediction values of 
overbreak for training model 
using the ABC–ANN
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