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Abstract
Geostatistical methods such as kriging with external drift (KED) as well as machine learning techniques such as quantile 
regression forest (QRF) have been extensively used for the modeling and prediction of spatially distributed continuous vari-
ables when auxiliary information is available everywhere within the region under study. In addition to providing predictions, 
both methods are able to deliver a quantification of the uncertainty associated with the prediction. In this paper, kriging 
with external drift and quantile regression forest are compared with respect to their ability to deliver reliable predictions and 
prediction uncertainties of spatial data. The comparison is carried out through both synthetic and real-world spatial data. 
The results indicate that the superiority of KED over QRF can be expected when there is a linear relationship between the 
variable of interest and auxiliary variables, and the variable of interest shows a strong or weak spatial correlation. In other 
hand, the superiority of QRF over KED can be expected when there is a non-linear relationship between the variable of 
interest and auxiliary variables, and the variable of interest exhibits a weak spatial correlation. Moreover, when there is a 
non-linear relationship between the variable of interest and auxiliary variables, and the variable of interest shows a strong 
spatial correlation, one can expect QRF outperforms KED in terms of prediction accuracy but not in terms of prediction 
uncertainty accuracy.

Keywords Auxiliary information · Prediction uncertainty · Kriging with external drift · Quantile regression forest · Spatial 
data

Introduction

Most of the time in mineral exploration, measurements of 
the spatially distributed variable of interest (e.g., geochemi-
cal element concentration) are expensive to obtain (Carranza 
2008). In fact, both the samples and the associated chemical 

analyses are often laborious and difficult to obtain and, there-
fore, come at a high cost. As consequence, measurements of 
the spatially distributed variable of interest are relatively 
scarce over the region of interest. A simple interpolation 
of such relatively sparse spatial data always involves large 
uncertainties. With the increasing development of remote 
sensing platforms and sensor networks, large volumes of 
diverse geoscientific data (e.g., geological, geophysical) are 
becoming available everywhere within the region of interest. 
This vast amount of auxiliary spatial data has the potential 
to improve the prediction of the variable of interest over 
the region of interest, beyond interpolations based solely on 
point measurements of the variable of interest (Hengl 2009). 
The underlying assumption is that the spatially distributed 
variable of interest, which is known at only relatively few 
locations, is correlated to auxiliary spatial variables which 
are available everywhere within the region of interest.

Geostatistical methods such as kriging with external 
drift (KED) (Chiles and Delfiner 2012; Wackernagel 
2013) and machine learning techniques such as quantile 
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regression forest (QRF) (Meinshausen 2006) have been 
intensively used for modeling and mapping of spatially 
distributed continuous variables in the presence of second-
ary information available everywhere within the region 
under study (Hengl et al. 2004; Lado et al. 2008; Kanevski 
2008; Li and Heap 2008; Kanevski et al. 2009; Foresti 
et al. 2010; Hengl 2009; Li et al. 2011; Li 2013; Tadic 
et al. 2015; Leuenberger and Kanevski 2015; Appelhans 
et al. 2015; Kirkwood et al. 2016; Taghizadeh-Mehrjardi 
et al. 2016; Ballabio et al. 2016; Barzegar et al. 2016; 
Khan et al. 2016; Wilford et al. 2016; Vaysse and Lagache-
rie 2017; Vermeulen and Niekerk 2017; Hengl et al. 2018). 
In addition to providing a prediction, both approaches can 
deliver a quantification of the uncertainty associated with 
the prediction. Geostatistical approaches such as KED are, 
by essence, designed to provide such prediction uncertain-
ties. However, they frequently require significant data pre-
processing, can handle only linear relationships, and make 
some assumptions about the underlying spatial distribution 
of data (e.g., stationarity, isotropy, and normality) which 
are rarely met in practice. In contrast to geostatistical 
methods, machine learning techniques such as QRF, often 
require less data pre-processing, can handle complex non-
linear relationships, make no assumption about the under-
lying spatial distribution of the data though relying on the 
independence assumption of the data. This assumption is 
often unrealistic, especially, when the sampling density is 
very dense in some areas and very sparse in others.

Though there have been numerous studies comparing 
geostatistical and machine learning methods in terms of 
their accuracy in making point predictions, very little 
attention has been paid to their ability to provide reliable 
prediction uncertainties (Coulston et al. 2016; Kirkwood 
et al. 2016; Vaysse and Lagacherie 2017). Coulston et al. 
(2016) provided an approach for approximating predic-
tion uncertainty for random forest regression models in a 
spatial framework. Kirkwood et al. (2016) compared the 
capability of ordinary kriging and quantile regression for-
est to provide reliable prediction uncertainties of various 
geochemical mapping products in south west England. 
Vaysse and Lagacherie (2017) performed the same com-
parison for digital soil mapping products in France.

The prediction uncertainty represents here the uncer-
tainty around the prediction at a target location, and it 
reflects the inability to exactly define the unknown value. 
Assessing the uncertainty about the value of the variable 
of interest at target locations, and of the need to incor-
porate this assessment in subsequent studies or to sup-
port decision making is becoming increasingly important. 
Uncertainty about any particular unknown value is mod-
eled by a probability distribution of that unknown value 
conditional to available related information. Their deter-
mination should be done prior and independently of the 

predictor(s) retained, and accounts for the data configura-
tion, data values, and data quality.

Thus, the aim of the present work is twofold: Kriging 
with external drift (KED) and quantile regression forest 
(QRF) are compared (1) with respect to their accuracy in 
making point predictions and (2) their success in modeling 
prediction uncertainty of spatial data. For this comparison, 
we used both simulated and real-world spatial data. Apart 
from classical performance indicators, comparisons make 
use of accuracy plots, probability interval width plots, and 
the visual examinations of the prediction uncertainty maps 
provided by the two methods.

Methods and data

Methods

In this section, KED (Chiles and Delfiner 2012; Wacker-
nagel 2013) and QRF (Meinshausen 2006) are described, 
as well as performance measures used to compare them. All 
modeling was conducted in R (R Core Team 2018). KED 
is performed using RGeostats package (Renard et al. 2018) 
and QRF is carried out with quantregForest package (Mein-
shausen 2017).

Kriging with external drift

KED is a particular case of universal kriging (Chiles and 
Delfiner 2012; Wackernagel 2013). It allows the predic-
tion of a spatially distributed variable of interest (tar-
get variable or dependent variable or response variable) 
{Y(�), � ∈ D ⊂ ℝ

d} , known only at relatively small set of 
locations {�1,… , �n} of the study region D, through spa-
tially distributed auxiliary variables (explanatory variables 
or independent variables or covariates) {xl(�), � ∈ D}l=1,…,L , 
exhaustively known in the same area. It assumes that the 
spatially distributed variable of interest can be modeled as a 
second-order random field of the form (Chiles and Delfiner 
2012; Wackernagel 2013):

where m(⋅) is the mean function (drift) assumed to be deter-
ministic and continuous, and e(⋅) is a zero-mean second-
order stationary random field (residual) with covariance 
function Cov(e(�1), e(�2)) = C(�1 − �2).

Under the model defined in Eq. (1), the large-scale spa-
tial variation is accounted through the mean function m(⋅) , 
and the small-scale spatial variation (spatial dependence) is 
accounted through the second-order random field e(⋅) . Under 
KED, it is assumed that the mean function m(⋅) should vary 
smoothly in the spatial studied domain D. KED assumes 
a linear relationship between the variable of interest and 

(1)Y(�) = m(�) + e(�), � ∈ D ⊂ ℝ
d,
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auxiliary variables at the observation points of the variable 
of interest. More specifically, the mean function is expressed 
as follows:

where {�0,… , �L} are unrestricted parameters.
The prediction of the unknown value Y0 of the variable of 

interest at a new location �0 ∈ D is given by

where � = (Y1,… ,Yn)
T  is the vector of observations at 

sampling locations {�1,… , �n} , and �T = (�1(s0),… , �n(s0)) 
are weights solution of the following system of equations 
obtained by minimizing the mean squared prediction error 
under unbiasedness constraints (Chiles and Delfiner 2012; 
Wackernagel 2013):

where � is the covariance matrix associated with the obser-
vations, i.e., with entries Cij = C(�i − �j), (i, j) ∈ {1,… , n}2 , 
�0 is the vector of covariances between Y0 and the observa-
tions, � is the matrix of zeroes �0 = (1, x1(�0),… , xL(�0))

T,

and � = (�0,�1,… ,�L)
T is the vector of Lagrange multipli-

ers accounting for the unbiasedness constraints.
The KED predictor at a new location �0 ∈ D is computed 

as (Chiles and Delfiner 2012; Wackernagel 2013)

and the associated prediction error variance or kriging error 
variance is given by

where C(0) = � (Y(�)) corresponding to the punctual vari-
ance. Here the interpolation is carried out using all data in 
the domain of interest (unique neighborhood).

Thus, KED naturally generates uncertainty estimates for 
interpolated values via the kriging variance. The first two 
terms on the right-hand side of Eq. (6) quantify the pre-
diction error variance of the residuals, while the last term 
which is always non-negative is the estimated drift pre-
diction error variance representing the penalty for having 

(2)m(�) = �0 +

L∑
l=1

�lxl(�),

(3)Ŷ0 = �T
�,

(4)
(
� �

�T �

)(
�

�

)
=

(
�0

�0

)
,

� =

⎛⎜⎜⎝

1 x1(�1) … xL(�1)

⋮ ⋱ ⋮

1 x1(�n) … xL(�n)

⎞⎟⎟⎠
,

(5)
Ŷ0 = �

T
0
�

−1
� + (�T

0
− �

T
0
�

−1
�)(�T

�
−1
�)−1�T

�
−1
�,

(6)
�̂2

0
= C(0) − �

T
0
�

−1
�0

+ (�0 − �
T
�

−1
�0)

T (�T
�

−1
�)−1(�0 − �

T
�

−1
�0),

to estimate {�0,… , �L} . It is important to point out that 
KED is equivalent to optimum drift estimation followed 
by simple kriging of the residuals from this drift estimate, 
as if the mean were estimated perfectly. This property only 
holds when the mean is estimated in a statistically con-
sistent manner–that is, by generalized least squares (GLS) 
and not by ordinary least squares (OLS). The GLS method 
itself requires a covariance function for the residuals, so 
an iterative procedure is followed. The OLS estimates are 
obtained, and a covariance function is fitted to the residu-
als. This covariance function is then used in GLS to re-
estimate the spatial trend parameters, and the procedure is 
repeated until the estimates stabilize (Hengl et al. 2004). 
However, it may happen that this iterative process does not 
converge. KED is often termed regression kriging (RK) 
(Hengl et al. 2004). In KED, the estimation of the drift 
coefficients and the kriging of the residuals are performed 
in an integrated way, while in RK, the regression and krig-
ing are carried out separately.

By assuming a Gaussian distribution of the kriging error 
Y0 − Ŷ0 , its distribution is completely specified by its mean 
(zero) and its variance (kriging variance). Thus, the condi-
tional distribution function (cdf) of the variable of interest 
at �0 F(�0;y|Y1,… , Yn) = ℙ(Y0 < y|Y1,… , Yn) is estimated 

as F̂(�0;y|Y1,… , Yn) = (
y−Ŷ0

�̂0

)
 , where  (⋅) is the standard 

Gaussian distribution. Hence, the predicted value and the 
kriging variance can be used to derive a Gaussian-type con-
fidence interval centered on the predicted value. A 
100(1 − 𝛼)% (0 < 𝛼 < 1) prediction interval for Y0 is given 
by (Chiles and Delfiner 2012; Wackernagel 2013)

where Q̂�(�0) denotes the �-quantile of the cdf of Y0 defined 
as Q̂�(�0) = inf{y ∶ F̂(�0;y|Y1,… , Yn) ≥ �} ; z� is the �-quan-
tile of the standard Gaussian distribution  (⋅) . The inter-
quartile range Q̂(1−�∕2)(�0) − Q̂�∕2(�0) =

(
z(1−�∕2) − z�∕2)

)
�̂0 

can be used as a measure of uncertainty as well as the krig-
ing variance.

To use the Gaussian error model for prediction uncer-
tainty quantification, the multi-gaussianity should be 
checked a-priori. However, some non-parametric geosta-
tistical methods such as indicator kriging are available to 
model non-Gaussian errors as well as data transformation 
approaches. It is important to note that to model the pre-
diction uncertainty in KED, the Gaussian assumption is 
assumed for the kriging error and not for the target variable.

Quantile regression forest

QRF (Meinshausen 2006) is an extension of regression ran-
dom forest (Breiman 2001). This latter is an ensemble method 

(7)
[Q̂�∕2(�0), Q̂(1−�∕2)(�0)] =

[
Ŷ0 + z�∕2�̂0, Ŷ0 + z(1−�∕2)�̂0

]
,
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based on the averaged outputs of multiple decision trees (Brei-
man et al. 1984). A Decision tree is a non-parametric regres-
sion model that works on non-linear situations. A decision tree 
model partitions the data into subsets of leaf nodes and the 
prediction value in each leaf node is taken as the mean of the 
response values of the observations in that leaf node. Decision 
tree model is unstable in high-dimensional data because of the 
large prediction variance. This problem can be overcome using 
an ensemble of decision trees (e.g., regression random forest) 
built from the bagged samples of data.

From n independent observations {(Yi,�i)}i=1,…,n , 
regression random forest grows an ensemble of decision 
trees to learn the model Y = f (�) + � , where Y ∈ ℝ is the 
variable of interest (target variable or dependent variable 
or response variable); � = [X1,… ,XL] ∈ ℝ

L is the vector 
of covariates (explanatory variables or auxiliary variables 
or independent variables); � is error that is independent 
of the covariates � . Each decision tree is grown from a 
separate sub-sample (roughly two-third) of the full data 
(bagged version of the data). Regression random forest 
takes the average of multiple decision tree predictions to 
reduce the prediction variance and increase the accuracy 
of prediction.

For each decision tree and each node, regression random 
forest employs randomness when selecting a covariate to split 
on. In addition, only a random subset of covariates is con-
sidered for split-point selection at each node. This reduces 
the chance of the same very strong covariates being chosen 
at every split and, therefore, prevents trees from becoming 
overly correlated. Every node in the decision trees is a condi-
tion on a single covariate, designed to split the data set into 
two so that similar response values end up in the same set. 
The split (optimal condition) is determined by the impurity 
reduction at the node; impurity being measured by the vari-
ance. For every leaf of every decision tree, the average of all 
response values end up in this leaf is taken as the prediction 
value of the leaf.

QRF follows the same idea as described above to grow 
trees. However, for every leaf of every decision tree, it retains 
all observations in this leaf, not just their average. Therefore, 
QRF keeps the raw distribution of the values of the target 
variable at leaf. For a given new point � = �0 , regression 
random forest models the conditional mean �(Y|� = �0) , 
while QRF models the full conditional distribution function 
F(y|� = �0) = ℙ(Y < y|� = �0).

For a given new data point � = �0 , let lk(�0) be the leaf 
of the k-th decision tree containing �0 . All �i ∈ lk(�0) are 
assigned to an equal weight wik(�0) = 1∕nlk and �i ∉ lk(�0) 
are assigned 0 otherwise, where nlk is the number of observa-
tions in lk(�0).

For a single decision tree prediction, given � = �0 , the pre-
diction value is given by (Meinshausen 2006)

Let wi(�0) be the average of weights over all decision trees, 
that is: wi(�0) = K−1

∑K

k=1
wik(�0) , K being the number of 

decision trees. The prediction of regression random forest 
is given by (Meinshausen 2006)

where � = (Y1,… , Yn)
T , and �T = (w1(�0),… ,wn(�0)).

Given an input � = �0 , we can find leaves {lk(�0)}k=1,…,K 
from all decision trees and the sets of observations belong-
ing to these leaves. Given {Yi}i=1,…,n and the corresponding 
weights {wi(�0)}i=1,…,n , the conditional distribution function 
of Y given � = �0 is estimated as (Meinshausen 2006)

where 1 is the indicator function that is equal to 1 if Yi ≤ y 
and 0 if Yi > y.

The �-quantile Q�(�0) which is defined such that 
ℙ(Y < Q𝛼(�0)|� = �0) = 𝛼 is estimated as follows (Mein-
shausen 2006): Q̂�(�0) = inf{y ∶ F̂(y|� = �0) ≥ �} . A 
100(1 − �)% prediction interval of Y given � = �0 is expressed 
as follows:

Thus, QRF specifies quantiles from the outputs of the 
ensemble of decision trees, providing a quantification of the 
uncertainty associated with each prediction.

Performance criteria

KED and QRF are compared not only for their ability to 
accurately predict the spatially distributed variable of interest 
but also for their ability to deliver an accurate estimate of the 
associated uncertainty. The comparison is carried out using 
validation data, i.e., data kept aside for the whole analysis. 
A prediction accuracy measure helps to evaluate the overall 
match between observed and predicted values of the variable 
of interest. A prediction uncertainty accuracy measure helps 

(8)

Ŷk
0
=

n∑
i=1

wik(�0)Yi =
∑

�0,�i∈lk(�0)

wik(��)Yi

=
1

nlk

∑
�0,�i∈lk(�0)

Yi.

(9)Ŷ0 =

n∑
i=1

wi(�0)Yi = �
T
�,

(10)F̂(y|� = �0) =

n∑
i=1

wi(�0)1(Yi ≤ y),

(11)

[Q̂�∕2(�0), Q̂(1−�∕2)(�0)]

= [inf{y ∶ F̂(y|� = �0) ≥ �∕2}, inf{y ∶ F̂(y|� = �0)

≥ (1 − �∕2)}].
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to assess the overall match between expected coverage prob-
abilities and observed coverage probabilities.

The criteria used to assess the prediction accuracy of KED 
and QRF are the root mean square error (RMSE), and the 
mean rank of each method (MR). The RMSE should be close 
to 0 and the MR value should be close to 1 for accurate predic-
tion. They are computed as

where {Yj}j=1,…,m
 are validation measurements of the vari-

able of interest at locations {�j}j=1,…,m
 . rkj is the rank of the 

kth method to predict the target variable at the jth validation 
location.

The criterion used to assess the prediction uncertainty 
accuracy is the goodness statistic (Deutsch 1997; Papritz 
and Dubois 1999; Papritz and Moyeed 2001; Goovaerts 
2001; Moyeed and Papritz 2002). It consists to compare 
the proportion of values of a validation data set falling into 
the symmetric p-probability intervals (PI) computed from 
the conditional distribution function (cdf) of the variable 
of interest. By construction, there is a probability p 
(0 < p < 1) that the true value of the variable of interest 
falls into a given symmetric p-interval bounded by the 
(1 − p)∕2 and (1 + p)∕2 quantiles of the cdf (e.g., 
0.5-p-interval is bounded by lower and upper quartiles). 
Therefore, given validation measurements of the variable 
of interest {Yj}j=1,…,m

 at locations {�j}j=1,…,m
 , the fraction 

of true values falling into a given symmetric p-PI interval 
is computed as

with

where Q̂ (1−p)

2

(j) and Q̂ (1+p)

2

(j) are the (1−p)
2

 and (1+p)
2

 quantiles of 
the estimated cdf of the variable of interest at validation 
location �j.

The scatter plot of the estimated proportion �̄�(p) versus 
the expected proportion p is called “accuracy plot”, and the 
estimated cdf is considered accurate when �̄�(p) > p for all 
p ∈ [0, 1] . The closeness of the estimated and theoretical 

(12)RMSE =

√√√√ 1

m

m∑
j=n

[Ŷj − Yj]
2

,

(13)MRk =
1

m

m∑
j=1

rkj, k = 1, 2,

(14)�̄�(p) =
1

m

m∑
j=1

𝜅j(p),

𝜅j(p) =

{
1, if �Q (1−p)

2

(j) < Yj < �Q (1+p)

2

(j)

0, otherwise,

proportions can be quantified using the goodness statistic 
(G) (Deutsch 1997):

where a(p) is an indicator variable set to 1 if �̄�(p) > p and 
0 otherwise.

The G-statistic corresponds to the closeness of points 
to the bisector of the accuracy plot. G = 1 for maximum 
goodness corresponding to the case �̄�(p) = p, ∀p ∈ [0, 1] . 
G = 0 when no true values are contained in any of the PIs, 
i.e. �̄�(p) = 0, ∀p ∈ [0, 1] . Twice more importance is given 
to deviations when the proportion of true values falling 
into the p-PI is smaller than expected �̄�(p) < p . The weight 
|3a(p) − 2| = 2 rather than 1 for the accurate prediction.

Not only should the true value of the variable of interest 
should fall into the p-probability interval, but this interval 
should be as narrow as possible to reduce the uncertainty 
about that value. In other words, among two methods with 
similar goodness statistics, one would privilege the one with 
the smallest spread (less uncertain). Thus, a method that con-
sistently provides narrow and accurate PIs should be preferred 
to a method that consistently provides wide and accurate PIs. 
A complimentary tool to the G-statistic is the average width 
of the PIs that include the true values of the variable of inter-
est for various probabilities p. For a probability p, the average 
width W̄(p) is computed as

Data

It is difficult to know whether one method outperforms an 
another one without being able to compare the results against 
a ground truth. Given the inherent uncertainties of real-world 
data, we chose to generate synthetic data to eliminate the 
uncertainties inherent in real-world data. To compare the 
ability of KED and QRF to provide reliable predictions and 
prediction uncertainties, several synthetic spatial data sets with 
known characteristics were generated through simulations. In 
addition to synthetic spatial data, this study also uses real-
world spatial data from a geochemical soil survey.

Synthetic spatial data

Simulated spatial data presented here do not cover all possible 
scenarios. However, some common situations encountered in 
practice are considered: (a) linearity or non-linearity between 
the target variable and explanatory variables; (b) strong or 
weak spatial correlation of the target variable; (c) presence 

(15)G = 1 − ∫
1

0

[3a(p) − 2][�̄�(p) − p]dp,

(16)W̄(p) =
1

m�̄�(p)

m∑
j=1

𝜅j(p)
[
�Q (1+p)

2

(j) − �Q (1−p)

2

(j)
]
.
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or absence of noise in the target variable; and (d) Normal or 
non-Normal distribution of the target variable.

Simulated spatial data are generated according to mod-
els described in Eqs. (17) and (18) and parameters given in 
Table 1:

where Y is the spatially distributed variable of interest (tar-
get variable or response variable or dependent variable); X1 , 
X2 , X3 , and X4 are spatially distributed auxiliary variables 
(explanatory variables or covariates or dependent variables); 
� is a spatially distributed latent variable (unobserved).

Explanatory variables are simulated on the spatial domain 
[0, 100] × [0, 100] as follows. They are simulated in two situ-
ations: strong and weak spatial correlation (small and large 
spatial correlation length). X1 is generated according to a 
Gaussian random field with mean 5 and cubic isotropic sta-
tionary variogram model with sill parameter 5 and range 
parameter 20 (respectively, 20/3); X2 is generated accord-
ing to a Gaussian random field with mean 5 and spherical 
isotropic stationary variogram model with sill parameter 5 
and range parameter 20 (respectively, 20/3). X3 is gener-
ated according to a Gaussian random field with mean 5 and 
sine cardinal isotropic stationary variogram model with sill 
parameter 5 and range parameter 1.47 (respectively, 1.47/3). 
X4 is generated according to a Gaussian random field with 
mean 5 and K-Bessel isotropic stationary variogram model 
with shape parameter 1, sill parameter 5, and range param-
eter 2.74 (respectively, 2.74/3). For background on iso-
tropic stationary variogram models, see Chiles and Delfiner 

(17)

Model 1: Y(�) =X1(�) + X2(�) + X3(�) + X4(�) + �(�),

∀� ∈ [0, 100]2

(18)
Model 2: Y(�) =1.5X1(�)X2(�) + X3(�)

2

+ 100 sin(X4(�)) + �(�),

∀� ∈ [0, 100]2,

(2012). Gaussian random fields are simulated via the turning 
bands method implemented in RGeostats package (Renard 
et al. 2018).

Given models described in Eqs. (17) and (18), the latent 
variable is simulated on the spatial domain [0, 100] × [0, 100] 
as follows: (a) � is generated with respect to a Gaussian ran-
dom field with zero mean and nugget effect model with sill 
parameter 10 (respectively, 2000) and (b) � is generated 
with respect to a Gaussian random field with zero mean and 
exponential isotropic stationary variogram model with sill 
parameter 10 (respectively, 2000) and range parameter 13.4 
(respectively, 13.4/3).

In total, eight simulation cases are considered, as 
described in Table 1. The first four cases correspond to the 
situation, where the target variable shows a strong spatial 
correlation (large spatial correlation length). In the first case, 
there is a linear relationship between the target variable and 
auxiliary variables, and the target variable shows a strong 
spatial correlation with a nugget effect. In the second case, 
there is a linear relationship between the target variable and 
auxiliary variables, and the target variable presents a strong 
spatial correlation without a nugget effect. In the third case, 
there is a non-linear relationship between the target variable 
and auxiliary variables, and the target variable exhibits a 
strong spatial correlation with a nugget effect. In the fourth 
case, there is a non-linear relationship between the target 
variable and auxiliary variables, and the target variable 
exhibits a strong spatial correlation without a nugget effect.

The last four cases correspond to the situation, where 
the target variable shows a weak spatial correlation (small 
spatial correlation length). In the fifth case, there is a lin-
ear relationship between the target variable and auxiliary 
variables, and the target variable shows a weak spatial cor-
relation with a nugget effect. In the sixth case, there is a 
linear relationship between the target variable and auxiliary 
variables, and the target variable presents a weak spatial cor-
relation without a nugget effect. In the seventh case, there 

Table 1  Simulation ingredients

V variogram type, R variogram range parameter, S variogram sill parameter, Cub. cubic variogram, Sph. 
spherical variogram, Sin. cardinal Sine variogram, Bes. K-Bessel Variogram with shape parameter equal to 
1, Nug. nugget effect variogram, Exp. exponential variogram

Y X
1
 (mean = 5) X

2
 (mean = 5) X

3
 (mean = 5) X

4
 (mean = 5) � (mean = 0)

V R S V R S V R S V R S V R S

Case 1 Model 1 Cub. 20 5 Sph. 20 5 Sin. 1.47 5 Bes. 2.74 5 Nug. – 10
Case 2 Model 1 Cub. 20 5 Sph. 20 5 Sin. 1.47 5 Bes. 2.74 5 Exp. 13.4 10
Case 3 Model 2 Cub. 20 5 Sph. 20 5 Sin. 1.47 5 Bes. 2.74 5 Nug. – 2000
Case 4 Model 2 Cub. 20 5 Sph. 20 5 Sin. 1.47 5 Bes. 2.74 5 Exp. 13.4 2000
Case 5 Model 1 Cub. 20/3 5 Sph. 20/3 5 Sin. 1.47/3 5 Bes. 2.74/3 5 Nug. – 10
Case 6 Model 1 Cub. 20/3 5 Sph. 20/3 5 Sin. 1.47/3 5 Bes. 2.74/3 5 Exp. 13.4/3 10
Case 7 Model 2 Cub. 20/3 5 Sph. 20/3 5 Sin. 1.47/3 5 Bes. 2.74/3 5 Nug. – 2000
Case 8 Model 2 Cub. 20/3 5 Sph. 20/3 5 Sin. 1.47/3 5 Bes. 2.74/3 5 Exp. 13.4/3 2000
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is a non-linear relationship between the target variable and 
auxiliary variables, and the target variable exhibits a weak 
spatial correlation with a nugget effect. In the last case, there 

is a non-linear relationship between the target variable and 
auxiliary variables, and the target variable exhibits a weak 
spatial correlation without a nugget effect.

Fig. 1  Example of simulated 
explanatory variables for: a, 
c, e, and g cases 1, 2, 3, and 4 
(strong spatial correlation) and 
b, d, f, h cases 5, 6, 7, and 8 
(weak spatial correlation)
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Under cases 1, 2, 5, and 6 (Table 1), the target variable is 
normally distributed, while in cases 3, 4, 7, and 8 (Table 1), 
the target variable is non-Normal. Figure 1 shows one simu-
lation of explanatory variables over a 100 x 100 regular grid. 

A representation of one simulated target variable in each 
case is given in Fig. 2. Figure 3 shows the variogram associ-
ated with one simulated target variable in each case. Figure 4 
presents the histogram and Normal QQ plot of one simulated 

Fig. 2  Example of the simulated 
target variable for each case: a, 
c, e, g strong spatial correla-
tion and b, d, f, h weak spatial 
correlation
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Fig. 3  Example of the vari-
ogram of the simulated target 
variable for each case: a, c ,e, g 
strong spatial correlation and b, 
d, f, h weak spatial correlation
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Fig. 4  Example of the histo-
gram and Normal QQ plot of 
the simulated target variable for 
a, b case 1 (Normal distribu-
tion); c, d case 3 (non-Normal 
distribution); e, f case 5 (Nor-
mal distribution); and g, f case 7 
(non-Normal distribution)
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target variable. Figure 5 provides one example of correlation 
plot between the target variable and explanatory variables.    

Real‑world spatial data

The real-world spatial data used in this study are derived 
from samples collected across south west England by the 
British Geological Survey (Kirkwood et al. 2016). There 
are 50 target variables which are element concentrations 
(in mg/kg) measured at 568 locations. The available aux-
iliary information comprise magnetic data, radiometric 
data, gravity data, Landsat data, elevation data, and their 
derivatives, in total 26 covariates. A detailed description 
of the region of interest and data can be found in Kirk-
wood et al. (2016). We focus on two target variables Ba 
(Barium) and Tl (Thalium). Figure 6 shows measurements 
of these two variables as well as their corresponding his-
togram and variogram. Some covariates are depicted in 
Fig. 7. Figure 8 provides the correlation plot between the 
two target variables and some explanatory variables.

Results and discussion

This section juxtaposes results derived by KED and QRF on 
synthetic and real-world spatial data, as described in “Data” 
section.

Simulated data example

The process of generation of synthetic spatial data described 
in “Synthetic spatial sata” section is repeated one hundred 
times. Thus, one hundred independent realizations are gen-
erated in the same way as the realization, as depicted in 
Figs. 1 and 2. For each realization, a training data set of 
n = 1000 observations sampled randomly is formed. Thus, 
the remainder of data ( m = 9000 observations) is set aside 
for the validation. KED and QRF models are trained on 
each of these 100 training data sets and their performances 
are evaluated on each of these 100 validation data sets. QRF 
is designed as follows. It contains 1001 decision trees—a 
sufficient number to allow convergence of error to a sta-
ble minimum. The odd number of decision trees prevents 
possible ties in variable importance. Each decision tree is 
grown until the terminal nodes contained 8 observations to 
reduce over-fitting to outliers. Geographical coordinates are 

Fig. 5  Example of the cor-
relation plot between the 
simulated target variable (Y) and 
simulated explanatory variables 
( X

1
,X

2
,X

3
,X

4
 ) for a case 2 and 

b case 6 (linear relationship); c 
case 4 and d case 8 (non-linear 
relationship)



 Environmental Earth Sciences (2019) 78:38

1 3

38 Page 12 of 24

considered as auxiliary variables. Results from the first four 
cases, where the variable of interest exhibits a strong spatial 
correlation (large spatial correlation length), are provided in 
Figs. 9 and 10. Results from the last four cases, where the 
variable of interest shows a weak spatial correlation (small 
spatial correlation length), are given in Figs. 11 and 12.

In the first case, there is a linear relationship between the 
target variable and auxiliary variables, and the target vari-
able shows a strong spatial correlation with a nugget effect. 
Results from this case show that KED outperforms QRF 
in terms of prediction accuracy and prediction uncertainty 
accuracy. Figure 9a, b presents Box-plot statistics of the 

RMSE and MR for each method. There is a marked differ-
ence between KED and QRF methods, the former giving the 
best prediction performance. With regard to the modeling 
prediction uncertainty using goodness statistic, accuracy 
plot, and probability interval width plot, Fig. 10a–c shows 
that KED performed better in terms of the modeling predic-
tion uncertainty than QRF. Similar findings are obtained in 
the second case, where there is a linear relationship between 
the target variable and auxiliary variables, and the target 
variable shows a strong spatial correlation without a nugget 
effect (Figs. 9c, d, 10d–f). Moreover, the difference between 
KED and QRF is more marked in the second case than the 

Fig. 6  a, b Spatial distribution 
maps; c, d histograms and e, 
f variograms of the two target 
variables. Variograms are fitted 
using an exponential model 
with or without nugget effect
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first case, both in terms of prediction accuracy and predic-
tion uncertainty accuracy.

In the third case, where there is a non-linear relation-
ship between the target variable and auxiliary variables, 
and the target variable exhibits a strong spatial correlation 
with a nugget effect, results indicate that QRF outperforms 
KED in terms of prediction accuracy but not in terms of 
prediction uncertainty accuracy. Figure 9e, f exhibits the 
distribution of RMSE and MR for each method. KED and 

QRF differ notably, the latter giving the best prediction 
performance. When considering the goodness statistic, 
the accuracy plot, and the probability interval width plot 
(Fig. 10g–i), KED shows better performance in prediction 
uncertainty than QRF. The KED accuracy plot is generally 
close to the 1:1 line, while QRF accuracy plot is above 
the 1:1 line with medium p value points further than the 
extreme p values one. This shows an overestimation of 
uncertainty with QRF. The KED probability interval width 

Fig. 7  Spatial distribution map 
of some explanatory variables: 
a elevation, b landsat 8 band 
4, c gravity survey high-pass-
filtered Bouguer anomaly, and d 
total count of unmixed gamma 
ray signal

Fig. 8  Correlation plot between 
a Ba (respectively, b Tl) and 
explanatory variables. Y (Ba, 
respectively, Tl) X

1
 (Elevation), 

X
2
 (gravity survey high-pass-

filtered Bouguer anomaly), X
3
 

(gravity survey Bouguer anom-
aly), X

4
 (reduction to the pole of 

TMI), X
5
 (uranium counts from 

gamma ray spectrometry), X
6
 

(thorium counts from gamma 
ray spectrometry), X

7
 (potas-

sium counts from gamma ray 
spectrometry), X

8
 (total count of 

unmixed gamma ray signal)
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plot is below the QRF probability interval width plot. Simi-
lar results are observed in the fourth case, where there is 
a non-linear relationship between the target variable and 

auxiliary variables, and the target variable exhibits a strong 
spatial correlation without a nugget effect (Figs. 9g, h, 
10j–l). In addition, the difference between QRF and KED 

Fig. 9  KED and QRF in terms 
of prediction accuracy in case 1 
(1st row), case 2 (2nd row), case 
3 (3rd row), and case 4 (4th 
row): a, c, e, g RMSE, and b, d, 
f, h MR
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is more marked (resp. less marked) in the third case than 
the fourth case in terms of prediction accuracy (resp. pre-
diction uncertainty accuracy).

In the fifth case, where there is a linear relationship 
between the target variable and auxiliary variables, and 
the target variable shows a weak spatial correlation with 

a nugget effect, results are similar to ones in the first case 
(Figs. 11a, b, 12a–c). Likewise, in the sixth case, where there 
is a linear relationship between the target variable and aux-
iliary variables, and the target variable shows a weak spatial 
correlation without a nugget effect, results are similar to 
ones in the second case (Figs. 11c, d, 12d–f).

Fig. 10  KED and QRF in terms 
of prediction uncertainty accu-
racy in case 1 (1st row), case 2 
(2nd row), case 3 (3rd row), and 
case 4 (4th row): a, d, g, j good-
ness statistic, b, e, h, k accuracy 
plot, and c, f, i, l probability 
interval width plot
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In the seventh case, where there is a non-linear relation-
ship between the target variable and auxiliary variables, and 
the target variable shows a weak spatial correlation with 
a nugget effect, results show that QRF outperforms KED 

in terms of prediction accuracy and prediction uncertainty 
accuracy (Figs. 11e, f, 12g–i). In particular, the KED accu-
racy plot is below the bisector line with medium p value 
points further than the extreme p values one. This shows an 
underestimation of uncertainty by KED. A wider range of 
PIs is observed for KED than QRF according to probability 
interval width plots. Similar findings are obtained in the last 
case with a non-linear relationship between the target vari-
able and auxiliary variables, and where the target variable 
presents a weak spatial correlation without a nugget effect 
(Figs. 11g, h, 12j–l).

Figure 13 shows one variogram of validation errors for 
each case under KED and QRF. In the first and fifth cases, 
errors show no spatial correlation both in KED and QRF. 
Thus, in these cases with a linear relationship between the 
target variable and auxiliary variables, and the target vari-
able shows a strong or weak spatial correlation with a nugget 
effect, both KED and QRF are optimal. In the second and 
sixth cases, errors show a very weak spatial correlation in 
KED, while they exhibit a strong spatially correlation in 
QRF. Thus, in these cases, where we have a linear relation-
ship between the target variable and auxiliary variables, and 
the target variable shows a strong or weak spatial correlation 
without a nugget effect, QRF is sub-optimal. In the third and 
seventh cases, errors show a very weak spatial correlation 
in KED, while they exhibit no spatial correlation in QRF. 
Thus, in the these cases, where we have a non-linear rela-
tionship between the target variable and auxiliary variables, 
and the target variable exhibits a strong or weak spatial cor-
relation with a nugget effect, QRF is optimal. In the fourth 
and eighth cases, errors exhibit a very weak spatial correla-
tion in KED, while they show strong spatially correlation in 
QRF. Hence, QRF is sub-optimal in these cases, where we 
have a non-linear relationship between the target variable 
and auxiliary variables, and the target variable exhibits a 
strong or weak spatial correlation without a nugget effect.

Geochemical data example

To assess the predictive ability of KED and QRF in this data 
set, a pseudo-cross validation is considered instead of an 
external validation due to the relatively small size of the data 
set. The pseudo-cross validation consists in leaving out a 
randomly selected 10% of observations ( ∼ 57 observations), 
and predict the remaining observations at those locations set 
aside for validation. This procedure is repeated 500 times. In 
KED, the prediction at each iteration is carried out using the 
same variogram of residuals fitted on the whole set of obser-
vations. QRF is built similarly as described in the simulation 
study “Performance criteria” section. Thus, it contains 1001 
decision trees, enough to allow convergence of error to a 
stable minimum. The odd number of decision trees prevents 
possible ties in variable importance. To reduce over-fitting 

Fig. 11  KED and QRF in terms of prediction accuracy in case 5 (1st 
row), case 6 (2nd row), case 7 (3rd row), and case 8 (4th row): a, c, e, 
g RMSE, and b, d, f, h MR
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to outliers, each decision tree is grown until the terminal 
nodes contained 8 observations. Geographical coordinates 
are accounted as auxiliary variables.

Figures 14 and 15 present the predictive performance 
for the two target variables. For each target variable, KED 
and QRF are fairly similar in terms of prediction accuracy. 
Regarding the prediction uncertainty accuracy, KED gives 

slightly better results than QRF for Ba concentration and 
performs similar to QRF for Tl concentration. Figures 18 
and 19 show prediction and prediction uncertainty maps, 
respectively, for Ba and Tl. The prediction uncertainty 
map corresponds to the width of the 95% prediction inter-
val. For each target variable, the overall appearance of 
the prediction maps associated with each method is very 

Fig. 12  KED and QRF in terms 
of prediction uncertainty accu-
racy in case 5 (1st row), case 6 
(2nd row), case 7 (3rd row), and 
case 8 (4th row): a, d, g, j good-
ness statistic, b, e, h, k accuracy 
plot, and c, f, i, l probability 
interval width plot
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similar. However, the general appearance of the predic-
tion uncertainty maps associated with each method differs 
notably.

Prediction uncertainty maps provided by KED vary 
much less across the study area compared to the ones pro-
vided by QRF. The largest prediction uncertainties given 
by KED are concentrated in those areas not surveyed or 

where the sampling was too sparse. Thus, the prediction 
uncertainty provided by KED depends mainly on the data 
configuration. Prediction uncertainty maps provided by 
QRF show spatial patterns which are not related to the 
density of sampling locations but rather to the distribu-
tion map of some auxiliary variables. In particular, pre-
diction uncertainty maps of Ba and Tl are most strongly 

Fig. 13  Example of variogram of KED validation errors (1st and 2nd 
rows) and QRF validation errors (3rd and 4th rows) for each case: a, 
i case 1, b, j case 2, c, k case 3, d, l case 4, e, m case 5, f, n case 6, g, 

o case 7, and h, p case 8. Variograms are fitted using either the nug-
get effect model either an exponential model with or without nugget 
effect
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correlated to the gravity survey high-pass filter Bouger 
anomaly presented in Fig. 7, with a Spearman correlation 
coefficient of −0.49 and −0.42 , respectively. This latter 
auxiliary variable is the most important variable in the 
trained QRF models.

Figure 16 displays one variogram of pseudo-cross-vali-
dation errors for Ba and Tl concentrations under KED and 
QRF. One can see that errors show no spatial correlation. 
Figure 17 presents one histogram and Normal QQ plot of 
KED pseudo-cross-validation errors for Ba and Tl concen-
trations. It appears that errors are relatively symmetrical and 
globally less deviated from the Gaussian distribution.     

Discussion

Results from the simulation study showed that the superi-
ority of KED over QRF can be expected when there is a 
linear relationship between the variable of interest and aux-
iliary variables, and the variable of interest shows a strong 
or weak spatial correlation. In other hand, the superiority of 
QRF over KED can be expected when there is a non-linear 

relationship between the variable of interest and auxiliary 
variables, and the variable of interest exhibits a weak spatial 
correlation. Moreover, when there is a non-linear relation-
ship between the variable of interest and auxiliary variables, 
and the variable of interest presents a strong spatial correla-
tion, one can expect QRF outperforms KED in terms of pre-
diction accuracy but not in terms of prediction uncertainty 
accuracy.

The results of this comparison point out that a non-para-
metric regression method which has good prediction perfor-
mance in a non-linear framework does not necessary have 
a good prediction performance in linear framework. The 
inability of QRF to provide reliable prediction uncertainties 
in the context of a strong spatial correlation with the vari-
able of interest could be explained by the fact that under the 
QRF approach, the spatial dependency of data is ignored. In 
essence, QRF is a non-spatial method that ignores the gen-
eral sampling pattern in the training of the QRF model when 
applied to spatial prediction. This can potentially lead to 
sub-optimal predictions, especially where the target variable 
exhibits a strong spatial correlation and where point patterns 

Fig. 14  KED and QRF in terms 
of prediction accuracy for Ba 
concentration (top) and Tl con-
centration (bottom): a, c RMSE 
and b, d MR
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Fig. 15  KED and QRF in terms 
of prediction uncertainty accu-
racy for Ba concentration (top) 
and Tl concentration (bottom): 
a, d goodness statistic, b, e 
accuracy plot, and c, f probabil-
ity interval width plot

Fig. 16  Variogram of a, c KED 
and b, d QRF pseudo-cross-
validation errors for Ba and Tl 
concentrations. Variograms are 
fitted using nugget effect or/and 
spherical models
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show clear sampling bias (the sampling density is very dense 
in some areas and very sparse in others). Under QRF, the 
continuous variation of the spatially distributed of interest is 
placed all into the mean function, i.e., assume that the obser-
vations equal a true but unknown continuous mean function 
plus independent and identically distributed errors. Whereas 
under KED, the continuous variation of the spatially dis-
tributed of interest is decomposed into the large-scale spa-
tial variation (accounted through the mean function) and 
the small-scale spatial variation (accounted through the 
spatial-dependence structure). QRF assumes independent 
samples to compute classification rules. This assumption is 
very practical for estimating quantities involved in the algo-
rithm and for assessing asymptotic properties of estimators. 
Unfortunately, in the realm of spatial data, data under study 
may present some amount of spatial correlation. When the 
sampling scheme is very irregular, a direct application of 
QRF could lead to biased discriminant rules due, for exam-
ple, to the possible oversampling of some areas.

Results from the real case study demonstrated that 
QRF can be used to generate prediction maps compara-
ble to those generated using KED (Figs. 18 and 19). This 
similarity could be explained by the fact that KED and 
QRF predictors are expressed as a linear combination of 

observations [Eqs. (3) and (9)]. The difference between 
KED and QRF predictors relies on the way that coeffi-
cients are estimated. Under KED, coefficients are esti-
mated using a parametric approach, while under QRF, they 
are estimated via a non-parametric approach. Moreover, 
with QRF, there no need to consider any stationarity or 
normality conditions or any other transformation. QRF 
demands far less interventions and data preparation than 
using KED.

The KED approach of modeling the uncertainty consists 
of computing a kriging estimate and the associated error 
variance, which are then combined to derive a Gaussian-
type confidence interval. However, the main limitation of 
kriging variance is that when it is used to calculate the 
confidence interval, it relies on the assumptions of normal-
ity of the distribution of prediction errors, and the vari-
ance of prediction errors is independent of the actual data 
values and depends only on the data configuration. Thus, 
the kriging variance tends to under-estimate the predic-
tion uncertainty. Gaussian distributions of errors are more 
likely to arise when data used in estimations have a Gauss-
ian distribution; as most distributions of variable of inter-
ests encountered in practice are skewed, it is unlikely that 
error distributions will be Gaussian or even symmetrical. 

Fig. 17  Histogram and Normal 
QQ plot of KED pseudo-cross-
validation errors for Ba and Tl 
concentrations
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Fig. 18  Prediction and predic-
tion uncertainty maps provided 
by a, c KED and b, d QRF for 
Ba concentration

Fig. 19  Prediction and predic-
tion uncertainty maps provided 
by a, c KED and b, d QRF for 
Tl concentration
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It is argued that uncertainty about an unknown is intrin-
sic to the level of information available and to a prior 
model for the relations between that information and the 
unknown. Thus, the assessment of uncertainty should not 
be done around a particular estimate, because many opti-
mality criteria can be defined resulting in different “opti-
mal” estimates.

Contrarily to KED, under QRF, the conditional distri-
bution function of the variable of interest is not related to 
any particular prior multivariate distribution model, such as 
Gaussian. Likewise, QRF is not able to provide a quantifi-
cation of the predictor error in terms of the prediction error 
variance, which could also be used as a measure of uncer-
tainty. QRF puts as priority not the derivation of a “optimal” 
estimator, but the modeling of the uncertainty. That uncer-
tainty model takes the form of a probability distribution of 
the unknown rather than that of an estimation error.

Conclusions

This study compared kriging with external drift (KED) and 
quantile random forest (QRF) with respect to their perfor-
mance in making point predictions and modeling prediction 
uncertainty of spatial data, where spatial dependence plays 
an important role. The study showed examples designed in 
such a way that one can expect them to show the superiority 
of one method over another in terms of prediction accu-
racy and prediction uncertainty accuracy. Given these dis-
tinct examples, it seems unlikely that there would be a best 
method for all applications. Nonetheless, QRF appears as 
a promising method for mapping spatially distributed con-
tinuous variables when auxiliary information are available 
everywhere within the region under study. However, there 
is a need to develop prediction uncertainty approaches for 
QRF in a context of relatively strong spatial correlation of 
the variable of interest. As suggested by Hengl et al. (2018), 
more specific geographical measures of proximity and con-
nectivity between observations should be used during the 
training of QRF models (e.g., Euclidean distances to sam-
pling locations, Euclidean distances to reference points in 
the study area). One approach could be to select random 
samples taking into account their clustering via spatial cor-
relation during the training of QRF models. For example, the 
random samples could be picked with a probability inversely 
proportional to the clustering of samples. This strategy could 
resolve the oversampling in clustered areas.

Acknowledgements The authors are grateful to the anonymous review-
ers for their helpful and constructive comments on earlier versions of 
the manuscript. The authors would like to thank Charlie Kirkwood at 
the British Geological Survey for providing the real-world spatial data 
set used in this paper.

References

Appelhans T, Mwangomo E, Hardy DR, Hemp A, Nauss T (2015) 
Evaluating machine learning approaches for the interpolation 
of monthly air temperature at mt. kilimanjaro, tanzania. Spat 
Stat 14(Part A):91–113

Ballabio C, Panagos P, Monatanarella L (2016) Mapping topsoil 
physical properties at european scale using the lucas database. 
Geoderma 261(Supplement C):110–123

Barzegar R, Asghari Moghaddam A, Adamowski J, Fijani E (2016) 
Comparison of machine learning models for predicting fluoride 
contamination in groundwater. Stoch Environ Res Risk Assess 
31:1–14

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and 

regression trees. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, Abingdon

Carranza EJM (2008) Geochemical anomaly and mineral prospectiv-
ity mapping in GIS. Handbook of Exploration and Environmen-
tal Geochemistry. Elsevier, Amsterdam

Chiles J-P, Delfiner P (2012) Geostatistics: modeling spatial uncer-
tainty. Wiley, Hoboken

Coulston JW, Blinn CE, Thomas VA, Wynne RH (2016) Approximat-
ing prediction uncertainty for random forest regression models. 
Photogramm Eng Remote Sens 82(3):189–197

Deutsch C (1997) Direct assessment of local accuracy andprecision. 
In: Baafi, EY, Schofield NA (Eds), 5th International Geostatis-
tics Congress, Wollongong ’96. KluwerAcademic Publishers, 
London, pp 115–125

Foresti L, Pozdnoukhov A, Tuia D, Kanevski M (2010) Extreme 
precipitation modelling using geostatistics and machine learn-
ing algorithms. In: Atkinson PM, Lloyd CD (eds) geoENV 
VII—geostatistics for environmental applications. Springer, 
Dordrecht, pp 41–52

Goovaerts P (2001) Geostatistical modelling of uncertainty in soil 
science. Geoderma 103(1):3–26

Hengl T (2009) A practical guide to geostatistical mapping. Univer-
sity of Amsterdam, Amsterdam

Hengl T, Heuvelink GB, Stein A (2004) A generic framework for 
spatial prediction of soil variables based on regression-kriging. 
Geoderma 120(1):75–93

Hengl T, Nussbaum M, Wright M, Heuvelink G, Gräler B (2018) 
Random forest as a generic framework for predictive modeling 
of spatial and spatio-temporal variables. PeerJ 6:e5518. https ://
doi.org/10.7717/peerj .5518

Kanevski M (2008) Advanced mapping of environmental data: geo-
statistics, machine learning and B ayesian maximum entropy. 
Wiley, Hoboken

Kanevski M, Pozdnoukhov A, Timonin V (2009) Machine learning 
for spatial environmental data: theory, applications, and soft-
ware. EPFL press, Lausanne

Khan SZ, Suman S, Pavani M, Das SK (2016) Prediction of the 
residual strength of clay using functional networks. Geosci 
Front 7(1):67–74

Kirkwood C, Cave M, Beamish D, Grebby S, Ferreira A (2016a) A 
machine learning approach to geochemical mapping. J Geochem 
Explor 167(Supplement C):49–61

Kirkwood C, Everett P, Ferreira A, Lister B (2016b) Stream sediment 
geochemistry as a tool for enhancing geological understanding: 
an overview of new data from south west england. J Geochem 
Explor 163:28–40

Lado LR, Hengl T, Reuter HI (2008) Heavy metals in european soils: 
a geostatistical analysis of the foregs geochemical database. 
Geoderma 148(2):189–199

https://doi.org/10.7717/peerj.5518
https://doi.org/10.7717/peerj.5518


 Environmental Earth Sciences (2019) 78:38

1 3

38 Page 24 of 24

Leuenberger M, Kanevski M (2015) Extreme learning machines for 
spatial environmental data. Comput Geosci 85(Part B):64–73

Li J (2013) Predictive modelling using random forest and its hybrid 
methods with geostatistical techniques in marine environmen-
tal geosciences. In: 11-th Australasian data mining conference 
(AusDM’13). Canberra, Australia, pp 73–79

Li J, Heap AD (2008) A review of spatial interpolation methods for 
environmental scientists. Geoscience Australia, Canberra

Li J, Heap AD, Potter A, Daniell JJ (2011) Application of machine 
learning methods to spatial interpolation of environmental vari-
ables. Environmen Modell Softw 26(12):1647–1659

Meinshausen N (2006) Quantile regression forests. J Mach Learn Res 
7(Jun):983–999

Meinshausen N (2017) quantregForest: Quantile Regression Forests. 
https ://CRAN.R-proje ct.org/packa ge=quant regFo rest. R package 
version 1.3-7

Moyeed RA, Papritz A (2002) An empirical comparison of krig-
ing methods for nonlinear spatial point prediction. Math Geol 
34(4):365–386

Papritz A, Dubois JR (1999) Mapping heavy metals in soil by 
(non-)linear kriging an empirical validation. In: Gómez-
Hernández J, Soares A, Froidevaux R (eds) geoENV II—geo-
statistics for environmental applications. Springer, Dordrecht, 
pp 429–440

Papritz A, Moyeed RA (2001) Parameter uncertainty in spatial predic-
tion: checking its importance by cross-validating the wolfcamp 
and rongelap data sets. In: Monestiez P, Allard D, Froidevaux R 
(eds) geoENV III—geostatistics for environmental applications. 
Springer, Dordrecht, pp 369–380

R Core Team (2018) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. 
https ://www.R-proje ct.org/. Accessed 11 Nov 2018

Renard D, Bez N, Desassis N, Beucher H, Ors F, Freulon X (2018) 
RGeostats: geostatistical package. R package version 11.2.4. 
http://cg.ensmp .fr/rgeos tats. Accessed 11 Nov 2018

Tadic JM, Ilic V, Biraud S (2015) Examination of geostatistical and 
machine-learning techniques as interpolators in anisotropic atmos-
pheric environments. Atmos Environ 111:28–38

Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R (2016) Digital map-
ping of soil organic carbon at multiple depths using different data 
mining techniques in baneh region, iran. Geoderma 266(Supple-
ment C):98–110

Vaysse K, Lagacherie P (2017) Using quantile regression forest to 
estimate uncertainty of digital soil mapping products. Geoderma 
291(Supplement C):55–64

Vermeulen D, Niekerk AV (2017) Machine learning performance for 
predicting soil salinity using different combinations of geomor-
phometric covariates. Geoderma 299(Supplement C):1–12

Wackernagel H (2013) Multivariate geostatistics: an introduction with 
applications. Springer, Berlin

Wilford J, de Caritat P, Bui E (2016) Predictive geochemical mapping 
using environmental correlation. Appl Geochem 66(Supplement 
C):275–288

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://CRAN.R-project.org/package=quantregForest
https://www.R-project.org/
http://cg.ensmp.fr/rgeostats

	Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches
	Abstract
	Introduction
	Methods and data
	Methods
	Kriging with external drift
	Quantile regression forest
	Performance criteria

	Data
	Synthetic spatial data
	Real-world spatial data


	Results and discussion
	Simulated data example
	Geochemical data example
	Discussion

	Conclusions
	Acknowledgements 
	References


