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Abstract
Horizontal well combined with volume fracturing technology has been extensively employed in the development of tight 
gas reservoirs. The disordered distribution of the induced and natural fractures in the reservoirs leads to the existence of the 
anomalous diffusion, so the conventional Darcy law has some limitations in describing the fluid flow under this circumstance. 
This paper introduces the fractional Darcy law to take into account the effect of the anomalous diffusion and then extends 
the conventional model of the multi-stage fractured horizontal (MSFH) well with the presence of the stimulated reservoir 
volume (SRV). The generated point source model for dual-porosity composite system includes the fractional calculus and 
its solution in Laplace space is derived. The superposition principle and the numerical discrete method are applied to obtain 
the solution for the MSFH well with SRV. Stehfest inversion method is used to transform the pseudo-pressure and produc-
tion rate from Laplace space to real space. Type curves for pseudo-pressure and production rate are presented and analyzed. 
The influence of the relevant parameters on pseudo-pressure behavior and production rate decline is discussed in detail. The 
proposed model enriches the flow models of the MSFH well with SRV and can be used to more accurately interpret and 
forecast the transient pressure and transient rate.

Keywords Anomalous diffusion · Fractional Darcy law · Multi-stage fractured horizontal well · Stimulated reservoir 
volume · Performance analysis

List of symbols
ct  Total compressibility, /Pa
cρ  Gas compressibility, /Pa
c�  Rock compressibility, /Pa
h  Reservoir thickness, m
k  Permeability without the effect of the 

anomalous diffusion, see Eq. (4), m2

kβ  Permeability with the effect of the anoma-
lous diffusion, see Eq. (1), m2∕s�−1

L  Half-length of horizontal well, m
LfLi, LfRi  Length of left/right wing in the i th 

hydraulic fracture, m
m  Hydraulic-fracture number
M  Molar mass of gas, kg∕mol

M12  Mobility ratio between SRV and URV 
regions

p  Reservoir pressure, Pa
pi  Initial reservoir pressure, Pa
psc  Pressure at standard condition, Pa
pw  Bottomhole pressure, Pa
q  Flow rate of point source, m3/s

qf  Flow-rate density of hydraulic fracture, 
m2/s

Qsc  Well-production rate at standard condi-
tion, m3/s

r  Radial distance, r =
√
x2 + y2 , m

rf  SRV radius, m
R  Universal gas constant, 8.314J∕(K mol)
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s  Laplace transform variable
t  Time, s
T   Reservoir temperature, K
Tsc  Temperature at standard condition, K
W12  Storability ratio between SRV and URV 

regions
x, y  x - and y-coordinates, m
ywDi  Dimensionless y-coordinate of the i th 

hydraulic fracture
Z  Z-factor of gas
�  Shape factor, /m2

�  Anomalous diffusion exponent
ΔLfLDi,ΔLfRDi  Dimensionless length of discrete segment 

of the left/right wing in the ith hydraulic 
fracture

Δ�w  Bottomhole pseudo-pressure difference, 
Δ�w = �i − �w , Pa2/(Pa s)

�  Interporosity flow coefficient
�  Gas viscosity, Pa s
�  Gas density, kg∕m3

�  Gas velocity, m∕ s

�  Reservoir pseudo-pressure, Pa2/(Pa s)
�i  Initial reservoir pseudo-pressure, 

Pa2/(Pa s)

�w  Bottomhole pseudo-pressure, Pa2/(Pa s)
�  Porosity
�1f  Fracture-system storability coefficient in 

SRV
�2f  Fracture-system storability coefficient in 

URV

Subscripts
D  Dimensionless
f  Fracture system
i, j  The jth discrete segment in the ith 

hydraulic fracture
m  Matrix system
1  SRV region
2  URV region

Superscripts
−  Laplace space

Introduction

In the past decades, many tight gas reservoirs with ultra-low 
permeability have been discovered and developed around 
the world. It has been proved in practice that horizontal well 
combined with volume fracturing technology is considered 
as an effective way to develop tight gas reservoirs. Massive 
hydraulic fracturing creates several main hydraulic fractures 
as well as an induced fracture network around them (Clark-
son 2013). The fracture network is usually called stimulated 

reservoir volume (SRV), in which the reservoir properties 
are very different from those of unstimulated reservoir vol-
ume (URV) (Mayerhofer et al. 2010).

Compared with the conventional models of the multi-
stage fractured horizontal (MSFH) wells without SRV 
(Wang and Yi 2018; Ren and Guo 2018a, b), the models 
of the MSFH wells with SRV are much more complex. 
Recently, various models have been established to study 
the performance of the MSFH wells with SRV. Ozkan 
et al. (2011) used the tri-linear flow model to investi-
gate the transient pressure for the MSFH well with SRV. 
Some scholars improved the flow model proposed by 
Ozkan et al. (2011) to incorporate multiple mechanisms 
(Apaydin et al. 2012; Tian et al. 2014) or to consider 
more linear-flow regions (Stalgorova and Mattar 2012; 
Yuan et al. 2015). However, the tri-linear flow model and 
its improved versions cannot describe some flow char-
acteristics of the MSFH well with SRV (e.g., the radial 
flow and the hydraulic-fracture interference). Zhao et al. 
(2014) employed the point-source function method to 
establish the flow model of the MSFH well considering 
the impact of the SRV and studied the performance of 
the MSFH well. Zeng et al. (2015) and Xu et al. (2015a) 
established flow models of the MSFH well with SRV in 
a shale gas reservoir including multiple mechanisms such 
as desorption, diffusive flow and stress sensitivity. Xu 
et al. (2015b) proposed a dual-porosity composite model 
of the MSFH well with elliptical SRV in tight reservoirs. 
Wei et al. (2016) presented a numerical composite model 
of the MSFH well with elliptical SRV region for each 
hydraulic fracture and studied the characteristic of the 
Blasingame’s type curves of the MSFH well. Guo et al. 
(2016) extended the previous model (Xu et al. 2015a) to 
establish a more comprehensive model of an MSFH well 
in a shale gas reservoir, which can consider the impact of 
the presence of the SRV, fracture conductivity and multi-
ple transport mechanisms. Ren and Guo (2017) proposed 
a composite model of the MSFH well with SRV taking 
into account the impact of the quadratic gradient term. 
Chen et al. (2018) established an arbitrary composite 
model of the MSFH well with SRV based on boundary 
element method and investigated the effect of the shape 
and size of the SRV on the pressure response and produc-
tion performance. However, as far as we know, previ-
ous models for the MSFH well with SRV are established 
by incorporating the classical Darcy law, which cannot 
capture the anomalous diffusion in fractured reservoirs 
(Raghavan and Chen 2013a, 2015) and may lead to errors 
in the prediction of the transient pressure and transient 
rate for the MSFH well with SRV. It has been found that 
the fractional Darcy law, which is the generalized form 
of the classical Darcy law, can be used to describe the 
anomalous diffusion and is more suitable for the fractured 
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reservoirs. In recent years, some seepage models for vari-
ous wells in fractured reservoirs have been established by 
incorporating the fractional Darcy law into the govern-
ing equations, such as vertical wells (Raghavan 2012a; 
Razminia et al. 2014), fractured vertical wells (Raghavan 
2012b; Raghavan and Chen 2013a), horizontal wells 
(Raghavan and Chen 2015), MSFH wells (Raghavan and 
Chen 2013b, 2017; Ren and Guo 2015), and so on. How-
ever, there is no work to study the model of the MSFH 
well with SRV by incorporating the fractional Darcy law. 
Therefore, the existing models of the MSFH well with 
SRV have some limitations in interpreting and forecasting 
the transient pressure and transient rate.

In this paper, we introduce the fractional Darcy law to 
develop the model of the MSFH well with SRV in tight 
gas reservoirs. The proposed model can take into account 
the effect of the anomalous diffusion in fractured rocks, 
and thus it has a wider application compared to the previ-
ous models.

Physical model

The physical model is shown in Fig. 1 and based on the 
assumptions as follows:

1. The tight gas formation is viewed as a composite system 
including the inner and outer regions. Both the regions 
are dual-porosity medium systems with different physi-
cal properties of reservoir rocks. The inner and outer 
regions denote the SRV and URV, respectively.

2. Gas flow in the porous medium obeys the fractional 
Darcy law, and the interporosity flow between the matrix 
and fracture systems follows the pseudo-steady model 
proposed by Warren and Root (1963).

3. An MSFH well is located in the SRV region and pro-
duces at a constant rate or a constant bottomhole pres-

sure. Each infinite-conductivity hydraulic fracture per-
pendicularly intersects with the horizontal wellbore and 
completely penetrates the reservoir.

Mathematical model

Point source model

Owing to the disordered distribution of natural and induced 
hydraulic fractures in the tight gas formation, gas flow in 
the porous medium usually obeys the fractional Darcy law 
(Raghavan and Chen 2015), which can be written in radial 
cylindrical coordinate as follows:

where � is anomalous diffusion exponent in the range of 
� ≤ 1 , the definition of the fractional derivative �� f (t)

/
�t� 

can refer to the literature (Caputo 1967; Xu and Meng 2016; 
Zuo et al. 2017), which is defined as

where Γ(x) is the Gamma function defined by

The expressions with fractional derivative such as Eq. (1) 
lead to fractional differential equations which have been widely 
applied in various fields (Zhang et al. 2014, 2017; Feng and 
Meng 2017; Obembe et al. 2017; Zhang 2017; Li and Wang 
2018; Shen et al. 2018).

It is noted that when � is set as one, Eq. (1) becomes the 
conventional Darcy law:

(1)�(r, t) = −
k�

�

�1−�

�t1−�

�p(r, t)

�r
,

(2)
�� f (t)

�t�
=

1

Γ(1 − �) ∫
t

0

(
t − t�

)−� �f
(
t�
)

�t�
dt�,

(3)Γ(x) = ∫
∞

0

e−zzx−1dz.

(4)�(r, t) = −
k

�

�p(r, t)

�r
.

Fig. 1  Schematic of an MSFH 
well in a composite system
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Compared with the conventional Darcy law, the fractional 
Darcy law has a much wider field of application and is more 
suitable for unconventional reservoirs, especially for frac-
tured reservoirs with complex fracture network.

In the following, the point source model in the compos-
ite system will be established by introducing the fractional 
Darcy law.

For inner region (i.e., SRV region) 
(
0 ≤ r ≤ rf

)
.

On the basis of the mass-conservation law, the continuity 
equation for the fracture system can be given as

According to the assumption of the pseudo-steady flow 
(Warren and Root 1963), the continuity equation for the 
matrix system can be expressed by

where q1m in Eqs. (5) and (6) is the matrix-fracture interpo-
rosity flow rate, which is given as Warren and Root (1963)

The fractional Darcy law for the SRV region is

The real-gas state equations for the matrix and fracture 
systems in the SRV region are, respectively, written as

The gas compressibility and rock compressibility in the 
SRV region are, respectively, given as

Substituting Eqs. (8)–(12) into Eqs. (5)–(7), respectively, 
yields that

(5)1

r

�
(
r�1f�1f

)

�r
+

�
(
�1f�1f

)

�t
− q1m = 0.

(6)
�
(
�1m�1m

)

�t
+ q1m = 0,

(7)q1m =
�1k1m

�

(
�1mp1m − �1fp1f

)
.

(8)�1f = −
k1�

�

�1−�1

�t1−�1

�p1f

�r
.

(9)�1m =
p1mM

ZRT
,

(10)�1f =
p1fM

ZRT
.

(11)c�1j =
1

�1j

��1j

�p1j
, (j = m, f),

(12)c�1j =
1

�1j

��1j

�p1j
, (j = m, f).

(13)

�1−�1

�t1−�1

[
1

r

�

�r

(

r
k1�

�

p1fM

ZRT

�p1f

�r

)]

=
�1fct1fp1fM

ZRT

�p1f

�t
− q1m,

 where ct1f = c�1f + c�1f and ct1m = c�1m + c�1m.
For outer region (i.e., URV region) 

(
rf ≤ r < ∞

)
.

In the same way, the continuity equation for the fracture 
system can be expressed as

The continuity equation for the matrix system is

and the matrix–fracture interporosity flow rate is given as 
(Warren and Root 1963)

The fractional Darcy law for the URV region is

The real-gas state equations for the URV region are writ-
ten as

The gas compressibility and rock compressibility in the 
URV region are, respectively, given as

Substituting Eqs. (19)–(23) into Eqs. (16)–(18), one can 
obtain that

(14)
�1mct1mp1mM

ZRT

�p1m

�t
+ q1m = 0,

(15)q1m =
�1k1mM

�ZRT

(
p2
1m

− p2
1f

)
,

(16)1

r

�
(
r�2f�2f

)

�r
+

�
(
�2f�2f

)

�t
− q2m = 0.

(17)
�
(
�2m�2m

)

�t
+ q2m = 0,

(18)q2m =
�2k2m

�

(
�2mp2m − �2fp2f

)
.

(19)�2f = −
k2�

�

�1−�2

�t1−�2

�p2f

�r
.

(20)�2m =
p2mM

ZRT
,

(21)�2f =
p2fM

ZRT
.

(22)c�2j =
1

�2j

��2j

�p2j
, (j = m, f),

(23)c�2j =
1

�2j

��2j

�p2j
, (j = m, f).

(24)

�1−�2

�t1−�2

[
1

r

�

�r

(

r
k2�

�

p2fM

ZRT

�p2f

�r

)]

=
�2fct2fp2fM

ZRT

�p2f

�t
− q2m,

(25)
�2mct2mp2mM

ZRT

�p2m

�t
+ q2m = 0,
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where ct2f = c�2f + c�2f and ct2m = c�2m + c�2m.
Introducing the pseudo-pressure

and then Eqs. (13)–(15) and (24)–(26) can be rewritten as

The point source is assumed to be placed in the coordinate 
origin and to produce at a constant rate, so the inner boundary 
condition can be written as

(26)q2m =
�2k2mM

�ZRT

(
p2
2m

− p2
2f

)
,

(27)� = ∫
p

0

2p

�Z
dp,

(28)
�1−�1

�t1−�1

[
1

r

�

�r

(

rk1�

��1f

�r

)]

= �1fct1f�
��1f

�t

− �1k1m
(
�1m − �1f

)
,
(
0 ≤ r ≤ rf

)
,

(29)

�1mct1m�
��1m

�t
+ �1k1m

(
�1m − �1f

)
= 0,

(
0 ≤ r ≤ rf

)
,

(30)
𝜕1−𝛽2

𝜕t1−𝛽2

[
1

r

𝜕

𝜕r

(

rk2�

𝜕𝜓2f

𝜕r

)]

= 𝜙2fct2f𝜇
𝜕𝜓2f

𝜕t

− 𝛼2k2m
(
𝜓2m − 𝜓2f

)
,
(
rf ≤ r < ∞

)
,

(31)

𝜙2mct2m𝜇
𝜕𝜓2m

𝜕t
+ 𝛼2k2m

(
𝜓2m − 𝜓2f

)
= 0,

(
rf ≤ r < ∞

)
.

The outer boundary condition is

The pseudo-pressure and gas velocity should be continu-
ity at the interface between the SRV and URV regions, and 
thus interface boundary conditions are given as

With the assumption of the uniform pressure distribution 
at initial time, the initial condition is expressed as

Introducing the dimensionless variables which are listed 
in Table 1, Eqs. (28)–(36) are, respectively, rewritten as

(32)
lim
r→0

�1−�1

�t1−�1

(

r
��1f

�r

)

=
pscq(r = 0, t)T

�k1�hTsc
.

(33)�2f(r → ∞, t) = �i.

(34)�1f

(
r = rf, t

)
= �2f

(
r = rf, t

)
,

(35)
�1−�1

�t1−�1

(

k1�
��1f

�r

)|
|
|
|
|r=rf

=
�1−�2

�t1−�2

(

k2�
��2f

�r

)|
|
|
|
|r=rf

.

(36)
�1f(r, t = 0) = �2f(r, t = 0) = �1m(r, t = 0) = �2m(r, t = 0) = �i.

(37)

�1−�1

�t
1−�1
D

[
1

rD

�

�rD

(

rD

��1fD

�rD

)]

= �1f

��1fD

�tD

+ �1
(
�1fD − �1mD

)
,
(
0 ≤ rD ≤ rfD

)
,

(38)

(
1 − �1f

)��1mD

�tD
− �1

(
�1fD − �1mD

)
= 0,

(
0 ≤ rD ≤ rfD

)
,

Table 1  Definition of 
dimensionless variables Dimensionless pseudo-pressure

�D =
�k1�hTsc

QscpscT

[
k1�

(�1fct1f+�1mct1m)�L2

] 1−�1
�1

(
�i − �

)

Dimensionless time
tD =

[
k1�

(�1fct1f+�1mct1m)�L2

] 1

�1 t

Dimensionless distance rD =
r

L
 , rfD =

rf

L
 , xD =

x

L
 , yD =

y

L
 , xwDi =

xwi

L
 , 

ywDi =
ywi

L
 , LfLDi =

LfLi

L
 , LfRDi =

LfRi

L

Fracture-system storability coefficient in SRV �1f =
�1fct1f

�1fct1f+�1mct1m

Fracture-system storability coefficient in URV �2f =
�2fct2f

�2fct2f+�2mct2m

Mobility ratio between SRV and URV regions
M12 =

k1�∕ �

k2�∕ �

Storability ratio between SRV and URV regions W12 =
�1fct1f+�1mct1m

�2fct2f+�2mct2m

Interporosity flow coefficient in SRV
�1 = �1

k1m

k1�
L2
[

k1�

(�1fct1f+�1mct1m)�L2

] �1−1

�1

Interporosity flow coefficient in URV
�2 = �2

k2m

k2�
L2
[

k1�

(�1fct1f+�1mct1m)�L2

] �1−1

�1

Dimensionless point-source flow rate qD
(
rD, tD

)
=

q(r,t)

Qsc

Dimensionless flow-rate density of hydraulic fracture qfD
(
xD, yD, tD

)
=

qf(x,y,t)L

Qsc

Dimensionless well production rate
QD =

QscpscT

�k1�hTsc(�i−�w)

[
k1�

(�1fct1f+�1mct1m)�L2

] �1−1

�1
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where

The point source model in the composite system consists 
of Eqs. (37)–(46), which can be used to take into account 
the effect of the anomalous diffusion in fractured reservoirs 
with complex fracture network. When �1 = 1 and �2 = 1 , the 
proposed point source model becomes the conventional one 
proposed by Zhao et al. (2014). Obviously, Eqs. (37)–(46) 
are fractional differential equations. Recently, the theories 
and solving methods for fractional differential equations 
have been investigated by many scholars (Guo 2010; Jiang 
et al. 2013; Zhu et al. 2016; Hao et al. 2017). Laplace trans-
form is a widely used integral transform in mathematics and 
engineering that transforms a function of time into a func-
tion of complex frequency. Laplace transform from the time 
domain (i.e., the real space) to the frequency domain (i.e., 
the Laplace space) can transform differential equations into 
algebraic equations, and thus Laplace transform has been 
widely used to solve differential equations (Wang and Yi 
2017; Wang et al. 2017; Ren and Guo 2018c).

Laplace transform will be employed to solve the above 
model and it is defined as follows:

(39)

𝜕1−𝛽2

𝜕t
1−𝛽2
D

[
g12

rD

𝜕

𝜕rD

(

rD
𝜕𝜓2fD

𝜕rD

)]

=
M12𝜔2f

W12

𝜕𝜓2fD

𝜕tD

+ 𝜆2
(
𝜓2fD − 𝜓2mD

)
,
(
rfD ≤ rD < ∞

)
,

(40)

M12

(
1 − 𝜔2f

)

W12

𝜕𝜓2mD

𝜕tD
− 𝜆2

(
𝜓2fD − 𝜓2mD

)
= 0,

(
rfD ≤ rD < ∞

)
,

(41)lim
rD→0

�1−�1

�t
1−�1
D

(

rD
��1fD

�rD

)

= −qD
(
rD = 0, tD

)
,

(42)�2fD

(
rD → ∞, tD

)
= 0,

(43)�1fD

(
rD = rfD, tD

)
= �2fD

(
rD = rfD, tD

)
,

(44)
�1−�1

�t
1−�1
D

��1fD

�rD

|||
|||rD=rfD

=
g12

M12

�1−�2

�t
1−�2
D

��2fD

�rD

|||
|||rD=rfD

,

(45)
�1fD

(
rD, tD = 0

)
= �2fD

(
rD, tD = 0

)
= �1mD

(
rD, tD = 0

)

= �2mD

(
rD, tD = 0

)
= 0,

(46)g12 =

[
k1�

(
�1fct1f + �1mct1m

)
�L2

] �1−�2
�1

.

(47)f (s) = ∫
∞

0

f
(
tD
)
e−stDdtD,

where f  is an arbitrary variable in real space. According to 
the above definition, the Laplace transform of the fractional 
derivative �� f

(
tD
)/

�t
�

D
 is given as (Caputo 1967)

Employing the Laplace transform of Eqs. (37)–(44), one 
can derive the solution of the point source model (see Appen-
dix A):

where

Model of the MSFH well with SRV

The pseudo-pressure solution of the point source model in a 
dual-porosity composite system has been derived above, and 
thus the pseudo-pressure solution for the MSFH well with SRV 
can be obtained by the superposition principle (Ozkan 1988):

where

(48)∫
∞

0

�� f
(
tD
)

�t
�

D

e−stDdtD = s� f (s) − s�−1f (0).

(49)�1fD =
1

s1−�1
qD

(
rD = 0, s

)[
FI0

(
�1rD

)
+ K0

(
�1rD

)]
,

(50)

F =
s�2−�1M12�1K1

(
�1rfD

)
K0

(
�2rfD

)
− g12�2K0

(
�1rfD

)
K1

(
�2rfD

)

s�2−�1M12�1I1
(
�1rfD

)
K0

(
�2rfD

)
+ g12�2I0

(
�1rfD

)
K1

(
�2rfD

) ,

(51)�1 =

√
s�1 f1(s),

(52)�2 =

√
s�2

g12
f2(s),

(53)f1(s) =
�1 + s�1f

(
1 − �1f

)

�1 + s
(
1 − �1f

) ,

(54)f2(s) =
�2 + s�2f

(
1 − �2f

)
�12

�2 + s
(
1 − �2f

)
�12

�12,

(55)�12 =
M12

W12

.

(56)
�1fD

(
xD, yD, s

)
=

1

s1−�1

m∑

i=1
∫

LfRDi

−LfLDi

qfD

(
� , ywDi, s

)

[
FI0

(
�1RD

)
+ K0

(
�1RD

)]
d� ,

(57)RD

(
xD, yD; �

)
=

√(
xD − �

)2
+
(
yD − ywDi

)2
.
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Based on the assumption of the infinite-conductivity 
hydraulic fractures, one can obtain that

where −LfLDi ≤ xD ≤ LfRDi.
The constraint condition of the flow rate can be expressed 

as

The model of the MSFH well with SRV including 
Eqs. (56)–(59) can be employed to study the pseudo-pres-
sure behavior. The numerical discrete method (Wan 1999) 
will be used to solve the seepage model. The fracture wings 
are discretized into some segments and the flow rate in each 
segment is considered to stay the same at a certain time. The 
discrete schematic of the MSFH well in the given coordinate 
system is shown in Fig. 2.

And then, the discrete forms of Eqs. (56), (58) and (59) 
can be obtained as follows:

(58)�wD(s) = �1fD(xD, ywDi, s),

(59)
m∑

i=1
∫

LfRDi

−LfLDi

qfD
(
� , ywDi, s

)
d� =

1

s
.

(60)
�wD(s) =

m∑

i=1

2Ni∑

j=1

[
�1fDi,j

(
xmDk,v, ymDk,v, s

)]
,

(1 ≤ v ≤ 2Nk, 1 ≤ k ≤ m),

(61)

m∑

i=1

{
Ni∑

j=1

[
q
fDi,j

(s)ΔLfLDi

]
+

2Ni∑

j=Ni+1

[
q
fDi,j

(s)ΔLfRDi

]
}

=
1

s
,

where

Equations  (60)–(63) compose 
�
2
∑m

i=1
Ni + 1

�
 linear 

equations with 
�
2
∑m

i=1
Ni + 1

�
 unknowns. The unknowns 

are �wD(s) and q
fDk,v

(s)(1 ≤ v ≤ 2Nk, 1 ≤ k ≤ m) which 
can be obtained by solving the linear equations. Finally, 
with the aid of the numerical inversion method (Stehfest 
1970), one can obtain the bottomhole pseudo-pressure of 
the MSFH well with constant production rate.

Furthermore, if an MSFH well produces at a constant 
bottomhole pressure, the production rate of the MSFH well 
can be obtained by the following expression (Van Everdin-
gen and Hurst 1949)

Employing the numerical inversion method (Stehfest 
1970), the production rate QD in Laplace space can be trans-
formed into the production rate QD in real space.

(62)
�1fDi,j

(
xmDk,v, ymDk,v, s

)
=

1

s1−�1
q
fDi,j

(s)

∫
xDi,j+1

xDi,j

[
FI0

(
�1RD

)
+ K0

(
�1RD

)]
d� ,

(63)
RD

(
xmDk,v, ymDk,v; �

)
=

√(
xmDk,v − �

)2
+
(
ymDk,v − ywDi

)2
.

(64)QD =
1

s2�wD

.

Fig. 2  Discrete schematic of the hydraulic fracture wings of an MSFH well
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Results and analysis

The transient pseudo-pressure and transient rate of the 
MSFH well with SRV are generated based on the above 
model and the synthetic data listed in Table 2. The char-
acteristics of the pseudo-pressure behavior and production 
rate decline are analyzed. In particular, the effects of the 
anomalous diffusion on the pseudo-pressure and production 
rate are discussed in detail.

Type curves and flow regimes

Type curves for the bottomhole pseudo-pressure of an 
MSFH well with SRV under the constant-rate-production 
(CRP) condition are shown in Fig. 3a. The type curves 
for the bottomhole pseudo-pressure consist of the pseudo-
pressure curve ( x-axis: t , y-axis: Δ�w ) and pseudo-pressure 
derivative curve ( x-axis: t  , y-axis: Δ� �

w
⋅ t ). Type curves 

for the production rate of an MSFH well with SRV under 
constant-pressure-production (CPP) condition are shown 
in Fig. 3b. The type curves for the production rate include 
the production-rate curve ( x-axis: t  , y-axis: Qsc ) and pro-
duction-rate derivative curve ( x-axis: t  , y-axis: −Q�

sc
⋅ t ). 

Both the anomalous diffusion exponents for the SRV and 
URV regions are set to be 0.95. It is observed from Fig. 3 

that there are seven possible flow regions in the type curves 
which are analyzed as follows:

1. Early linear flow period in SRV The linear flow appears 
in the area around the hydraulic fractures and is per-
pendicular to the lateral surface of the main hydraulic 
fracture. Both the pseudo-pressure derivative curve and 
production-rate derivative curve exhibit as straight lines. 
It should be noted that the slope of the pseudo-pressure 
derivative curve is usually greater than 0.5 due to the 
effect of the anomalous diffusion.

2. Early pseudo-radial flow period in SRV If the hydraulic-
fracture spacing is relatively large, the linear flow will 
develop into the pseudo-radial flow before the hydraulic-
fracture interference occurs. Because of the impact of 
the anomalous diffusion, the pseudo-pressure derivative 
does not keep a constant value, but increases linearly 
with the time.

3. Late linear flow period in SRV The hydraulic-fracture 
interference has taken place and the linear flow appears 
beyond the hydraulic-fracture tips. The pseudo-pressure 
derivative curve exhibits as a straight line, but the slope 
of the straight line may not be equal to 0.5 owing to the 
effect of the anomalous diffusion.

4. Late pseudo-radial flow period in SRV If the SRV radius 
is large enough, this flow period may be observed in 

Table 2  Synthetic data used for 
generating type curves

Name Value

Reservoir thickness, h, m 80

Half-length of horizontal well, L, m 400

Fracture-wing length, Lf, m 40

Hydraulic-fracture number, m 3

SRV radius, rf, m 800

Initial reservoir pressure, pi, MPa 60

Reservoir temperature, T , K 353

Permeability of fracture system in SRV, k1�, mD∕s�1−1 0.01

Permeability of matrix system in SRV, k1m, mD 0.0002

Permeability of fracture system in URV, k2�, mD∕s�2−1 0.001

Permeability of matrix system in URV, k2m, mD 0.0002

Porosity of fracture system in SRV, �1f 0.002

Porosity of matrix system in SRV, �1m 0.02

Porosity of fracture system in URV, �2f 0.0005

Porosity of matrix system in URV, �2m 0.02

Total compressibility of fracture system in SRV, ct1f, MPa−1 0.028

Total compressibility of matrix system in SRV, ct1m, MPa−1 0.02

Total compressibility of fracture system in URV, ct2f, MPa−1 0.028

Total compressibility of matrix system in URV, ct2m, MPa−1 0.02

Shape factor of SRV region, �1, m−2 8 × 10−5

Shape factor of URV region, �2, m−2 8 × 10−5

Bottomhole pressure under constant-pressure-production condition, pw, MPa 50

Production rate under constant-rate-production condition, Qsc, 104m3
/
d 0.4
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type curves. The pseudo-pressure derivative curve for 
the pseudo-radial flow usually exhibits as a straight line. 
Compared with the previous flow period (i.e., late linear 
flow period in SRV), the slope of the pseudo-pressure 
derivative curve is much smaller. But in reality this flow 
period may not exist because of the finite area of the 
SRV.

5. Matrix-fracture interporosity flow period During this 
period, the interporosity flow between the matrix and 
fracture systems occurs, so the pseudo-pressure under 
the CRP condition and the production rate under the 
CPP condition drop more slowly compared with the pre-
vious flow periods. In this flow period, both the pseudo-

pressure derivative curve and the production-rate deriva-
tive curve exhibit as ‘dip’.

6. Transition flow period between SRV and URV During 
this period, the pressure wave propagates from the SRV 
region to the URV region. Since the flow capability 
in URV is much lower than that in SRV, the pseudo-
pressure drop increases rapidly under the CRP condi-
tion and the production rate decreases sharply under the 
CPP condition in this period. Furthermore, this period 
and the matrix-fracture interporosity flow period usually 
occur simultaneously, so type curves in this period are 
usually influenced by the matrix–fracture interporosity 
flow.

Fig. 3  Type curves for the bot-
tomhole pseudo-pressure and 
the production rate ( �

1
= 0.95 , 

�
2
= 0.95)
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(a) Type curves for the bottomhole pseudo-pressure under the CRP condition.

(b) Type curves for the production rate under the CPP condition.
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7. Pseudo-radial flow period in URV When the pressure 
wave continues to travel in the URV region, the transi-
tion flow will develop into the pseudo-radial flow. In this 
period, slower growth of the pseudo-pressure drop under 
the CRP condition is observed and the production rate 
under the CPP condition decreases more slowly. Simi-
larly, the magnitude of the pseudo-pressure derivative in 
this flow regime increases linearly with the time because 
of the effect of the anomalous diffusion.

Sensitivity analysis

Figure 4 shows the bottomhole pseudo-pressure under the 
CRP condition and the production rate under the CPP condi-
tion with different values of anomalous diffusion exponent 

in SRV region 
(
�1
)
 . It is obvious that �1 has important effects 

on the pseudo-pressure behavior and production-rate per-
formance in all flow periods. As the magnitude of the �1 
decreases, the pseudo-pressure drop becomes larger under 
the CRP condition and the production rate gets smaller under 
the CPP condition. Hence, the existence of the anomalous 
diffusion has a negative impact on the production perfor-
mance of the MSFH well. The smaller the value of the �1 is, 
the worse the production performance of the MSFH well is. 
Furthermore, with decreasing the value of the �1 , the dura-
tion of the linear flow becomes longer and the slopes of the 
pseudo-pressure derivative curves in the linear flow period 
and pseudo-radial flow period increase. It is interesting that 
the ‘dip’ in the pseudo-pressure derivative curve and the 

Fig. 4  Effects of �
1
 on the bot-

tomhole pseudo-pressure and 
the production rate ( �

2
= 1)
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(a) Effect of β1 on the botomhole pseudo-pressure under the CRP condition. 

(b) Effect of β1 on the production rate under the CPP condition. 
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production-rate derivative curve is shifted right and becomes 
shallower when the �1 decreases.

Figure 5 shows the bottomhole pseudo-pressure under the 
CRP condition and the production rate under the CPP condi-
tion with different values of anomalous diffusion exponent 
in URV region 

(
�2
)
 . It can be observed that the �2 only has 

an effect on the transient flow after the pressure wave propa-
gates outside the SRV region. Decreasing the value of the �2 
gives rise to the increase of the pseudo-pressure drop in the 
CRP case and the decrease of the production rate in the CPP 
case. Furthermore, as the magnitude of the �2 decreases, the 
‘dip’ in the pseudo-pressure derivative curve and the pro-
duction-rate derivative curve becomes shallower, indicating 
that the influence of the matrix-fracture interporosity flow 
on the performance of the MSFH well has been reduced. 

When 𝛽2 < 1 , the slope of the pseudo-pressure derivative 
curve in the pseudo-radial flow period is greater than zero 
and increases with the decrease of the �2.

Figure 6 shows the comparisons between the effects of 
�1 and �2 on the bottomhole pseudo-pressure under the CRP 
condition and the production rate under the CPP condition. 
It is interesting to find that both the �1 and �2 have effects 
on the pseudo-pressure behavior and production-rate perfor-
mance in the flow periods after the pressure wave propagates 
outside the SRV region, but the effect of the �2 is more pro-
nounced than that of the �1 in these flow periods. Therefore, 
it is concluded that the �1 has a main effect on the production 
performance of the MSFH well in early flow periods, and 
the effect of the �2 becomes more important than that of the 
�1 in late flow periods.

Fig. 5  Effects of �
2
 on the bot-

tomhole pseudo-pressure and 
the production rate ( �

1
= 1)

(a) Effect of β2 on the botomhole pseudo-pressure under the CRP condition. 

(b) Effect of β2 on the production rate under the CPP condition. 
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Figure 7 shows the bottomhole pseudo-pressure under 
the CRP condition and the production rate under the CPP 
condition with different values of the permeability of frac-
ture system in SRV 

(
k1�

)
 . It is seen that the k1� affects the 

pseudo-pressure behavior and production-rate performance 
in the entire flow periods: A significant influence of the k1� 
on type curves is shown before the pressure wave propa-
gates outside the SRV, while the influence of the k1� on 
type curves decreases with the increase of the time after the 
pressure wave propagates outside the SRV. Increasing the 
k1� reduces the pseudo-pressure drop in the CRP case and 
enhances the production rate in the CPP case. Therefore, 
improving the permeability of the SRV region is critical to 
obtain good performance of the MSFH well. Furthermore, as 
the magnitude of the k1� increases, the duration of the early 
linear flow period in SRV is shorter and the transition flow 
period between the SRV and URV regions appears earlier.

Figure 8 shows the bottomhole pseudo-pressure under the 
CRP condition and the production rate under the CPP con-
dition with different values of the permeability of fracture 

system in URV 
(
k2�

)
 . It is clear that the k2� has no effect 

on the pseudo-pressure behavior and production-rate per-
formance before the pressure wave arrives at the interface 
between the SRV and URV regions. After the pressure wave 
goes into the URV region, smaller value of k2� results in a 
substantial increase of the pseudo-pressure drop under the 
CRP condition and a large decrease of the production rate 
under the CPP condition. Therefore, compared with the k1� , 
the k2� has a more significant effect on the performance of 
the MSFH well in the late flow periods.

Conclusions

We have incorporated the fractional Darcy law into the gov-
erning equations and established a novel model for the MSFH 
well with SRV. The proposed model includes anomalous dif-
fusion exponents for the SRV region and the URV region, 
respectively, and thus this model has a much wider field of 

Fig. 6  Comparisons between 
the effects of �

1
 and �

2
 on the 

bottomhole pseudo-pressure and 
the production rate

(a) Comparison between the effects of β1  and β2 on the botomhole pseudo-pressure under the CRP condition. 

(b) Comparison between the effects of β1  and β2 on the production rate under the CPP condition. 

10-1 100 101 102 103 104 105 106102

103

104

105

t (day)

∆
ψ

w
, ∆

ψ
' w
⋅t 

(M
Pa

2 /(
m

Pa
.s

))

∆ψ
w

, β
1
=1, β

2
=0.95

∆ψ'
w
⋅t, β

1
=1, β

2
=0.95

∆ψ
w

, β
1
=0.95, β

2
=1

∆ψ'
w
⋅t, β

1
=0.95, β

2
=1

10-1 100 101 102 103 104 105 10610-2

10-1

100

101

102

t (day)

Q
sc

, -
Q

' sc
⋅t 

(1
04 m

3 /d
)

Q
sc

, β
1
=1, β

2
=0.95

-Q'
sc
⋅t, β

1
=1, β

2
=0.95

Q
sc

, β
1
=0.95, β

2
=1

-Q'
sc
⋅t, β

1
=0.95, β

2
=1



Environmental Earth Sciences (2018) 77:768 

1 3

Page 13 of 16 768

application and is more suitable for fractured reservoirs com-
pared to the conventional models. The semi-analytical solution 
of the fractional model is derived, and type curves for pseudo-
pressure and production rate are plotted. The influence of the 
relevant parameters on pseudo-pressure behavior and produc-
tion rate decline is analyzed in detail. It is found that anoma-
lous diffusion exponent has significant effects on the charac-
teristics of the pseudo-pressure behavior and production rate 
decline. As the magnitude of anomalous diffusion exponent 

decreases, the pseudo-pressure drop becomes larger under the 
CRP condition and the production rate becomes smaller under 
the CPP condition. Furthermore, the anomalous diffusion has 
an effect on the characteristic of the type curves in different 
flow periods. The proposed model extends the conventional 
model of the MSFH well with SRV to take into account the 
effect of the anomalous diffusion, and thus it has an advantage 
over the previous models in interpreting production data and 
forecasting production performance.

Fig. 7  Effect of k
1� on the bot-

tomhole pseudo-pressure and 
the production rate ( �

1
= 0.95 , 

�
2
= 0.95)

(a) Effect of k1β on the botomhole pseudo-pressure under the CRP condition. 

(b) Effect of k1β on the production rate under the CPP condition. 
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Appendix A

Employing the Laplace transform of Eqs. (37)–(44) yields 
that

(65)
s
1−�1

[
1

rD

�

�rD

(

rD

��1fD

�rD

)]

= �1fs�1fD + �1
(
�1fD − �1mD

)
,

(
0 ≤ rD ≤ rfD

)
,

(66)

(
1 − �1f

)
s�1mD − �1

(
�1fD − �1mD

)
= 0,

(
0 ≤ rD ≤ rfD

)
,

(67)
s
1−𝛽2

[
g12

rD

𝜕

𝜕rD

(

rD

𝜕𝜓2fD

𝜕rD

)]

=
M12𝜔2f

W12

s𝜓2fD

+ 𝜆2
(
𝜓2fD − 𝜓2mD

)
,
(
rfD ≤ rD < ∞

)
,

(68)

M12

(
1 − 𝜔2f

)

W12

s𝜓2mD − 𝜆2
(
𝜓2fD − 𝜓2mD

)
= 0,

(
rfD ≤ rD < ∞

)
,

(69)lim
rD→0

(

rD
��1fD

�rD

)

= −
1

s1−�1
qD

(
rD = 0, s

)
,

(70)�2fD

(
rD → ∞, s

)
= 0,

(71)�1fD

(
rD = rfD, s

)
= �2fD

(
rD = rfD, s

)
,

(72)
��1fD

�rD

|||
||rD=rfD

=
g12

M12s
�2−�1

��2fD

�rD

|||
||rD=rfD

.

Fig. 8  Effect of k
2� on the bot-

tomhole pseudo-pressure and 
the production rate ( �

1
= 0.95 , 

�
2
= 0.95)

(a) Effect of k2β on the botomhole pseudo-pressure under the CRP condition. 

(b) Effect of k2β on the production rate under the CPP condition. 
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Combining Eq. (66) with Eq. (65) yields that

where

Similarly, according to Eqs. (67) and (68), one can obtain 
that

where

The general solutions of Eqs. (73) and (75) are

With the aid of Eq. (70), one can obtain that

Taking Eq. (78) into Eq. (69), one can obtain that

Substituting Eqs. (78) and (79) into Eqs. (71) and (72), one 
can derive that

 where

(73)
�2�1fD

�r2
D

+
1

rD

��1fD

�rD
= s�1 f1(s)�1fD,

(
0 ≤ rD ≤ rfD

)
,

(74)f1(s) =
�1 + s�1f

(
1 − �1f

)

�1 + s
(
1 − �1f

) .

(75)
𝜕2𝜓2fD

𝜕r2
D

+
1

rD

𝜕𝜓2fD

𝜕rD
=

s𝛽2

g12
f2(s)𝜓2fD,

(
rfD ≤ rD < ∞

)
,

(76)f2(s) =
�2 + s�2f

(
1 − �2f

)
�12

�2 + s
(
1 − �2f

)
�12

�12,

(77)�12 =
M12

W12

.

(78)�1fD = A1I0

(√
s�1 f1(s)rD

)

+ B1K0

(√
s�1 f1(s)rD

)

,

(79)

�2fD = A2I0

(√
s�2

g12
f2(s)rD

)

+ B2K0

(√
s�2

g12
f2(s)rD

)

.

(80)A2 = 0.

(81)B1 =
1

s1−�1
qD

(
rD = 0, s

)
.

(82)A1I0
(
�1rfD

)
+ B1K0

(
�1rfD

)
= B2K0

(
�2rfD

)
,

(83)

A1I1
(
�1rfD

)
− B1K1

(
�1rfD

)
= −B2

g12�2

s�2−�1M12�1
K1

(
�2rfD

)
,

(84)�1 =

√
s�1 f1(s),

Combining Eq. (82) with Eq. (83), one can obtain the 
relationship between A1 and B1 as follows:

Substituting Eqs. (81) and (86) into Eq. (78) yields that

where
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