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Abstract
Seismic rockfall is one of the prevalent geohazards that cause huge losses in the earthquake-stricken areas. In the present 
research, a model is developed to map susceptibility (occurrence probability) of seismic rockfalls in a regional scale using 
Logistic Regression (LR) and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques. In this research, Firooz Abad-
Kojour earthquake of 2004 was introduced as the benchmark and the model base. The susceptible zones predicted by LR 
and ANFIS methods were compared with the database (distribution map) of seismic rockfalls, by which the results revealed 
a good overlapping between the susceptible zones predicted by the ANFIS and the field observation of rockfalls triggered 
by this earthquake. Besides, for the statistical evaluation of results obtained by LR and ANFIS models, the verification 
parameters with high accuracy such as density ratio (Dr), quality sum (Qs), and receiver-operating characteristic curve 
(ROC) were used. By analyzing the susceptibility maps and considering the Qs index obtained by LR (21.04184) and ANFIS 
(26.75592), it could be found that the Qs of ANFIS is higher than that of LR. Moreover, based on the obtained value of the 
area under the curve (AUC) from LR (0.972) and ANFIS (0.984) methods, ANFIS provided a higher accuracy in zonation 
and susceptibility mapping of rockfalls triggered by Firooz Abad-Kojour earthquake of 2004 compared to the LR method.

Keywords Seismic rockfalls · Hazard zonation · Firouz Abad-Kojour · Susceptibility mapping · Logistic regression · 
Adaptive neuro-fuzzy inference system

Introduction

Landslide, earthquake, flood, and volcano are among the 
prevalent natural disasters that annually impose huge finan-
cial and life losses to humans. By population growth and 
increasing construction in landslide-prone areas, global sta-
tistics of landslide-based casualties are continuously rising. 
According to the World Atlas of Natural Hazards, landslides 
are the most abundant and widespread natural disasters on 
Earth. In this regard, the susceptibility and damage maps of 
landslides can be considered as a basis for crisis manage-
ment of those regions. The maps also are important tools 

for engineers, geologist, planners, and decision-makers to 
select suitable places for agriculture, construction, and other 
developmental activities (Ercanoglu and Gokceoglu 2002).

Rockfalls are the downward motion of rock fragments 
involving free falling, bouncing, and rolling, which, depend-
ing on the changes in the topographic profile, two or more 
forms of rockfalls may be seen. Rockfall is a very common 
event that occurs in mountainous slopes, coastal cliffs, vol-
canoes, riverside, and trenches. Although most of the rock-
falls occur in the remote area, they can be a serious threat to 
residential area and transportation lines (Hungr et al. 1999; 
Chau et al. 2003; Corominas et al. 2005). The high hazard of 
rockfalls is mainly due to their dynamic behavior, the veloc-
ity of the block motion (30–100 km/h), and the difficulty of 
predicting the source of their occurrence. The high velocity 
and sudden occurrence of rockfalls make it different from 
other slope instabilities. The affected area by rockfalls can 
be identified through the existence of cracks and crashed 
blocks on the surface of the slope. It is worth pointing out 
that detection of rockfalls in the area is possible in the case 
of less vegetation. In areas susceptible to rockfall hazard, 
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the occurrence of multiple rockfalls results in the formation 
of debris deposits in the heel of the slope (Corominas et al. 
2017).

The unpredictable nature of most of the rockfalls has been 
a concern for authorities and decision-makers. Although 
the dimensions of rockfalls are limited, they are a very fast 
event with high kinetic energy that makes enormous dam-
age. Turner and Jayaprakash (2012) presented a complete list 
of rockfalls, which showed that even rocks with less volume 
could be resulted in a significant destruction and blockage of 
roads, especially in railway lines. The recent research (Petley 
2012) showed that the most landslide and rockfall-induced 
losses were observed in most of the less developed countries 
due to the lack of research and suitable resources.

In general, the trigger factor in rockfalls is related to the 
existence of previous shear or tensile fracture along the 
discontinuity, which led to the detachment and creation of 
potentially unstable blocks from the slope (Valagussa et al. 
2014b). Gosar (2017) classified the rockfalls into five classes 
based on volume and frequency (Table 1). The blocks can 
be triggered by many factors including seismic movements 
of the earth, rainfall, increasing the pore pressure in the 
rock mass, melting–freezing cycle, chemical decomposi-
tion, advanced weathering of the rock mass, root wedging 
caused by winds, and progressive decomposition of rock 
mass (Varnes 1978). The rockfalls originate from cliffs with 
different size, lithology, and structure. Rockfalls and other 
kinds of landslides are secondary effects of large earth-
quakes. Therefore, rockfall hazard zonation is an important 
issue for planning the land use, especially in seismic regions 
with steep slopes.

Given that no research has been conducted on zonation 
and mapping the susceptibility of seismic rockfalls using 
intelligent methods (such as ANFIS), the present research 
was carried out to implement the ANFIS and LR methods 
in the area stricken by Firooz Abad-Kojour earthquake of 
2004, evaluate and select the optimum model with high 
accuracy in prediction, mapping the susceptibility of seis-
mic rockfalls, and apply this method to predict probability 
of rockfall events induced by future earthquakes. In the pre-
sent research, Geographic Information System (ArcGIS), 
PCI Gematica (Landsat Satellite Image Processing), SPSS 

22 (to implement LR), and MATLAB 2014 (Neuro-fuzzy 
network implementation environment) were used.

Materials and methods

Study area description

Geographical setting of the study area

Topographically, the study area, which was stricken by 
Firooz Abad-Kojour earthquake of 2004, is one of the high-
lands of Alborz Mountain. Damavand Peak with a height of 
5671 meters—the highest peak of Iran—is located in this 
area. The average height of the area is over than 2000 m 
(A.S.L). The existence of deep and steep valleys and long 
crests are the main characteristics of this area in Alborz. 
Based on the classification of plain and mountainous 
regions, more than 80% of the earthquake-stricken parts of 
the study area are located in a mountainous region. The plain 
and low-lying regions of the study area are limited to small 
parts of the valleys bottom and the southern margin of the 
Caspian Sea. The selected stricken areas are located in lon-
gitude of 51°00′–52°00′ N and latitude of 36°00′–36°30′E 
(Fig. 1). Firooz Abad-Kojour earthquake of 2004 resulted 
in casualties and financial losses from the south of Chalus, 
Firooz Abad, Kojour valley, Marzan Abad, Kelardasht, and 
Chalus Road to the western parts of Roudbar Alamut district 
of Qazvin province, Iran (Zare 2004).

Geological conditions of the study area

The study area is located in the central part of the Alborz 
Mountains. Alborz mountain range was created by severe 
Alpine orogenic movement. Today, these tectonic move-
ments are observed in forms of folds, faults, and thrusts. 
Although the general trend of folds and their structure 
affected by Alborz Mountain and it is East–West, there are 
many irregularities in this trend. In Stratigraphic view, the 
main part of the study area is covered by Karaj Formation, 
which is often pyroclastic and includes a wide range of tuff, 
agglomerate, shale, sandstone, and volcanic and intrusive 
rocks. It followed by sandy-shale Shemshak Formation. In 
addition to Karaj and Shemshak formations, the rock units 
related to Precambrian until the end of the third era are out-
cropped in a different part of the area, and the multiple frac-
tures and folds caused by tectonic movement are the com-
mon point of the rock units. In the eastern and central parts, 
the calcareous deposits and pyroclastic rocks are outcropped, 
respectively. From central part to the western part of the 
study area, the Neogene marl and conglomerates deposits 
are covered the dominant part of the area (Amini Hosseyni 
et al. 2004; Mahdavifar 2006). The geological map of study 

Table 1  Distribution of rockfalls according to their size

Size of rockfall Estimated volume  (m3) Number

Very small 102 53
Small 103 13
Medium 104 6
Large 105 4
Very large > 106 2
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is shown in Fig. 2. Besides, lithological description of the 
geological terms used in Fig. 2 is presented in Table 2.

Characteristics of the Firooz Abad-Kojour earthquake 
of 2004 and its causative fault

In 28th May 2004, the Firooz Abad-Kojour earthquake of 
2004 shook the northwest of central Alborz and part of 
western Alborz at 17:08:46 h (local time). The earthquake 
with magnitudes of 6.2 (Mw) and focal depth of 18 km was 
felt in south of Chalus, Kojour valley, and Marzan Abad 
area, which along with casualties and financial loss from 
Firooz Abad (Kojour), Marzan Abad, Kelardasht, and Cha-
lus road (Mazandaran province) areas to western parts of 
Roudbar Alamut district of Qazvin province. According 
to the recorded strong motion data in the main shock and 

locating the earthquake focal point, the epicenter was located 
at 36.35°N, 51.35°E. Based on the report of Harvard Univer-
sity website, the earthquake focal mechanism was introduced 
as compressive with a small strike–slip component. Given 
the location of earthquake focus, seismic epicenter zone, and 
faults in the area, the north fault of Alborz was introduced 
as a causative fault (Fig. 3) (Zare 2004).

Based on the damages in the seismic epicenter, field 
observation of Baladeh to Kojour Valley, observing the 
residential area in Chalus valley, and due to the focus of the 
rockfalls in the range of Hezarcham to Siyahbishe on the 
Chalus Road, it seems that, in epicenter zone and in the area 
of rockfalls in Chalus road, the intensity of the earthquake 
was in the VII+ and VIII+ (on the EMS scale), respectively. 
On the other hand, the expansion of the iso-seismical line 
in the epicentral zone showed the earthquake intensity of 

Fig. 1  Geographical setting map of the region affected by Firooz Abad-Kojour earthquake of 2004
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north and North West of Tehran which was VI (Fig. 3) (Zare 
2004).

Rockfalls induced by the Firooz Abad-Kojour earthquake 
of 2004 in the study area

Firooz Abad-Kojour earthquake of 2004 due to the topo-
graphic conduction and existence of Mountains and steep 
areas resulted in numerous slope instability in a large part 
of the Central Alborz. The instabilities were expanded in 
the area of 12,000 km2 (around the earthquake epicenter) in 
forms of rockfalls and small and large slides. In the study 
area, about 74 falls and falling zone were recorded (Fig. 4). 
The furthest distance from the falling event to the earthquake 
epicenter is about 101 km, which occurred within 27 km of 
the Qazvin road to Moallem Kalayeh. This distance was in 
agreement with the distance of seismic landslides presented 
by Keefer (1984). The rockfalls are concentrated in the cen-
tral, western, southern, and southwest areas of the iso-inten-
sity line (Chalus road, Baladeh, and adjacent areas of Sama 
village, Firooz Abad, Manjir, etc.). In geological point of 
view, these areas consist of Precambrian (sandstone, slits of 
Kahar formation) and Cambrian formations (sandstone and 

shale). The presence of weak rocks and rough topography 
has greatly increased the potential for landslides occurred 
in the region. The landslides commonly occur in the length 
of the steep valley and more dispersed in areas with a mild 
topography. The most abundant type of seismic landslides 
is shallow and severely disrupted falls, and rocks and debris 
slide that has spread throughout the region. Coherent slump 
and block slides occur in rocks with higher strength. The 
highest number of seismic rockfalls occurred in the range of 
Chalus road (between the HaftBaradar and Hezarcham) and 
the linking road of Sama village to Manjir in Sanj Mountain. 
In some parts, more than 40% of slopes were affected by the 
earthquake (Amini Hosseyni et al. 2004). The depth of land-
slides varies from several decimeters to several meters and 
affects the dry and unconsolidated materials. The volume 
of these instabilities varies from a fraction of cubic meters 
to several thousand cubic meters. Within the Chalus Road, 
the highest casualties and damage are caused by seismic 
rockfalls. Besides, the similar rockfalls were observed in the 
range of Sama Village to Manjir (close to the epicenter) and 
the roads around it. Seismic rockfalls resulted in many finan-
cial losses and casualties in villages, one can name Anarak, 
Firooz Abad, Sama, Manjir, Larak, etc.

Fig. 2  Geological map of the area stricken by the Firooz Abad-Kojour earthquake of 2004
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Table 2  Lithological description of the geological terms used in Fig. 2

Geological units Descriptions

Qal Loose alluvium in the river channels
K1v Volcanics including basalt and spilite

Residental area
PlQc,s Conglomerate, sandstone, mudstone intercalations
TRed Massive dolomite
Pn Cherty limestone, marly limestone, marly, and sandy shales
Pr Gray, thick-bedded to massive limestone and dolomite
Ql Landslide, rock stream
Cm Black limestone, dolomitic limestone, marl intercalations
Cml,m Limestone, marl, siltstone
K2m Marl, calcareous marl, marly limestone
la Larvikitic border facies (Nepheline syenite)
Pes Calcareous sandstone, sandy limestone
qm Akapol quartz monzonite
TRe Undivided Elika formation
K1vl Dark colored basic and intermediate to basic volcanics, pyroclastics, tuff, conglomerate
K1v2 Alkali basalt, spilitic basalt, conglomerate, tuff braccia, tuffs, lithic tuff
mt Metamorphic Cretaceous volcanic sequences Green schists, hornfels, schist, marbles
K1l Limestone (Berriasian—Valanginian)
K2v1 Dark colored volcanic rocks, conglomerate, tuff breccia, and pyroclastics
COm Undivided mila formation
mb Marble, marmorized limestone
K2v2 Trachyandesitic basalt, tuff breccia, pyroclastics, tuffite
K2m.l Marly limestone, limestone (Cenomanian—Coniacian)
Cb,z Undivided Barut and Zagun Formation
Ekv Trachyandesite, trachy basalt, basanite, andesite, agglomerate, tuffs, pyroclastics
Cq White quartzite, quartzitic sandstone (formerly top quartzite)
Ol Sandstone, shale, trilobite bearing limestone and marl, quartzite, Dolomite
Dja Sandstone, shale, limestone, marl phosphatic layers
Qf Young and old alluvial fans, fanglomerate
M Undivided Miocene deposits including silty marl, siltstone, conglomerate, gypsum
Jl2 Cream, thick-bedded to massive limestone, dolomitic limestone and dolomite, partly cherty
Pdv Basic volcanics, tuff, pyroclastics, sandstone
Ol1c,s Red conglomerate, sandstone
Mm,s Silty marl, sandstone, mudstone, siltstone gypsum
Ek.sh1 Lower shale member calcareous and siliceous shales, tuffite, pyroclastis, dacitic
Ml Limestone
Mc,s Conglomerate, sandstone
gy Gypsum
Ek.t3 Upper tuff Member Tuffs, pyroclastics, calcareous shale, mudstone, sandstone
da Rhyodacite—rhyolite (Paleogene—Oligocene)
Qm Moraines (glacial deposits)
K1,2t,v Undivided cretaceous tuffs, siltstone and volcanics
K2l Globotruncana limestone, marly limestone
Ms,m Calcareous sandstone, silty marl
TR3v Olivine basalt, andesitic basalt, pyroclastics
El Limestone, marly limestone
PCk Slaty shale, sandstone, siltstone, dolomite, quartzite
OM Siltstone, marl, sandstone, conglomerate, limestone, gypsum
Jd,l Undivided Dalichai and lar formations
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Table 2  (continued)

Geological units Descriptions

PeEz Alveolina—nummulitic limestone
Qrf Rock fall
DPj,r Undivided Jeirud and Ruteh formations
Ek.a Asara shale member calcareous—tuffaceous shale, siltstone, sandstone
CDm,j Undivided Mila and Jeirud formations
Djv Basaltic—andesitic lava flows
Cm3 Pink—white Trilobite bearing limestone (third member)
Cm2 Dark colored Trilobite bearing dolomitic limestone (second member)
Cm1 Dark colored massive dolomite and fissile yellow marl (first member)
Cjc Light grey massive dolomitic limestone
Cjd Black oolitic and intraclastic limestone
PC-Cs.ch Dark colored shale and siltstone
Cjb Black limestone, clayey marl intercalations
m Monzonite, monzosyenite (paleogene—probably oligocene)
Lake Lake of Amir Kabir dam
TRel Thick-bedded to massive limestone
PeEfc Thick-bedded to massive polygenetic dark colored conglomerate, sandstone
PeEfs.m.t Sandstone, shale, marl, tuff, siltstone, conglomerate, limestone
Mm,s,l Marl, sandstone silty marl and minor limestone
Mm Marl, sandstone, and calcareous sandstone with a lot of shell fragments
K1l1 Cream to white, thick-bedded to massive limestone and a conglomerate horizon at the base
K2lv Yellowish gray, thick-bedded to massive limestone and volcanics including basalt
K2c Red well-sorted, thick-bedded, polymictic conglomerate
TR2l Violet, thick-bedded to massive limestone
TR2sh,m Shale and marl with intercalations of silty sandstone containing marine fauna
K1c Gray-to-red thick-bedded conglomerate
Ngc Poorly consolidated, poorly sorted, polymictic conglomerate
K2lm Gray, yellow, light green, limestone, argillaceous limestone, and marl
PLQc Slightly consolidated conglomerate
TR2dl Light gray-to-black, well-bedded dolomite
K2v Volcanics including basalt, spilite, and andesite–basalt
Pnv Black, dark green volcanics including basalt and spilite
TRel1 Light gray, green, and red laminated to thin-bedded argillaceous limestone
PC-k Shale, micaceous sandstone and minor dolomite
PC-C-s Gray, thick-bedded to massive dolomite partly crystallized (Soltanieh dolomite)
C-bt Red shale, siltstone and sandstone with intercalations of dolomite
C-z Red, siltstone, shale and sandstone
C-l Red, medium to thick-bedded, cross-bedded arkosic-to-subarkosic sandstone
C-m Gray dolomite, limestone, marl, sandstone and shale
Pdq2 White, gray, thick-bedded quartz arenite
Pnl Dark gray, black, thick-bedded to massive fossiliferous limestone
Pd Quartz arenite, limestone, and volcanics
Pdl2 Cream, yellow, and gray fusulinid limestone
Pds2 Red and gray sandstone over-laine by alternation of limestone and sandstone
Pdl1 Gray, thick-bedded, oncolytic, fossiliferous, reefal limestone containing coral and fusulinid
Pds1 Red and gray sandstone with intercalations of pebbly sandstone
Pdq1 White, gray quartz arenite red, thick-to-medium bedded sandstone and pebbly sandstone
TRu-Jsv Volcanics including basalt, andesite, and dacite
Pnsh Black calcareous and gypsiferous shale with abundant brachiopod
TRu-Jssc Gray, well-consolidated, well-rounded pebbly sandstone
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The Firooz Abad-Kojour Earthquake of 2004 led to 
41 life losses and huge financial loss such as destruction 
of buildings and vehicles. The highest rate of causalities 
was related to the falling of huge rocky blocks and hit 
cars passing through Chalus to Tehran road (Amini Hos-
seyni et al. 2004; Mahdavifar 2006). The samples related 
to Firooz Abad-Kojour seismic rockfalls are presented in 
Figs. 5a–d and 6a, b. Moreover, Table 3 presents geologi-
cal and morphological properties of some dominant dis-
continuities effective in rockfall events induced by Firooz 
Abad-Kojour of 2004 recorded during the field survey.

Background of the research

Estimating the rockfalls hazard for zonation requires 
the determination of the event probability (Cancelli and 
Crosta 1993; Corominas et  al. 2005; Jaboyedoff et  al. 
2005; Straub and Schubert 2008; Agliardi et al. 2009). For 
seismic rockfalls, the occurrence probability is affected 
by event probability of earthquakes with different inten-
sity. For other types of landslides, expanded studies were 
performed on the relationship between earthquake and 
landslide occurrence through experimental (Keefer 1984; 

Table 2  (continued)

Geological units Descriptions

gb Gabbro (post-rheato-liassic)
Jssh Black, carbonaceous shale
Pns Gray, red coarse grained quartz-rich sandstone
Cml Gray-to-black, thin-bedded to massive argillaceous limestone
Cmm,l Gray-to-black, platy, fossiliferous argillaceous limestone and marl
PLQd Dacitic doms and veins
Pnc Red, well-bedded, well-sorted, well-consolidated, polymictic conglomerate
TRu-Jsc Thick-bedded to massive quartzose conglomerate
TRel2 Cream, brownish, thick-bedded, limestone and dolomitic limestone
Jssh,s Black shale and dark gray micaceous sandstone
TRu-Jsla Dark red laterite and lateritic shale (paleosol)
Jss,sh Gray, micaceous sandstone, argillaceous sandstone, and shale locally with coal seams
Eba Basalt
Jl3 Gray, thick-bedded to massive dolomite and dolomitic limestone
Qsc Scree slope deposits
Ekg Gypsum
Ekan Andesite
Ekl Limestone, argilacean, gray
Ev Volcanics including agglomerate, volcanic breccia, basalt, and spilite
Qgf Glaciofluvial deposits
Qgd Glaciogenic deposits
Eksh Black and grey shale, partly calcareous
Ekt,sh Green tuff, tuffaceous shale, and green-to-dark grey shale
Oba Olivine basalt
Qtr Travertine
Jd Dark green, ammonite bearing argillaceous limestone and marl
Pgfs Dark red, coarse grained conglomeratic sandstone and shale
K1l2 Cream to gray, thick-bedded orbitolinid and rudist bearing limestone
Ekv,t Volcanics including andesite, andesite-basalt tuff, thin-to-thick-bedded, green and grey
Pgf Red coarse grained conglomerate and sandstone
Jl1 Greenish gray-to-light gray, thin-to-medium bedded, ammonite bearing argillaceous limestone
Ez Thin-to-thick-bedded nummulitic limestone, partly argillaceous and arenaceous
Pgfc Red, thick-bedded to massive conglomerate
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Fig. 3  Iso-intensity map of the 
Firooz Abad-Kojour earthquake 
of 2004

Fig. 4  Distribution map of Rockfalls induced by the Firooz Abad-Kojour earthquake of 2004 within the study area
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Rodrıguez et al. 1999; Lee et al. 2008; Miles and Keefer 
2009a, b), physical, or numerical methods (Jibson et al. 
2000; Wasowski and Del Gaudio 2000; Capolongo et al. 
2002; Del Gaudio et al. 2003; Del Gaudio and Wasowski 
2004; Uchida et al. 2006; Peng et al. 2009; Rapolla et al. 
2010; Motamedi and Liang 2013). In fact, less number of 
research (Marzorati et al. 2002; Valagussa et al. 2014a, 
b; Lari et al. 2014; Massey et al. 2015; Mahdavifar et al. 
2016) was conducted on seismic rockfalls hazard zonation 
and susceptibility mapping. In these studies, the seismic 
rockfall probability was predicted by hierarchical meth-
ods and statistical methods such as information value and 
logistic regression (LR) generally. The above-mentioned 

methods, however, are not efficient in areas that the rock-
fall probability is affected by the earthquake.

Required information layers for LR and ANFIS 
methods

The region stricken by the Firooz Abad-Kojour earthquake 
of 2004 has a 4983 km2 area. In this research, various 
information layers with a pixel size of 10 m × 10 m were 
prepared. The determination of cell size is based on the 
minimum precision of all causative factors to guarantee the 
quality of output maps and avoid misleading results. Unit 
categorization of the study area was performed using the 

Fig. 5  Rockfalls triggered 
by the Firooz Abad-Kojour 
earthquake of 2004 within the 
study area: a falling rocks on 
the Baladeh road, 19 km from 
Haraz to Baladeh; b rockfall and 
blockage of road from Kojour to 
Baladeh; c rockfalls on the link 
road of Sama village to Manjir 
in Sanj Mountain; d farms 
stricken by rockfalls around of 
Sama village; consider the mud 
trace resulting from rockfalls 
on walls

Fig. 6  Rockfalls triggered by 
the Firooz Abad-Kojour earth-
quake of 2004 within the study 
area: a falling zone in Chalus 
road, 12 km from Baladeh three 
ways to Chalus; b blockage of 
some parts of Chalus road due 
to rockfalls in 14 Km of Bala-
deh three ways to Karaj
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ArcGIS environment. Through this process, the spatial posi-
tion of each pixel is fixed with respect to all information 
layers. Therefore, for a given pixel with fixed spatial coor-
dinates, the predefined information and values are recorded. 
Finally, each pixel contains data from all information layers 
as well as the presence or lack of seismic rockfall.

There are much affecting and triggering factors used 
in the literature for landslide hazard zonation. The most 
important triggering factors are earthquake and rainfall, 
and most important affecting factors are slope angle and 
ground strength (Yin and Yan 1988; Budimir et al. 2015). 
Furthermore, the importance of affecting factors changes for 
different landslide types. For example, soil moisture is not 
an important factor in rockfall occurrence, while it is one of 
the most important factors in soil slump occurrence. In this 
research, seismic rockfalls’ susceptibility mapping and haz-
ard zonation are investigated, and hence, important factors 
for rockfall occurrence are chosen for analysis.

The initial information layers used in this research are dis-
tribution map of the rockfalls induced by the Firooz Abad-
Kojour earthquake of 2004, aspect, distance from the river, 
distance from the road, ground strength class, hypocentral 
distance, shake intensity (MMI), slope angle, and slope 
height in the study area. Using the distribution map of the 
rockfalls triggered by the Firooz Abad-Kojour earthquake of 
2004, the other information layers were classified.

Ground strength class information layer is established 
based on the description and information provided by Keefer 
(2000) about the relationship between the qualitative char-
acteristics of slope materials (lithology) and concentration 
of seismic rockfalls. The ground strength class is related 
to the lithology unit ranking based on their susceptibility 
to seismic rockfalls. To prepare this information layer, the 
1:50,000 geological maps of the area stricken by the Firooz 
Abad-Kojour earthquake of 2004 were used, and then, these 
maps were elaborated using the field visit data and 1:20,000 
aerial photos. For each lithology unit in the study area, a 
ground strength class value was assigned in the range of 
1–5 and accuracy of 0.5 (Fatemi Aghda and Bagheri 2015). 
These values are proportional to the concentration of seis-
mic rockfalls calculated for each lithology. This information 
layer is a representative of ground conditions, material prop-
erties such as shear strength, and rock mass joints. The lower 
ground strength class values suggest the weaker and higher 
susceptibility of the ground-to-seismic landslide occurrence 
(Miles and Keefer 2007).

To prepare shake intensity data layer, first, moment mag-
nitude of earthquake (MW), the distance of each unit from 
epicenter (R), and Eq. 1 (Mahdavifar et al. 2007) were used 
to provide Arias Intensity (Arias 1970) map (with pixel size 
of 10 m × 10 m). Then, using Eq. 2 (Wilson 1993), shake 
intensity map was based on the MMI (Fatemi Aghda and 
Bagheri 2015):

where Ia is Arias Intensity in m/s, M is the moment magni-
tude, and R is the source-to-site distance in km.

Source-to-site distance (R), which is defined as the short-
est distance between accelerometer stations and the fault 
rupture plan at the earthquake focal depth (h) is obtained 
by R =

√

rr + h2:

where IMMI is the shake intensity in MMI.

Seismic rockfalls’ susceptibility mapping using LR 
method

A bivariate LR is a multivariate statistical method, which is 
generalized by linear models and introduced by Cox (1958). 
Besides, it forms a mathematical model to predicts the prob-
ability of occurrence of an event in the determined location. 
This model evaluates the absence or existence of a depend-
ent variable in connection with the independent variables 
(Garsia et al. 2008). When the dependent variable is dichoto-
mous (1 and 0), bivariate LR is the best choice for statisti-
cal analysis. In comparison with linear regression method, 
LR method has three advantages. First, in contrast to linear 
regression, variables in LR do not require to have a normal 
distribution. Second, independent variables in the LR may 
be continuously or categorized, or their combination. Third, 
LR method needs fewer assumptions (Chauhan et al. 2010). 
LR method is a quantitative method, which determines the 
effect of each independent variable on dependent variable 
quantitatively through coefficient (Lee and Sambath 2006; 
Garsia et al. 2008; Nefeslioglu et al. 2008; Dashti Marvily 
2008; Yilmaz 2009). In bivariate LR model, the coefficient 
of independent variables (effective and trigger parameters) is 
estimated using maximum-likelihood method. The formula 
of LR is presented in the following equation:

where Y is dependent variable, X1, X2 ,…, Xn is independent 
variables, Logit is probability logarithm or the natural 
amount of probability logarithm, p is probability of depend-
ent variable (Y), 

(

p

1−p

)

 is likelihood or disagreement ratio, 

β0 is constant coefficient, and β1, β2, …, βn are coefficients 
of independent variables.

The results indicate the relationship between the seismic 
rockfalls and their causative factors. In the LR method, the 
dependent input variable should be dichotomous, i.e., it only 
contains data coded as 1 (rockfalls) or 0 (non-rockfalls). The 
LR method does not directly indicate the susceptibility and, 
however, provide an inference to show the susceptibility rate 

(1)log Ia = −3.880 + 0.810M − logR − 0.002R,

(2)log(Ia) = 0.527 IMMI − 3.816,

(3)

Y = Logit(p) = ln

(

p

1 − p

)

= �0 + �1X1 + �2X2 +⋯ + �nXn,
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using probability (Ayalew and Yamagishi 2005; Lee and 
Sambath 2006; Garsia-Rodríguez et al. 2008; Nefeslioglu 
et al. 2008).

Since the application of LR method is to identify the best 
model for creating a relationship between the trigger and 
effective parameters of seismic rockfalls with dichotomous 
dependent variable (coded with 1 and 0 for occurrence of 
rockfall and non-occurrence of rockfall), in the present 
research, to develop the LR method, the random sampling 
was performed in non-falling parts of the study area, pro-
vided that the stable and unstable points did not coincide (74 
falling and 74 non-falling points; code 1 and 0, respectively). 
Table 4 not only provides a summary of the role of each 

variable in the model but also indicates that which variables 
remain in the model after performing LR. Table 4 is the 
most important tool in interpretation related to significance 
(Wald) and effective rate of each independent variable on 
dependent one (Exp (β)). It should be noted that Wald statis-
tic was employed to find which independent variables have 
a significant effect on the dependent variable. Besides, to 
determine the effective rate of each independent variable on 
dependent one, odds ratio statistics were used. As shown in 
Eq. 4, the value of Wald test is calculated by the compari-
son of maximum-likelihood estimation of each coefficient 
(β) with standard estimated error (SE) of each coefficient. 
Interpretation of the Wald statistics values is performed by 

Table 4  Influence coefficients 
(β), Wald values, and Exp (β) of 
trigger and effective parameters 
of Firooz Abad-Kojour seismic 
rockfalls (2004) using LR based 
on backward conditional rule in 
SPSS software

a Factor coefficient
b Standard error
c Wald test value
d Signature level
e Odds ratio

Variables in the equation

Steps Factors βa SEb Waldc Sig.d Exp(β)e

Step  1a Aspect − 0.501 0.365 1.882 0.170 0.606
Slope 2.210 0.710 9.675 0.002 9.112
River 1.281 0.586 4.787 0.029 3.602
Road 0.994 0.338 8.668 0.003 2.701
MMI 2.790 2.080 1.800 0.180 16.284
R 1.246 1.177 1.120 0.290 3.475
Ground 0.893 0.419 4.545 0.033 2.441
Slope height − 1.078 0.693 2.423 0.120 0.340
Constant − 18.739 5.522 11.515 0.001 0.000

Step  2a Aspect − 0.437 0.354 1.527 0.217 0.646
Slope 2.031 0.644 9.951 0.002 7.624
River 1.224 0.554 4.886 0.027 3.402
Road 1.017 0.323 9.902 0.002 2.766
MMI 4.611 1.312 12.360 0.000 100.604
Ground 0.866 0.417 4.314 0.038 2.377
Slope height − 1.025 0.688 2.219 0.136 0.359
Constant − 17.937 5.025 12.740 0.000 0.000

Step  3a Slope 1.787 0.553 10.441 0.001 5.972
River 1.143 0.508 5.057 0.025 3.135
Road 1.058 0.310 11.609 0.001 2.880
MMI 4.221 1.149 13.506 0.000 68.107
Ground 0.865 0.384 5.088 0.024 2.375
Slope height − 0.909 0.631 2.079 0.149 0.403
Constant − 17.996 4.613 15.218 0.000 0.000

Step  4a Slope 1.439 0.461 9.743 0.002 4.217
River 0.983 0.434 5.136 0.023 2.673
Road 0.984 0.289 11.562 0.001 2.675
MMI 3.585 0.927 14.960 0.000 36.037
Ground 0.736 0.332 4.898 0.027 2.087
Constant − 16.600 3.856 18.535 0.000 0.000
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evaluating the significance level (Sig.) of each variable. 
Accordingly, if the significance level of each variable is less 
than 0.05, the existence of this variable in the model is ben-
eficial and has a significant effect. The sign of independent 
variable coefficient (β) reveals the direct effect or reverse 
effect of the variable on the dependent variable (Chauhan 
et al. 2010). The coefficients obtained by LR method, the 
Wald values, and related Exp (β) are presented in Table 4.

Considering the results of fourth step in Table 4, the inde-
pendent variables, including shake intensity, slope angle, 
ground strength class, distance from the road, and distance 
from the river, are able to predict the changes in the depend-
ent variables of occurrence or non-occurrence of seismic 
rockfall. Besides, their prediction ability is significant at 
< 0.05. On the other hand, among the remaining significant 
independent variables, shake intensity and ground strength 
class, respectively, have the highest and lowest abilities 
to susceptibility mapping of Firooz Abad-Kojour seismic 
rockfalls (2004). Based on the fourth step of Table 4, the 

(4)Wald =

(

�

SE

)2

.

independent variables of shake intensity, slope angle, ground 
strength class, distance from the road, and distance from the 
river, have a positive and direct relationship with the depend-
ent variable of occurrence or non-occurrence of rockfall trig-
gered by Firooz Abad-Kojour earthquake of 2004.

In the present research, to weight the parameters and 
related classes to each parameter, the LR analysis of SPSS 
software and fuzzy logic of ArcGIS software were, respec-
tively, employed. After performing four steps of LR analysis 
based on “backward condition” rule in the SPPS software 
(Table 4) and determining the suitable weights for selected 
parameters (shake intensity, slope angle, ground strength 
class, distance from the road, and distance from the river), 
first, the information layers were fuzzified in the ArcGIS 
software to weight the sub-criteria of those parameter. Then, 
the weights obtained from Step 4 were multiplied and over-
lapped with corresponding parameters, such that to prepare 
the map of seismic rockfall susceptibility (Fig. 7). In Arc-
GIS software, the seismic rockfall susceptibility zonation 
map is classified into five classes of “very low hazard”, “low 
hazard”, “moderate hazard”, “high hazard”, and “very high 
hazard” due to the natural breaks (Swets 1988; Bednarik 
et al. 2010; Constantin et al. 2011; Pourghasemi et al. 2012a, 

Fig. 7  Hazard zonation map of the rockfalls induced by the Firooz Abad-Kojour earthquake of 2004 using logistic regression (LR) method
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2013). By this way, the boundary between the susceptibil-
ity levels of seismic rockfalls was determined by the abrupt 
change in the corresponding histogram curve.

As shown in Fig. 7, the maximum area is related to “very 
low hazard” and “low hazard” classes (shown in dark green 
and green regions, respectively). In general, the percent-
age of susceptible area for seismic rockfalls was reduced 
by increasing the hazard in related zones. As can be seen, 
the majority of rockfalls triggered by Firooz Abad-Kojour 
earthquake of 2004 is placed in “high hazard” to “very high 
hazard” zones.

Besides, all parts close to linking roads, rivers, the parts 
with a steep slope, the areas around earthquake epicenter, 
and parts with consisting of low-strength geological forma-
tion show a “high”-to-“very high” rockfall susceptibility 
level. Since rockfalls mostly occur in scraps and steep areas 
and considering the rough morphology of streams and road-
side features, the high concentration of rockfalls within the 
area stricken by Firooz Abad-Kojour earthquake of 2004 
along these points is logical (Fig. 7). Therefore, it can be 
concluded the desirable accuracy of LR analysis in prepara-
tion of hazard zonation map for the rockfalls induced by the 
Firooz Abad-Kojour earthquake of 2004.

Seismic rockfalls’ susceptibility mapping using 
ANFIS method

In most problems of the real world, by increasing the num-
ber of variables, determination of linguistic rule is being 
difficult. Therefore, due to the impossibility of complete 
defining the mentioned rules, learning algorithms are used 
to synthesize the fuzzy model, which is called neuro-fuzzy 
modeling (Jang 1993). Although the fuzzy models are able 
to show the complicated process using concepts and rules of 
“if-then”, they are not able to learn. Besides, in the case of 
a high number of variables in the description of a problem, 
the choice of membership function and suitable “if-then” 
rule is difficult in the fuzzy model and the adjustment step 
of the fuzzy model will be unlimited. This problem can be 
solved using artificial neural learning algorithm such as 
optimization methods (Backpropagation algorithm) (Yesil-
nacar 2005; Polat and Güneş 2006). In this method, learning 
algorithm automatically chooses the suitable parameter for 
membership function in the fuzzy model. Although the neu-
ral networks are able to learn, they cannot explain the com-
plexity of the mentioned system. Therefore, adaptive neuro-
fuzzy inference system (ANFIS) method is used, which is 
a developed fuzzy model and trained by learning algorithm 
of neural network theory (Polat and Güneş 2006). The other 
capability of ANFIS, which almost overcomes the disadvan-
tages of the fuzzy model, is its self-learning feature. ANFIS 
creates a fuzzy inference system (FIS) using input and output 
data sets. The parameters of the membership function of 

ANFIS are adjusted through back propagation algorithm or 
hybrid learning principle (combination of back propagation 
algorithm with least squares method) (Ying and Pan 2008; 
Oh and Pradhan 2011). The adjustment operations allow the 
fuzzy system to learn own structure from the data set.

ANFIS structure with two inputs is shown in Fig. 8. 
Each input has two membership functions; consequently, 
this structure has four principles. Besides, ANFIS model is 
a five-layered structure and each of them is described here.

The first layer: in this layer, the membership degree of 
each input to corresponding fuzzy set is calculated (Eqs. 5 
and 6):

where x and y are input variables of i node, A and B are a lin-
guistic label, and µAi (x) and µBi (x) are fuzzy membership 
function associated with this node. Parameters are referred 
to as “premise parameters”.

Second layer: every node in this layer is a fixed-node 
labeled Π. The output of each node is a multiplication of all 
the input signals to the node, which equivalents to “if” part 
of the fuzzy rule (Eq. 7):

where wi is weight or firing strength of each fuzzy principle 
of “if–then” rule.

Third layer: every node in this layer is a fixed-node 
labeled N. The nodes of this layer calculate the normalized 
output of second layer (Eq. 8):

where O3
i
 is the weight of normalized firing strength of the 

third layer.
The fourth layer: the output of this layer is the multipli-

cation of previous layer output by a first-order polynomial 
(first-order Sugeno model) (Eq. 9):

(5)O1
i
= �Ai(x),

(6)O1
i
= �Bi(y),

(7)O2
i
= wi = �Ai(x) × �Bi(y), i = 1, 2,

(8)O3
i
= w̄i =

wi

w1 + w2

, i = 1, 2,

Fig. 8  ANFIS with two inputs and one output (Sugeno 1985)
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where w̄i is normalized firing strength of third layer, and pi, 
qi, and ri are the parameter set of i nodes. These are referred 
to as consequent parameters, which can be adjusted during 
the training process.

Fifth layer: the single node in this layer is labeled ∑, 
which computes the overall output as the summation of all 
incoming signals (Eq. 10):

where O5
i
 is the ith node output of the fifth layer (Wang and 

Elhag 2008; Bui et al. 2012).
The final output of the ANFIS is the mean weighted out-

puts of all rules (Eq. 11):

To implement ANFIS for Firooz Abad-Kojour seismic 
rockfalls’ susceptibility mapping, MATLAB software was 
employed. It should be noted that, to determine the efficiency 
of ANFIS and modeling, data were normalized before enter-
ing to the software. Besides, to design ANFIS, five selected 
input parameters (shake intensity, distance from the road, 
slope angle, distance from the river, and ground strength 
class) were used based on the LR method (the fourth step of 
Table 4). After normalization and preparing data, the data of 
study area were divided into two groups of “train” and “test” 
data. In the present research, 70% and 30% of data from each 
hazard zone, respectively, were used as train and test data. 
The next step was ANFIS design. There are several methods 
to design ANFIS such as “Grid Partition” and “Subtractive 

(9)O4
i
= w̄ifi = w̄i(pix + qiy + ri),

(10)O5
i
= overalloutput =

�

w̄ifi =

∑

wifi
∑

wi

, i = 1, 2,

(11)y(k) =

∑l

i=1

�

rulei(k)
�

r1,i(k) + p1,i(k)x + q1,i(k)y
��

∑l

i=1
rulei(k)

.

Clustering”. In the present research, “Subtractive Cluster-
ing” method was used. In this method, not only there is no 
need to determine the type and number of the membership 
function, but also the designed algorithm by network deter-
mines the number of the membership function. It means 
that the number of the membership function is determined 
based on the frequency and distribution of information. In 
addition, in this method, the type of input and output mem-
bership functions is considered “Gaussian” and “Linear” by 
default, respectively. The advantage of “Subtractive Cluster-
ing” method is that the data mining of data obtain from study 
area and determination of whether the designed network 
needs adding complexity or not. Besides, it is possible to 
assign every data to different membership function. There-
fore, there is no need to determine the number of member-
ship function in modeling. On the other hand, if the number 
of the membership function is high, the number of rules 
will be increased, and there will be the possibility of Meta-
learning; consequently, the system will lose its efficiency 
(Pradhan et al. 2010).

The designed ANFIS model for Firooz Abad-Kojour 
seismic rockfalls susceptibility mapping with 200 training 
epochs is shown in Fig. 9. It is worth pointing out that the 
number of training steps continues where the error-epoch 
curve becomes horizontal and error reaches a minimum 
value. In other words, the error reaches a constant value; 
therefore, increasing the number of training epochs has no 
effect on reducing the error value. As shown in Fig. 9, error-
epoch curve became horizontal after 200 training epochs 
and the minimum error was 0.024992. Besides, based on the 
“Subtractive Clustering” method, 12 membership functions 
were assigned to each input parameter (Fig. 9).

The Firooz Abad-Kojour seismic rockfalls’ susceptibility 
zonation map using ANFIS is shown in Fig. 10. In the Arc-
GIS software, the seismic rockfalls’ susceptibility zonation 

Fig. 9  Error-epoch curve of designed ANFIS model for Firooz Abad-Kojour seismic rockfalls’ susceptibility mapping
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map is classified into five classes of “very low hazard”, “low 
hazard”, “moderate hazard”, “high hazard”, and “very high 
hazard” due to the natural breaks (Swets 1988; Bednarik 
et al. 2010; Constantin et al. 2011; Pourghasemi et al. 2012a, 
2013).

As shown in Fig. 10, the share of area susceptible to seis-
mic rockfalls is reduced by increasing the hazard level in 
the corresponding zones and the majority of rockfalls trig-
gered by Firooz Abad-Kojour earthquake of 2004 are placed 
at “high hazard”-to-“very high hazard” zones. Besides, the 
parts close to linking roads, rivers, the parts with a steep 
slope, the areas around earthquake epicenter, and parts with 
consisting of low-strength geological formation show a 
“high”-to-“very high” rockfall susceptibility level. There-
fore, it can be concluded the higher and very desirable 
accuracy of ANFIS model in hazard zonation of rockfalls 
triggered by the Firooz Abad-Kojour earthquake of 2004.

Since rockfall is a prevalent event in mountainous slopes, 
coastal cliffs, volcanoes, river margins, and trenches, the 
rockfalls occur along the rivers and road’s transverse (Wyl-
lie 2014). Since rockfalls mostly occur in cliffs and steep 
areas, and due to the steep morphology of waterway path 
and the road’s transverse in mountainous regions, the high 

concentrations of rockfalls in the area stricken by Firooz Abad-
Kojour earthquake of 2004 seem logical (Fig. 10).

Results’ assessment and analysis

After providing Firooz Abad-Kojour seismic rockfalls’ suscep-
tibility map using the LR and ANFIS methods, and classifying 
them into five classes based on natural breaks (very low, low, 
medium, high, and very high susceptibility), their accuracy 
was evaluated using two introduced indexes by Gee (1992), 
including density ratio (Dr) and quality sum (Qs), and also, 
receiver-operating characteristic (ROC) curve.

The dimensionless Dr index was independently used to 
compare the hazard classes of each map (Eq. 12) (Shariat 
Jafari 2009):

where Dr is falling Dr of each susceptibility class, Ai is area 
ith susceptibility class in a zonation map, Si is the sum of 

(12)Dr =

Si

Ai
∑n

i=1
St

∑n

i=1
At

,

Fig. 10  Hazard zonation map of the rockfalls induced by the Firooz Abad-Kojour earthquake of 2004 using adaptive neuro-fuzzy inference sys-
tem (ANFIS)
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seismic rockfalls in each susceptibility class, At is total area 
of the study region, St is the total number of seismic rock-
falls in the study area, and n is the number of susceptibility 
classes. The better separation is performed between suscep-
tibility classes by Dr results in a more useful map. In a given 
rockfall hazard zonation map, a class with Dr of 1 indicates 
the moderate hazard probability. Besides, the Dr less and 
higher than 1 shows the low and high hazard probability, 
respectively (Shariat Jafari 2009). The values of Dr index 
for both LR and ANFIS methods are presented in Tables 5 
and 6, respectively. As shown in Tables 5 and 6, the Dr index 
of rockfalls has ascending trend with steep slope from very 
low to very high hazard class, which indicated the accuracy 
and good quality of zonation map classification by the LR 
and ANFIS methods.

To compare the outputs of Firooz Abad-Kojour seismic 
rockfalls susceptibility models by LR and ANFIS methods, 
Qs index was used. The Qs was calculated for each map by 
the following equation:

where i is hazard class number in a rockfall hazard zonation 
map, and n is the total number of hazards classes. The Qs 
values indicate the performance quality of the model in pre-
dicting the hazard of rockfalls in the study area. Typically, 
there is no theoretical limit to the value of Qs index (Shariat 

(13)Qs =

n
∑

i=1

(

(Dr − 1)2 × % area
)

,

Jafari 2009). In other words, the higher Qs values indicate 
the optimum model superior in rockfall hazard zonation.

The values of Qs for Firooz Abad-Kojour seismic rockfall 
hazard zonation map using both LR and ANFIS methods are 
presented in Tables 5 and 6, respectively.

The information of Firooz Abad-Kojour seismic rockfalls 
susceptibility map using the LR is presented in Table 5. The 
table also shows the area percentage of each rockfall sus-
ceptible zone and percentage of seismic rockfalls occurred 
in each zone. Then, by obtaining those values and applying 
Eqs. 12 and 13, the Dr of each hazard zone and Qs of the 
hazard zonation map prepared using the LR were calculated 
(Table 5). According to the calculated Dr for each rockfall 
hazard zone in Table 5, Dr increases ascendingly with an 
increase in the hazard level. Moreover, the high value of Qs 
index (21.04) indicates the proper accuracy of LR method 
in Firooz Abad-Kojour seismic rockfalls susceptibility 
mapping.

Table 6 presents the information of Firooz Abad-Kojour 
seismic rockfalls susceptibility map using the ANFIS. The 
table also shows the area percentage of each rockfall sus-
ceptible zone and percentage of seismic rockfalls occurred 
in each zone. Then, by obtaining those values and applying 
Eqs. 12 and 13, the Dr of each hazard zone and Qs of the 
hazard zonation map prepared using the ANFIS were cal-
culated (Table 6). According to the calculated Dr for each 
rockfall hazard zone in Table 6, Dr increases ascendingly 
with an increase in hazard level. Moreover, the higher value 
of Qs (26.75592) indicates the very desirable and acceptable 

Table 5  Hazard zonation map 
information generated using the 
LR model

Rockfall hazard zone Class Zone area percentage Occurred rockfall 
area percentage

Density ratio (Dr)

Very low hazard 1 46.52510511 2.702702703 0.058091276
low hazard 2 39.71654352 10.81081081 0.272199186
Moderate hazard 3 10.81421765 13.51351351 1.249606208
high hazard 4 2.498195049 50 20.01445004
Very high hazard 5 0.445938669 22.97297297 51.51599211
Quality sum (Qs) of the 

entire map
– – – 21.04184

Table 6  Hazard zonation map 
information generated using 
ANFIS model

Rockfall hazard zone Class Zone area percentage Occurred rockfall 
area percentage

Density ratio (Dr)

Very low hazard 1 36.66769479 1.351351351 0.036854003
low hazard 2 27.85715286 4.054054054 0.145530093
Moderate hazard 3 24.50155623 9.459459459 0.386075863
high hazard 4 9.241885189 16.21621622 1.754643764
Very high hazard 5 1.73171093 68.91891892 39.79816592
Quality sum (Qs) of the 

entire map
– – – 26.75592
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accuracy of ANFIS method in Firooz Abad-Kojour seismic 
rockfall susceptibility mapping.

To evaluate and compare the accuracy of both LR and 
ANFIS models, ROC curve was used (Yesilnacar 2005; Nef-
eslioglu et al. 2008; Mathew et al. 2009; Mohammady et al. 
2012; Pourghasemi et al. 2012b, c; Pradhan 2013; Regmi 
et al. 2014). Finally, a map with maximum accuracy was 
suggested as final Firooz Abad-Kojour seismic rockfalls’ 
susceptibility map.

ROC curve is one of the most important and efficient 
methods in providing a characteristic, probabilistic identifi-
cation, and prediction of a system that quantitatively meas-
ures the accuracy of the model (Yesilnacar 2005). In ROC 
curve, the true positive rate (TPR) was drawn against False-
Positive Rate (FPR). In the study area, TPR or “sensitivity” 
and FPR or “specificity”, respectively, indicate the prob-
ability degree of pixels with and without rockfalls, which 
were determined correctly by model. The surface under ROC 
curve, which is known as area under the curve (AUC), shows 
the model accuracy in predicting the hazard of seismic rock-
falls. The ideal model has the highest AUC, which ranges 
from 0.5 to 1. The qualitative–quantitative correlation of 
AUC and the estimation evaluation are as follows: 0.9–1 
excellent, 0.8–0.9 very good, 0.7–0.8 good, 0.6–0.7 medium, 
and 0.5–0.6 weak (Yesilnacar 2005). The ROC curve asso-
ciated with both LR and ANFIS methods, as well as AUC 
values are presented in Fig. 11.

Based on ROC curve and AUC values (Fig. 11), the 
AUC for LR and ANFIS methods were calculated 0.972 
and 0.984, respectively. Considering the AUC values for 
LR and ANFIS methods, the ANFIS-based hazard zona-
tion map had higher accuracy compared to LR-based hazard 
zonation map.

Conclusions and discussion

Given that no research has been conducted on zonation and 
mapping the susceptibility of seismic rockfalls using intel-
ligent methods (such as ANFIS), the present research was 
carried out to implement the ANFIS and LR methods in the 
area stricken by Firooz Abad-Kojour earthquake of 2004, 
evaluate and select the optimum model with high accuracy 
in prediction, mapping the susceptibility of seismic rock-
falls, and apply this method to predict probability of rock-
fall events induced by future earthquakes. In LR method, 
after four steps of analysis, the suitable weights for selected 
parameters (shake intensity, distance from the road, slope 
angle, distance from the river, and ground strength class) 
were obtained based on “backward conditional” rule in 
SPSS software. Considering the LR-based hazard zonation 
map, the majority of Firooz Abad-Kojour seismic rockfalls 
falls in the “high”-to-“very high” hazard zones. Moreover, 

the areas close to linking roads, rivers, and low-strength geo-
logical formations had “high”-to-“very high” rockfall sus-
ceptibility levels. The minimum error of designed ANFIS 
model for Firooz Abad-Kojour seismic rockfalls susceptibil-
ity mapping with 200 training epochs was 0.024992. Consid-
ering the ANFIS-based hazard zonation map, the majority 
of Firooz Abad-Kojour seismic rockfalls was matched on 
“high”-to-“very high” zones. In addition, the areas close 
to linking roads, rivers, parts with a steep slope, the area 
around earthquake epicenter, and low-strength geological 
formations had “high”-to-“very high” rockfall susceptibil-
ity levels.

Rockfalls are very common events that occur in moun-
tainous slopes, coastal cliffs, volcanoes, riverside, and 
trenches. Since rockfalls mostly occur in cliffs and steep 
area, and due to the steep morphology of waterway path 
and road’s transverse, we focused on rockfalls in the area 
stricken by Firooz Abad-Kojour earthquake of 2004.

After preparing the Firooz Abad-Kojour seismic rockfalls 
susceptibility map using LR and ANFIS methods, criteria 
including Dr, Qs, and ROC were used to evaluate the con-
sidered map and determine its accuracy. The Dr of rockfalls 
had an ascending trend with high slope from “very low” to 
“very high” hazard class, suggesting the good quality and 
accuracy of LR and ANFIS-based hazard zonation maps. 
By analyzing the susceptibility maps and considering the Qs 
index obtained by LR (21.04184) and ANFIS (26.75592), 
it could be observed that the Qs value of ANFIS is higher 

Fig. 11  ROC curve and AUC values associated with Firooz Abad-
Kojour seismic rockfall hazard zonation map using the LR and 
ANFIS methods
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than that of LR. Moreover, based on the obtained value of 
AUC  from LR (0.972) and ANFIS (0.984) methods, ANFIS 
provided a higher accuracy in zonation and susceptibility 
mapping of rockfalls triggered by Firooz Abad-Kojour earth-
quake of 2004 compared to LR method. Therefore, based 
on the verification done using the criteria such as “Dr” and 
“Qs”, and ROC curve, ANFIS-based Firooz Abad-Kojour 
seismic rockfalls susceptibility mapping was in agreement 
with the rockfall distribution map of the area and showed a 
higher accuracy compared to LR method.

Performing an analysis on the effect of geomechanical 
properties of geological material on probability of rockfall 
event, the generalization of this approach for synergetic seis-
mic and hydrological activities (such as snow melting and 
rainfall), and evaluating the accuracy of ANFIS model in 
comparison with artificial neural network (such as MLP and 
RBF) are recommended for future research.
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