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Abstract
Multi-model frameworks are widely used to identify the appropriate model structure for the study catchment. However, 
most frameworks mainly consider the process complexity of the model, and few of them consider the spatial complexity. In 
this paper, we investigated the appropriate model structure for a karst catchment from the aspect of spatial complexity. The 
purpose is twofold: (1) to investigate whether the spatial complexity is needed to simulate the spring discharge of this karst 
catchment and (2) to investigate whether the increase of model’s spatial complexity can make up its deficiency on the process 
complexity. Three simple lumped models with different process complexities were chosen to gradually increase the spatial 
heterogeneity of their parameters to investigate the appropriate model structure for simulating the discharge of a karst spring. 
The results show that the performances of three lumped models highly improve when adding the routing function to them. 
However, further considering the spatial parameter heterogeneity, only one model shows obvious performance improvement 
and other two models show limited improvement. Moreover, this model with relatively complex spatial parameter heteroge-
neity still shows worse performance than another lumped model. This indicates an increase of models’ spatial complexity 
cannot always make up their process deficiencies. The final comparison results indicated that the lumped model or their 
semi-lumped version with flexible process complexity is enough to simulate the discharge of this karst spring and no extra 
spatial complexity is needed. Our studies also indicated that the increase in spatial complexity of the model cannot always 
fully compensate its deficiency in process complexity.
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Introduction

One important task in the hydrology is to quantify the catch-
ment behavior under different climatic conditions or land 
uses, which is helpful to develop strategies for the water 
resources planning and management. The hydrologic model 
is a powerful tool to accomplish this task. From the last 
century to now, various hydrologic models were proposed 
and had been applied to many different catchments (Beven 
2012; Hartmann et al. 2014; Singh and Woolhiser 2002). 
However, many models still suffer from the potential weak-
ness of their model structures, besides the observational 
uncertainties, which may provide good calibration results 
but poor predictions (Hrachowitz and Clark 2017). How to 
find the appropriate model structure for the study catchment 
is still a big challenge in hydrology.

The multi-model framework is widely used recently to 
understand the dominant hydrological process and find 
appropriate model structure for the study catchment (Chang 
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et al. 2017; Clark et al. 2008; Coxon et al. 2014; Euser et al. 
2013; Fenicia et al. 2008, 2014). This framework always 
contains many potential model structures with different 
complexity and the performances of these different models 
are compared to identify the appropriate model structure. 
Although this approach is widely used, most multi-model 
frameworks mainly consider different process complexi-
ties of the models to find the appropriate lumped model. As 
stated by Hrachowitz and Clark (2017), “the fundamental 
question that needs to be addressed in any model applica-
tion is which model complexity is supported by the avail-
able data, including both process complexity,…., and spatial 
complexity,…”. Besides the process complexity, the spatial 
complexity of the model may also be an important factor 
that should be considered in the model. Natural systems 
always exhibit strong spatial heterogeneity introduced by 
geology, soil types, vegetation, or topography (Das et al. 
2008; Kumar et al. 2010; Smith et al. 2004). Therefore, the 
hydrologic models should consider the spatial heterogene-
ous of the catchment to represent a more realistic model 
structure. Whether the consideration of spatial heterogeneity 
in the hydrologic model could improve model performance 
has been studied for many years and different results are 
presented. Several studies indicated that the lumped model is 
versatile enough to represent the spatial heterogeneity of the 
catchment and it could provide very similar or even better 
performance than the distributed model (Ghavidelfar et al. 
2011; Reed et al. 2004; Refsgaard and Knudsen 1996; Van-
steenkiste et al. 2014). However, many other studies indi-
cated that the model performance on the streamflow could 
be improved by the consideration of spatial complexity (Yan 
and Zhang 2014; Atkinson et al. 2003; Boyle et al. 2001b; 
Euser et al. 2015; Han et al. 2014; Kumar et al. 2010; Nijzink 
et al. 2016). Therefore, whether the spatial heterogeneity is 
needed in the hydrological model and what is the level of 
spatial complexity required in the model is still unclear and 
will depend on the system being studied.

Karst aquifers are famous for their strong spatial hetero-
geneity of water flow and storage, such as diffuse recharge 
vs. point recharge, rapid, and often turbulent flow in the con-
duit network vs. slow laminar flow in the fissured matrix 
(Ford and Williams 2007; Goldscheider and Drew 2007). 
Although it has more complex hydrological processes than 
other aquifers, many simple models are still applied in these 
aquifers (Bailly-Comte et al. 2012; Chang et al. 2015; Fleury 
et al. 2007; Hartmann et al. 2012b, 2013b; Tritz et al. 2011). 
Several studies are also conducted to identify the appropriate 
model structure through the comparison of multi-models 
(Chang et al. 2017; Hartmann et al. 2013a). However, these 
works are also limited to the process complexity of the 
lumped model. Theoretically, the karst catchment may have 
higher spatial heterogeneity than other aquifers, because the 
karst development is more susceptible to the external factors, 

such as lithology, vegetation, topography, hydrodynamic 
condition, and so on (Ford and Williams 2007). Therefore, 
it is necessary to investigate whether the spatial heterogene-
ity is needed for the simulation of these karst aquifers.

Since the model performance on the streamflow may be 
improved by the increase in its process complexity or spatial 
complexity, it brings another question: whether the model 
with simple process complexity and high spatial complexity 
could provide similar or even better performance than the 
lumped model of high process complexity? In other words, 
would an increase in spatial complexity of the model effec-
tively compensate for its process deficiency? If it does, we 
may find another appropriate model structure for simulation 
of the study catchment except for the lumped model.

In this paper, we investigated the possible appropriate 
model structure of a karst aquifer from the aspect of spatial 
complexity. Chang et al. (2017) had discussed the appropri-
ate model structure of this karst aquifer through a multi-
model framework. However, that framework only explores 
the process complexity of the lumped model supported by 
the available data and the spatial complexity of the model 
is not considered. Therefore, the work in this paper can be 
regarded as an important supplement to the previous work. 
In general, this paper has two purposes. One of them is to 
understand whether extra spatial complexity is needed for 
the lumped model to simulate this karst aquifer? Another 
purpose is to find whether the increase of model’s spatial 
complexity can effectively make up its process deficiency 
and whether another appropriate model structure with the 
relatively simple process and complex spatial complexity 
exists. Three lumped models with different process com-
plexities were chosen from the multi-model framework pro-
posed by Chang et al. (2017), and then, these models were 
gradually changed into the complex semi-distributed model 
by adding the routing function and gradually considering 
the spatial parameter heterogeneity. The appropriate spatial 
complexity of each model is determined through the com-
parison of model performance and sensitivity analysis as 
presented in Chang et al. (2017). Subsequently, the perfor-
mances of different model structures are compared to find 
whether the increase in model’s spatial complexity could 
effectively compensate its process deficiency. Finally, the 
most appropriate model structure for this karst aquifer is 
screened out.

Site descriptions

The Yaji experimental site is located in the southeast of 
Guilin city, China. This karst aquifer is developed in a 
very thick formation (several 100 m) of upper Devonian 
pure limestone and the geomorphology belongs to a typi-
cal peak-cluster-depression landform. The climate of this 
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place belongs to typical subtropical monsoon with annual 
precipitation of about 1915 mm (Yuan et al. 1996). The main 
rainy season is from April to August and the proportion is 
above 70% of annual precipitation. The storm is frequent 
with the highest rainfall intensity of 285.9 mm/day accord-
ing to the previous records. The average annual temperature 
is about 18.8 °C with the high temperature in summer and 
low temperature in winter. Under climatic conditions, the 
karstification degree of this aquifer is very high and various 
karst features, such as cave, shaft, sinkholes, and karren, can 
all be found in this site. In general, the karst development 
is mainly controlled by NEE-oriented structures and this 
direction is also the main flow direction of the groundwa-
ter. Due to the massive deforestation in the last century, the 
vegetation in this area is mainly secondary shrub with the 
vegetation coverage of 60–80%.

There are three springs (S31, S291, and S29) located in 
the west of this experimental site and their resurgences are 
mainly controlled by the regional NNE-oriented structure. 
Among these three springs, S31 is the biggest spring and 
many studies, including spring hydrochemistry and hydro-
logic modeling, had been done in this spring catchment 
(Chang et al. 2015, 2017; Liu et al. 2004; Jiang et al. 2011; 
Yuan et al. 1996). The catchment of this spring mainly con-
tains three depressions (Nos. 1, 3, and 4) and the rainfall is 
the only recharge resource of the spring (Fig. 1). For each 
depression, there is at least one sinkhole in its bottom and 
the previous tracer tests indicate that these sinkholes all 
connect to the spring S31 directly through the conduit. The 
epikarst zone is well developed in this experimental site and 
several epikarst springs distribute in each depression. These 
sinkholes drain the water in the depression directly to the 

Fig. 1  Location and catchment area of spring S31
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spring. Unfortunately, the conduit in this spring catchment 
is not accessible and its accurate position is not available. 
However, its rough location could be speculated according 
to the locations of sinkholes and surface topography (the 
blue-dashed line in Fig. 1).

Although the surface catchment area of S31 is very small 
(about 1 km2), we also found obvious difference character-
istics among different depressions. The bottom elevation of 
depression No. 1 is much lower (about 50 m) than depres-
sion Nos. 3 and 4 which cause the much steeper slope of the 
depression No. 1. Meanwhile, much more epikarst springs are 
distributed in depression No. 1 than other depressions. There 
are about four different epikarst springs (S54, S55, S56, and 
S57) in depression No. 1, whereas only one epikarst spring 
(S26) distributes in depression No. 3 and no epikarst spring is 
found in depression No. 4 (Fig. 1). The different distributions 
of the epikarst spring in different depressions indicate their 
different karstification degree. According to landform and 
karstification degree, the catchment should at least be divided 
into two different hydrological units: (1) depression No. 1 and 
(2) depression Nos. 3 and 4. For example, Chang (2015) used 
these two spatial parameter partitions in a distributed model 
to simulate the discharge of spring S31. However, whether 
the spatial parameter partition is truly needed to simulate the 
discharge of this spring is not well understood.

There is one rain gauge near the spring S31 to record the 
rainfall. The nearest meteorological station (Guilin north 
station) is located 11 km northwest of the spring S31 which 
can provide the daily average meteorological data for the 
model. Since 2016, a small weather station is set up near 
spring S31 and can provide the daily average meteorological 
data for the model.

Methods

In general, the spatial complexity of the model can be con-
sidered from two aspects: (1) spatial parameter heteroge-
neity (Atkinson et al. 2003; Boyle et al. 2001; Das et al. 
2008) and (2) spatial heterogeneity of hydrological process 
(Euser et al. 2015; Gao et al. 2014; Savenije 2010). Due to a 
lack of knowledge of the spatial heterogeneity of hydrologi-
cal process in the study site, we only consider the spatial 
parameter heterogeneity of the model. In this paper, three 
lumped models were chosen to evaluate their performances 
in the spring hydrograph with the increase of their spatial 
complexities. The study karst catchment belongs to a typi-
cal peak-cluster-depression landform which mainly contains 
three depressions. Each depression is relatively independent 
which behaves like sub-catchment in the non-karst catch-
ment. They are mainly connected to the spring by the con-
duit network. Therefore, we consider the spatial parameter 
heterogeneity of the model based on the depression units. 

Given that the conduit network is the main passage to con-
nect each depression to the spring, we first add a routing 
function for considering the flow process in karst conduit in 
the lumped model to establish the lumped-routing model. 
Subsequently, the whole catchment is divided into three 
units and the semi-lumped model is set up according to the 
spatial distribution of the depressions and conduit network. 
Based on this semi-lumped model, the parameters for each 
unit are considered as different values gradually to establish 
the semi-distributed models. The appropriate spatial param-
eter heterogeneity of each model structure can be considered 
as the one having relatively good model performance and all 
identifiable parameters, which can be determined according 
to the performance comparison and parameter sensitivity 
analysis as presented in Chang et al. (2017).

Three lumped models

Chang et al. (2017) had used a multi-model framework includ-
ing 12 different models to identify the appropriate model 
structure for the spring S31. In this paper, we chose three 
different lumped structures from that multi-model framework 
to establish the corresponding semi-distributed models. These 
three models all consist of the linear storage reservoir and an 
evapotranspiration reservoir. The first lumped model S1 is 
the simplest one which just uses a linear storage reservoir to 
simulate the behavior of the whole catchment (Fig. 2). The 
second lumped model M1 uses two parallel linear storage res-
ervoirs to consider the quick and slow flow separately in the 
catchment and this model structure has been widely used to 
simulate the spring discharge of karst catchment (Fleury et al. 
2007; Hartmann et al. 2012a, b). The third lumped model C1 
uses a linear storage reservoir with two outlets of different 
height to simulate the behavior of the whole catchment. This 
model has been proved to be the most appropriate lumped 
model to simulate the discharge of spring S31 in the previous 
study (Chang et al. 2017). For each model, the same evapo-
transpiration reservoir is used to calculate the effective pre-
cipitation on the catchment. The potential evapotranspiration 
is calculated by Eagleman’s method (Eagleman 1967) which 
just need air temperature and relative humidity. The actual 
evapotranspiration is assumed to be linear with the saturation 
degree of evapotranspiration reservoir. The parameter needed 
for this reservoir the maximal capacity Smax. More information 
about this evapotranspiration can be found in these studies 
(Chang et al. 2015, 2017; Jukić and Denić-Jukić 2009). The 
main difference between the three lumped models and the 
corresponding models in the multi-model framework pro-
posed by Chang et al. (2017) is that the triangular transfer 
function is not considered in these three models. The trian-
gular transfer function is mainly used to consider the time lag 
between the rainfall and spring discharge, and this lag time 
would be considered by adding the routing function in these 
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three lumped models in Sect. 3.2. In general, S1 is the sim-
plest model with two parameters (Smax, K) which only consid-
ers one linear hydrological process, whereas M1 and C1 are 
relatively complex models with four parameters (Smax, x or ht, 
Ks, Kq) which both consider two different linear hydrological 
processes (Tables 1, 2).

Lumped‑routing and semi‑lumped models

Based on each lumped model, a routine function is added 
first (Fig. 2). This routine function is mainly used to con-
sider the flow routine in the conduit. Since the karstification 
degree in Yaji experimental site is very high, the flow in 
the conduit is very close to the flow in the river channel. 
Therefore, the simple linear lag propagation model for the 
river was used to simulate the flow process in the conduit 
(Bentura and Michel 1997; Lerat et al. 2012a):

With
(1)

g(�, q1, qm,… , qn)(t) =

n∑

i=1

[�iqi(t − �i) + (1 − �i)qi(t − �i − 1)]

where ⌊⌋ is the integer part, Li is the distance between the 
point i and the spring (L), and λ is the routing parameter 
which is homogeneous to a celerity (L/T). By adding the lag 
propagation function on the lumped models, three different 
lumped-routing models (S2, M2, and C2) are presented with 
one extra parameter (L/λ) needed to be calibrated (Table 1). 
However, these models are still lumped, because any spa-
tial information is not considered. In addition to this simple 
lag propagation model, we also had used the Hayami kernel 
function (Lerat et al. 2012b; Moussa 1996), which is the 
analytical solution of the linearized Saint–Venant equation 
by neglecting the inertia terms, to simulate the flow routing 
in the conduit. However, it gives very similar results with 
much more parameters. Therefore, only the results based on 
the simple lag propagation model are presented in this paper.

To further discretize the lumped model, we assume 
that the water in the depression all recharges the conduit 
through the sinkhole directly and the diffuse recharge is 

�i = ⌊Li∕�⌋

�i = 1 + ⌊Li∕�⌋ − Li∕�,

Fig. 2  Structures of lumped models (S1, M1, and C1), lumped-routing models (S2, M2, and C2) and semi-lumped models (S3, M3, and C3) to 
simulate the discharge of the karst spring
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Table 1  Parameter descriptions 
and their ranges

Models Parameters Ranges Units Descriptions

S1–S8 L/λ 0–300 min Lag time, only used in S1
λ 3–33 m/min Routing parameter
K 1e-04–1e−02 min−1 Coefficient of the linear storage reservoir
Smax 0–0.2 m Maximal capacity of the evapotranspiration reservoir

M1–M8 L/λ 0–300 min Lag time, only used in M1
λ 3–33 m/min Routing parameter
x 0–1 – Partition coefficient
Ks 1e-05–5e−03 min−1 Coefficient of the slow storage reservoir
Kq 5e-04–5e−02 min−1 Coefficient of the quick storage reservoir
Smax 0–0.2 m Maximal capacity of the evapotranspiration reservoir

C1–C8 L/λ 0–300 min Lag time, only used in C1
λ 3–33 m/min Routing parameter
ht 0–0.04 m Threshold for the occurrence of upper outlet
Ks 5e−05–5e−03 min−1 Coefficient of the lower outlet
Kq 5e−04–5e−02 min−1 Coefficient of the upper outlet
Smax 0–0.2 m Maximal capacity of the evapotranspiration reservoir

Table 2  Brief descriptions of different models

Models Param-
eter 
number

Lumped parameters Parameters considering spatial hetero-
geneity

Descriptions

Lumped S1 2 K, Smax – The initial lumped model
M1 4 x, Ks, Kq, Smax –
C1 4 ht, Ks, Kq, Smax –

Lumped-routing S2 3 L/λ, K, Smax – Adding the linear lag propagation func-
tionM2 5 L/λ, x, Ks, Kq, Smax –

C2 5 L/λ, ht, Ks, Kq, Smax –
Semi-lumped S3 3 λ, K, Smax – Spatial discretization

M3 5 λ, x, Ks, Kq, Smax –
C3 5 λ, ht, Ks, Kq, Smax –

Semi-distributed S4 4 λ, K Smax (Two partitions) Considering two spatial partitions of the 
evapotranspiration reservoirM4 6 λ, x, Ks, Kq Smax (Two partitions)

C4 6 λ, ht, Ks, Kq Smax (Two partitions)
S5 5 λ, K Smax (Three partitions) Considering three spatial partitions of the 

evapotranspiration reservoirM5 7 λ, x, Ks, Kq Smax (Three partitions)
C5 7 λ, ht, Ks, Kq Smax (Three partitions)
S6 4 λ, Smax K (Two partitions) Considering two spatial partitions of the 

linear storage reservoirsM6 8 λ, Smax x, Ks, Kq (Two partitions)
C6 8 λ, Smax ht, Ks, Kq (Two partitions)
S7 5 λ, Smax K (three partitions) Considering three spatial partitions of the 

linear storage reservoirsM7 11 λ, Smax x, Ks, Kq (Three partitions)
C7 11 λ, Smax ht, Ks, Kq (Three partitions)
S8 7 λ K, Smax (Three partitions) Considering three spatial partitions of 

the evapotranspiration reservoir and the 
linear storage reservoirs simultaneously

M8 13 λ x, Ks, Kq, Smax (Three partitions)
C8 13 λ ht, Ks, Kq, Smax (Three partitions)
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neglected. This assumption is reasonable, since the karstifi-
cation degree in Yaji experimental site is very high and most 
water should translate through the main conduit. Under this 
assumption, the lumped models (S1, M1, and C1) are used 
to simulate the discharge of each depression, and then, the 
discharge is routed by the conduit to the spring using the 
simple linear lag propagation model [Eq. (1)]. Therefore, 
we can set up the semi-lumped model without consideration 
of spatial parameter heterogeneity (Fig. 2). The area of each 
depression is determined according to the surface landform 
(Fig. 1). The conduit length between each depression and 
spring could be roughly estimated through the speculated 
conduit location. Although each depression may have sev-
eral sinkholes at the bottom to drain the point recharge, we 
simplify these different sinkholes into one which locates at 
the bottom center of each depression (Fig. 1). Finally, we 
convert lumped-routing models (S2, M2, and C2) into three 
semi-distributed models (S3, M3, and C3) by considering 
the spatial distribution of sinkholes and conduit network 
(Fig. 2). As the conduit length between each depression and 
spring can be roughly obtained according to the speculated 
conduit location (Fig. 1), the parameter L is known and only 
one extra parameter (λ) is added in contrast to the lumped 
models (S1, M1, and C1).

It should be noted that the semi-distributed models 
described above only consider the three depressions. How-
ever, the catchment of spring S31 also contains a small 
hillslope above the spring in addition to the three depressions 
(Fig. 1). Actually, it is debatable to include the hillslope 
into the catchment of S31, since there is no sinkhole in this 
hillslope and only very limited diffuse infiltrations may 
recharge the spring S31. Most water should flow out of 
the catchment through the lateral flow in the epikarst zone. 
Meanwhile, the area of this hillslope is very small (about 
0.07 km2) in contrast to the whole catchment (1.09 km2). 
Therefore, neglecting this hillslope may not cause serious 
water imbalance problem. To maintain consistency between 
the lumped and semi-distributed model, the catchment area 
used in the lumped models is set to 1.02 km2.

Semi‑distributed models

Based on semi-lumped models (S3, M3, and C3), the spatial 
parameter heterogeneity is gradually considered to establish 
semi-distributed models to explore the appropriate spatial 
parameter partition for each model structure for simulation 
of the spring discharge (Table 2).

1. To consider the spatial heterogeneity of effective pre-
cipitation for each depression which may be caused by 
different surface slope, soil depth, or vegetation cover-
age, the parameter Smax for each depression is gradu-
ally assumed to be different values. The values of other 

parameters for different depressions are set to the same. 
First, we only consider Smax of depression No. 1 is differ-
ent from depression Nos. 3 and 4 (two parameter parti-
tions) and we can get model S4, M4, and C4. Then, the 
values of Smax in three depressions are all considered to 
be different (three parameter partitions) to set up more 
complex semi-distributed models S5, M5, and C5.

2. We only consider the spatial parameter heterogeneity 
of the linear storage reservoirs (K in S3, Kq, Ks and x in 
M3, and Kq, Ks, and ht in C3) and keep the parameter 
(Smax) to be the same in different depressions. Similar to 
the situation (1), two and three parameter partitions are 
considered separately (S6, M6, C6 and S7, M7, C7).

3. Smax and the parameters of the linear storage reservoirs 
for each depression are all considered to be different to 
establish the fully semi-distributed model (S8, M8, C8).

In general, there are eight different models for each model 
structure and more details about these different lumped, 
semi-lumped, and semi-distributed models are shown in 
Table 2. With the consideration of spatial parameter hetero-
geneity of evapotranspiration and linear storage reservoirs, 
the parameter number increases gradually.

Optimization

The multi-objective optimization method is used in this 
paper to calibrate these different models and compare their 
performances. Two different objectives which put differ-
ent emphasis on the high flows and low flows are chosen to 
evaluate the model performance:

where Qm and Qs represent the measured and simulated dis-
charge, and Qm is the average measured discharge in the 
simulated period. ε is a small constant to avoid a calcula-
tion problem when measured or simulated discharge gets 
to zero. In this paper, this small value is set to 0.002 m3/s 
subjectively (proximately 3% of the average discharge of this 
spring in the simulation period) and it would not strongly 
affect the evaluation of the model performance. The multi-
objective optimization algorithm, AMALGAM, proposed 
by Vrugt and Robinson (2007) is used to search the optimal 
pareto front of these two criteria. The pareto front shows 
the trade-off between the two objectives. Each point on the 
front may not be considered better than other points on one 

(2)F1 =

∑
(Qm − Qs)

2

∑
(Qm − Qm)

2

(3)F2 =

∑
(ln(Qm + �) − ln(Qs + �))2

∑
(ln(Qm + �) − ln(Qm + �))2

,
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objective without causing a simultaneous deterioration of 
the other objective. The AMALGAM algorithm mergers 
the strengths of several multi-objective algorithms to cre-
ate the offspring of high-quality self-adaptively according to 
the performance of each algorithm and shows a significant 
evolution speed to the Pareto front. More information about 
this algorithm can be found in these two studies (Vrugt et al. 
2009; Wöhling et al. 2008). The parameter range is deter-
mined according to the previous research (Chang et al. 2017) 
and is shown in Table 1. The population size in AMALGAM 
is set to 100 and the maximum number of iteration is set to 
1000. The multi-objective optimization method is widely 
used to compare the performance of different models (Boyle 
et al. 2001; Chang et al. 2017; Fenicia et al. 2008; Lee et al. 
2011). The improvement of model performance can be iden-
tified as the optimal pareto front progressively moves toward 
the origin of the axes.

Sensitivity analysis

The regional sensitivity analysis (RSA) method (Freer 
et al. 1996; Hornberger et al. 1985) is chosen to evaluate 
the parameter identifiability indirectly. The parameter with 
low sensitivity is considered to be poorly identified. This 
analysis method is based on a random sampling of parameter 
space and could be easily used with multi-objectives. For 
each objective, the parameter population is ranked into 10 
groups of equal size directly according to the objective func-
tion values and the cumulative distribution of the parameters 
in each group is plotted to evaluate the sensitivity of each 
parameter to this objective (Freer et al. 1996; Wagener et al. 
2001). The Kolmogorov–Smirnov statistic (KS) is used to 
quantitatively assess the dispersion degree of these cumula-
tive curves as proposed by Chang et al. (2017). The high 
value of KS indicates the high sensitivity of the parameter. 
For each parameter, two KS values can be got from two dif-
ferent objectives and the large value is chosen to represent 
the parameter sensitivity and identifiability.

The RSA method is implemented within the SAFE tool-
box (Pianosi et al. 2015; Wagener et al. 2001). For each 
model in the multi-model framework, 10,000 random param-
eter groups are sampled in their defined spaces through the 
Latin hypercube method. The parameter range for the model 
calibration (Table 1) is also used for the sensitivity analysis.

Simulation periods

The rainfall-discharge data in two periods, from Jan to June 
in 2013 and 2017, respectively, are used for model calibra-
tion and validation, respectively. For each period, the first 
two months are set to the warm-up period to eliminate the 
influence of the initial condition on the simulation result. 
To fully explore the data information in two periods, two 

calibration–validation procedures for each model were car-
ried out. In the first procedure, the data in 2013 were used 
for calibration and data in 2017 for validation; in the second 
procedure, the data for model calibration and validation were 
switched. The sensitivity analysis was conducted in both 
periods. As the most available data except for the rainfall 
data in 2017 all have a time resolution of 15 min, the step 
time in the model is set to 15 min. For the rainfall data in 
2017, the available time interval is half an hour. When using 
these data into the models, we simply divided the accumu-
lation rainfall in half an hour into two equal values in each 
interval of 15 min.

Results

Model performances

Models S1–S8

Figure 3 shows the calibration and validation results of 
S1–S8 and the optimal combination of two objectives having 
the smallest distant to the origin of the axes on the optimal 
pareto front for each model is shown in Table 3. The com-
parison results are consistent in two separate calibration–val-
idation procedures. When the simple routing function is 
added to the model S1, S2 shows a little better performance 
than S1. The semi-lumped model S3 shows complete same 
pareto front with the lumped model S2, indicating their same 
performances. S4 and S5 show very limited performance 
improvement in contrast to S3 when considering the spatial 
parameter heterogeneity of evapotranspiration reservoir. The 
model performance is highly improved when two spatial par-
titions of routing reservoir are considered in S6. However, 
when further considering three spatial partitions of routing 
reservoir in S7, it shows marginal performance improvement 
in contrast to S6. The final fully semi-distributed model S8 
also shows limited performance improvement in contrast to 
S7.

Models M1–M8

Figure 4 shows the calibration and validation results of 
M1–M8 and the optimal combination of two objectives for 
each model is shown in Table 3. The comparison results 
among different models are also very similar in two calibra-
tion–validation procedures. The performance of M2 is much 
better than M1 when the simple routing function is added. 
However, the semi-lumped model M3 shows very similar 
performance with the lumped model M2. When further con-
sidering the spatial parameter heterogeneity of evapotran-
spiration and routing reservoir, the model performance only 
shows marginal improvement. The final semi-distributed 
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model M8 also shows very small performance improvement 
in contrast to M3.

Models C1–C8

Figure 5 shows the calibration and validation results of 
C1–C8 and the optimal combination of two objectives for 
each model is shown in Table 3. The performance of C2 is 
always much better than C1 in both calibration and valida-
tion periods. The performance comparisons among other 
models show a little difference in different calibration–vali-
dation procedure. When using the data in 2013 for the cali-
bration, the semi-distributed model C3 shows a litter better 
performance than C2. While considering the spatial param-
eter heterogeneity of evapotranspiration reservoir, C4 and 
C5 provide complete similar calibration results to C3. When 
considering the two spatial partitions of the routing reser-
voir, C6 shows a little better calibration performance than 

C3. While further increasing the spatial partition from two 
to three, the model performance shows no obvious improve-
ment. The final fully semi-distributed model C8 also shows 
no obvious performance improvement in contrast to C6 or 
C7 in the calibration period. However, When using the data 
in 2017 for the calibration, the model performance improves 
gradually with the increase of spatial partition of evapo-
transpiration and routing reservoir, the model performance 
(C3–C7) always be improved in the calibration period. The 
final fully semi-distributed model C8 shows the best calibra-
tion result. Although these different models show obvious 
different performance in the calibration period, the perfor-
mance differences among these models are limited in the 
validation period. Only some pareto solutions of C4, C6, 
and C7 show a little performance improvement. It is worth to 
be mentioned that some pareto solutions of C8 show a little 
worse performance than C6 or C7 in the validation period 
which indicates that C8 is in the high risk of over-fitting.

Fig. 3  Calibration and validation results of S1−S8 in two calibra-
tion–validation procedures. Calibration (2013) means that models are 
calibrated using the data from Jan to June in 2013; validation (2017) 

means that models are validated using the data from Jan to Jun in 
2017 and optimal parameter values in Calibration (2013)
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Parameter sensitivity

The RAS method is used to analyze the parameter sensitivity 
and identifiability. The analysis results are shown in Figs. 6, 
7 and 8. In general, the results of parameter sensitivity are 
similar when using data in two different periods. For each 
model set, the KS value of parameter λ is relatively con-
sistent in different models. KS values of other parameters 
decrease with the increase of spatial parameter partition. 
When the spatial partition of the parameter is considered, the 
parameter for the spatial zone with large area has relatively 
large KS value and high sensitivity, since the spatial parti-
tion with a large area has more contribution to the spring 
discharge.

As pointed in Chang et al. (2017), when KS is less than 
0.1, the ten cumulative curves are very close to the straight 
line and the parameter is insensitive and may be hard to be 
identified. In this paper, we also use this value to determine 
whether the parameter is sensitive or insensitive (red dash 
lines in Figs. 6, 7, 8). For the models S1–S8, λ and K are 
all sensitive even though three spatial partitions of K are 

considered. For the models M1–M5 and C1–C5, the param-
eters (x or ht, Ks, and Kq) of the routing reservoir are all 
sensitive except x and Kq in M1. It is quite surprising that 
even the simple lumped model M1 also has two insensitive 
parameters, x and Kq. This indicates the obvious structural 
defects of M1. The sensitivities of these two parameters are 
highly improved in M2 when the routing function is added. 
When considering two spatial parameter partitions of routing 
reservoir in M6 or C6, x (or ht) and Kq in the first partition 
are insensitive. When further considering three spatial parti-
tions, Kq in the third partition also get close to be insensitive. 
For the parameter Smax, it is only sensitive in the lumped 
models or semi-lumped model in the first calibration period 
(data in 2013). When the spatial partition is considered, Smax 
in each partition is always insensitive. The parameter Smax 
is always insensitive in all models in the second calibration 
period (data in 2017) regardless of the consideration of spa-
tial partition or not. This indicates that the spring discharge 
may not contain sufficient information to identify the spatial 
variability of the effective precipitation in this study site.

Table 3  Relative best 
combination of two objectives 
for each model in calibration 
and validation period

The best combination of the two objectives on the optimal pareto front for each model is determined by 
point with the smallest distance to the origin of the axes of

Models First calibration–validation procedure Second calibration–validation procedure

Calibration (2013) Validation (2017) Calibration (2017) Validation (2013)

F1 F2 F1 F2 F1 F2 F1 F2

S1 0.44 0.40 0.31 0.50 0.32 0.42 0.47 0.62
S2 0.40 0.41 0.30 0.48 0.30 0.42 0.45 0.62
S3 0.40 0.41 0.34 0.46 0.30 0.42 0.44 0.65
S4 0.38 0.38 0.42 0.36 0.28 0.39 0.40 0.45
S5 0.36 0.40 0.43 0.31 0.32 0.34 0.37 0.51
S6 0.19 0.28 0.17 0.33 0.15 0.26 0.22 0.47
S7 0.20 0.26 0.17 0.33 0.14 0.25 0.20 0.48
S8 0.14 0.20 0.14 0.28 0.13 0.21 0.33 0.26
M1 0.43 0.39 0.33 0.48 0.31 0.42 0.46 0.63
M2 0.19 0.28 0.17 0.35 0.15 0.25 0.24 0.50
M3 0.19 0.27 0.16 0.34 0.14 0.25 0.21 0.48
M4 0.18 0.27 0.26 0.25 0.14 0.23 0.20 0.53
M5 0.18 0.27 0.26 0.25 0.14 0.22 0.40 0.36
M6 0.19 0.27 0.17 0.33 0.15 0.22 0.23 0.50
M7 0.17 0.27 0.16 0.33 0.15 0.22 0.21 0.52
M8 0.14 0.20 0.14 0.29 0.13 0.20 0.22 0.36
C1 0.22 0.14 0.21 0.29 0.17 0.22 0.23 0.45
C2 0.08 0.11 0.18 0.25 0.11 0.18 0.11 0.42
C3 0.07 0.10 0.18 0.25 0.10 0.17 0.10 0.41
C4 0.07 0.10 0.17 0.20 0.09 0.12 0.14 0.33
C5 0.07 0.10 0.17 0.25 0.09 0.10 0.19 0.21
C6 0.06 0.09 0.18 0.23 0.09 0.15 0.10 0.40
C7 0.06 0.09 0.18 0.21 0.09 0.14 0.08 0.39
C8 0.05 0.08 0.20 0.21 0.09 0.08 0.21 0.28
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Discussion

Comparisons between lumped models 
and semi‑lumped models

For the three different model structures, the analysis results 
all show the model performance improves when the simple 
routing function is added in the original lumped models. 
Especially, for the model M1, the parameter identifiabilities 
of x and Kq are also highly improved in M2 when the routing 
function is added. Therefore, the routing function is truly 
needed in the lumped model. This is mainly because there 
is an obvious lag time (about several hours) between the 
rainfall and discharge of spring S31, and the time step of 
the model (15 min) is much less than this long lag time. The 
lumped model with simple routing reservoir could hardly 
reflect this lag process. This is also the main reason that 
the simple time translation or triangular transfer function is 
often used in the simple lumped model to offset this lag time 

in the previous studies to simulate the discharge of spring 
S31 (Chang et al. 2015, 2017; Yuan et al. 1996).

When the spatial distribution of each depression and con-
duit network is considered to discretize the lumped model, 
the model performances of semi-distributed models (S3, 
M3, and C3) show marginal improvement in contrast to 
lumped-routing models (S2, M2, and C2). In this paper, the 
main difference between the lumped and semi-lumped mod-
els is that the semi-lumped model could consider the differ-
ent arrival times of water in three depressions in spring S31 
due to the different distances between the sinkhole of each 
depression and spring. Their similar performances indicate 
this difference is not very important for the simulation of 
spring S31. This is mainly due to the relatively small catch-
ment area and short conduit length. However, it should be 
noted that the location of the conduit network in the catch-
ment of spring S31 is mainly speculated through the surface 
landform and distribution of the sinkholes which may still 
have a large difference from the distribution of the actual 

Fig. 4  Calibration and validation results of M1−M8 in two calibration–validation procedures
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conduit network. Meanwhile, the routing function used in 
this paper assumes that the celerity is always a constant, 
and in reality, this parameter may be different under differ-
ent hydraulic conditions (Cholet et al. 2017). These factors 
may affect the comparison result between lumped and semi-
lumped models.

Appropriate spatial complexity for different 
semi‑lumped models

The appropriate spatial complexity of each semi-distributed 
model could be identified according to the comparison of 
model performance and parameter sensitivity. Theoreti-
cally, if the spatial parameter heterogeneity is truly needed, 
the model performance should be highly improved and the 
parameters in the model should be all identified by the avail-
able data (Chang et al. 2017).

For the semi-lumped model S3, its model performance is 
only highly improved when two partitions of routing reser-
voir are considered in S6. The sensitivity analysis indicates 

that the parameters of S6 could all be finely identified. When 
further considering three partitions of routing reservoir or 
the partition of evapotranspiration reservoir, the model per-
formance shows very limited improvement. Meanwhile, 
parameter sensitivity also indicates that the spatial partition 
of evapotranspiration reservoir is not needed. Therefore, the 
semi-distributed model S6 with two parameter partitions of 
routing reservoir is preferred among eight models (S1–S8) 
to simulate the discharge of this spring (Fig. 9).

For the semi-lumped model M3 or C3, the model perfor-
mance only shows marginal or a very small improvement 
in the calibration period when the spatial parameter parti-
tion of routing or evapotranspiration reservoir is considered. 
The parameter sensitivity also pointed that there are always 
insensitive parameters when the spatial parameter partition 
is considered. Therefore, the spatial parameter partition is 
not necessary for the semi-lumped model M3 or C3. Given 
their similar performance and complexity (same parameter 
number) between lumped and semi-lumped models, M2 (or 

Fig. 5  Calibration and validation results of C1–C8 in two calibration–validation periods
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Fig. 6  Variations of parameter sensitivity (KS) from S1 to S8. When 
KS is lower than 0.1 (red dash line), the parameter is considered to be 
insensitive. The number in the parenthesis behind the model number 

represents different spatial partitions, for example, S7(1), S7(2), and 
S7(3) represent the corresponding parameter in the first, second, and 
third partitions, respectively

Fig. 7  Variations of parameter sensitivity (KS) from M1 to M8. 
When KS is lower than 0.1 (red dash line), the parameter is con-
sidered to be insensitive. The number in the parenthesis behind the 

model number represents different spatial partitions, for example, 
M7(1), M7(2), and M7(3) represent the corresponding parameter in 
the first, second, and third partitions, respectively
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M3) and C2 (or C3) can both be considered as the appropri-
ate complexity for each model structure.

In general, for three different semi-lumped models, 
only the performance of the simplest model S3 can be 
highly improved by the consideration of extra spatial 
parameter heterogeneity. The same situation was also 
pointed by Hellebrand and Bos (2008) when they used 

two different models to simulate the 18 sub-basins of the 
Nahe basin. They found that only the performance of a 
simple model showed an improvement when the spatial 
parameter heterogeneity was introduced. The possible 
reason is that the simple model structure is too simple to 
capture the behavior of the catchment and the considera-
tion of spatial parameter heterogeneity could add extra 

Fig. 8  Variations of parameter sensitivity (KS) from C1 to C8. When 
KS is lower than 0.1 (red dash line), the parameter is considered to be 
insensitive. The number in the parenthesis behind the model number 

represents different spatial partitions, for example, C7(1), C7(2), and 
C7(3) represent the corresponding parameter in the first, second, and 
third partitions, respectively

Fig. 9  Model structure of S6
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flexibility to the model (Atkinson et al. 2003; Boyle et al. 
2001). However, when the complex model structure is 
already flexible enough to simulate the spring behavior, 
extra consideration of spatial parameter heterogeneity can 
hardly highly improve the model performance (Das et al. 
2008; Refsgaard and Knudsen 1996; Vansteenkiste et al. 
2014). This indicates that whether extra spatial complex-
ity for the lumped model is needed may have a strong 
relationship with the process complexity of the lumped 
model. If process complexity of the lumped model is suf-
ficiently flexible to capture the behavior of catchment, 
extra consideration of spatial complexity in the model 
may be not needed, even for the karst aquifer, to simulate 
the spring discharge.

Comparisons among different model structures

The optimal pareto fronts of appropriate models for each 
model structure (S6, C2 and M2) are shown in Fig. 10 to 
compare their performances in two calibration–validation 
procedures. For simplicity, their simulated hydrographs 

after calibration from 15 April to 14 June in 2013 are only 
represented in the paper (Fig. 11). It can be found that S6 
provides the very similar performance to M2 after consider-
ing the spatial parameter heterogeneity of routing reservoir 
in S3 (Fig. 10; Table 3). Moreover, S6 provides a relatively 
shorter length of pareto front than M2, especially in the 
second calibration–validation procedure, indicating its less 
structure uncertainty. This indicates that the process defi-
ciency of S3 relative to M2 could be effectively compensated 
by the increase of spatial complexity. It should be noted that 
although S6 has a similar structure to M2 (both contain two 
different parallel reservoirs), they have obviously different 
physical meanings. In S6, the different routing reservoirs 
are used to represent the behavior of different depressions 
(Fig. 9), whereas in M2 different routing reservoirs represent 
different hydrological processes (quick flow vs. slow flow). 
Moreover, S6 has one less parameter than M2. The distribu-
tion of recharge on two reservoirs is determined according 
to the area of depression in S6, whereas in M2 the recharge 
distribution is controlled by parameter x.

Fig. 10  Comparison of simulation results of S2, S6, M2, and C2 in two calibration–validation procedures
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Figure 10 also shows that S6 or M2 has worse perfor-
mance than C2. C2 can relatively finely capture the peak 
discharge and the recession curves especially the spring 
response under very low recharge events (Fig. 11). This 
result is consistent with the previous study (Chang et al. 
2017) that the model structure of C2 is better than M2 to 
simulate this spring. The performance of M2 is not highly 
improved by the increase in spatial complexity. Meanwhile, 
even though the performance of S3 can be highly improved 
with the increase in spatial complexity, S6 still has worse 
performance than C2. The main process difference between 
M2 (or S6) and C2 is that upper outlet in C2 is threshold-
driven. As pointed in Chang et al. (2017), two outlets in 
C2 should correspond to the discharge from point recharge 
and diffuse recharge, respectively, and the point recharge is 
threshold-driven. This structure is much closer to the actual 
hydrological process in the study site. This indicates that the 
increase of spatial parameter heterogeneity of S2 and M2 
cannot effectively compensate this process deficiency which 
further supports the results of the previous study.

In general, C3 provides a better performance than other 
models. Given that C3 and C2 have similar performance and 
same complexity (parameter number), they can be both con-
sidered as the most appropriate model structure for this karst 
catchment. This result further supports the previous point 
that a simple reservoir with two different outlets is enough to 
capture the main behavior of spring discharge (Chang et al. 
2017) and extra consideration of spatial parameter heteroge-
neity is not necessary. It also should be noted that there are 
no extra internal measurements in the study site. Therefore, 

it is hard to diagnose whether these lumped or semi-lumped 
models are realistic or not to represent the internal hydro-
logical process. For that reason, the lumped model might 
also be the model structures with the best performance but 
due to wrong reasons (Kirchner 2006).

Discussion of the relationship between process 
complexity and spatial complexity

The process complexity and spatial complexity are two dif-
ferent aspects that we should consider in the hydrologic 
models. Although they represent different physical mean-
ings, they all, in essence, introduce new parameters (repre-
senting new hydrologic processes or spatial heterogeneity) 
in the model to improve the model performance. However, 
limited available data, such as rainfall-streamflow data, 
often support limited model complexity (parameter number) 
(Beven 1989; Chang et al. 2017; Jakeman and Hornberger 
1993; Perrin et al. 2001). Therefore, there should be a trade-
off between the process complexity and spatial complexity 
of a model theoretically when the available data are limited. 
If the process complexity of the lumped model is flexible 
enough, the extra consideration of spatial complexity should 
be not needed, such as M2 and C2.

When the process complexity of the model is not flexible 
enough to capture the behavior of catchment, the increase 
of spatial complexity could make up the deficiency of 
process complexity to improve the model performance to 
some degree, such as the comparison between S6 and M2. 

Fig. 11  Simulated hydrographs 
by three different models (S6, 
M2, and C2) from April 15 
to June 14 in 2013 after the 
calibration
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However, it should be noted that the way to increase the 
spatial complexity of the model is often limited. They are 
often conducted by spatially distributing the runoff process 
based on different HRUs (hydrological response units) and 
connecting them in parallel or in series (Adinehvand et al. 
2017; Barrett and Charbeneau 1997; Euser et al. 2015; Gao 
et al. 2014; Hartmann et al. 2012a; Savenije 2010; Seibert 
et al. 2003; Uhlenbrook et al. 2004). Therefore, these lim-
ited ways could not guarantee that the increase in spatial 
complexity could fully cover all the kinds of deficiencies of 
process complexity, such as the comparison between semi-
distributed models of M2 and C2. If the spatial complexity 
cannot make up the deficiency of process complexity, even 
the distributed model may provide worse performance than 
the lumped model. This may be one possible reason that 
the lumped model shows a better overall performance than 
the distributed model in some studies (Reed et al. 2004). 
From this point of view, we should consider the process 
complexity of the model as a priority and the lumped model 
without consideration of spatial complexity should be flex-
ible enough to simulate the discharge series of study catch-
ment (even for the karst catchment). The distributed model 
should be only considered when more extra data, such as the 
internal measurements (heads), are available.

Conclusions

In this paper, we investigated the appropriate model struc-
ture for the simulation of a karst catchment from the aspect 
of spatial complexity. Three lumped models (S1, M1, and 
C1) from simple to complex structures were chosen to 
gradually increase their spatial complexities to establish 
the semi-distributed models by adding the routing function 
and considering spatial parameter heterogeneity. The per-
formance comparison and parameter sensitivity were used 
to investigate appropriate spatial complexity for each model 
structure. And then, these different models were compared 
to explore the appropriate model structure for the simulation 
of a karst spring.

Our analysis results show that the performances of 
lumped-routing versions of three models (S2, M2, and C2) 
all highly improve by adding the routing function. However, 
when further considering the spatial complexity based on 
S2, M2, and C2, different models give different results. For 
the simplest model S2, its performance highly improves by 
considering two parameter partitions of the linear storage 
reservoir (S6). However, performances of M2 and C2 show 
very limited improvement when further considering extra 
spatial complexity. These results indicated that whether the 
model performance can be highly improved by the consider-
ation of spatial complexity has a strong relationship with the 
process complexity. If the process complexity of the lumped 

model is sufficiently flexible to capture the behavior of the 
catchment, the extra consideration of spatial complexity may 
be not needed.

The comparison results among different model structures 
indicate that S6 could provide the very similar performance 
to M2 after considering appropriate spatial parameter het-
erogeneity of S2. However, S6 and M2 still provide obvi-
ous worse performance than C2. The increase of spatial 
complexity of S2 or M2 cannot effectively make up its pro-
cess deficiency relative to C2. Given that the semi-lumped 
model C3 has similar performance and complexity to C2, 
both models can be considered as the appropriate model 
structure for simulation of this karst catchment. There is no 
extra appropriate model which has relatively simpler process 
complexity and higher spatial complexity than C2 for the 
simulation of this spring. This result further verifies the pre-
vious point that a simple reservoir with two different outlets 
is enough to capture the main behavior of this karst spring 
(Chang et al. 2017).
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