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Abstract
Accurate assessment of deep geothermal resources remains a challenge from the practical point of view. Parameter uncer-
tainties and partial knowledge of initial conditions limit the prediction of subsurface temperatures using a variety of thermal 
models strongly unreliable, and the temperature is highly dependent on the radiogenic heat production in the geological layers 
mainly affected by a number of factors including the concentrations of uranium, thorium and potassium, and rock density. In 
this paper, geostatistical methods were applied to investigate the spatial distribution of radiogenic elements (e.g., uranium, 
thorium, potassium) and their corresponding concentrations and radiogenic heat production. A representative region measur-
ing 35 km × 80 km in the southwestern Québec, and covering the domains of Portneuf-Mauricie, Morin Terrane and Parc des 
Laurentides in the Grenville Province was selected for this study because of its easy accessibility. Analysis results show that 
the concentrations of uranium, thorium and potassium for most rocks of the Grenville basement in the research region are in 
the range of 1–2 ppm, 3–10 ppm and 1–4%, respectively. Furthermore, 90% of the total samples analysed in this study show 
a uranium concentration of less than 3 ppm, 64% of the samples show a thorium concentration of less than 5 ppm, and 56% 
of the samples show a potassium concentration of less than 3%. This paper engaged both the ordinary kriging interpolation 
and sequential Gaussian simulation (SGS) methods to study the spatial distribution of radiogenic elements. Using density 
data for specific rocks, the distribution of radiogenic heat production in the study area of the southwestern Grenville Prov-
ince was also simulated using the SGS method. Conclusively, results show that the difference between the minimum and the 
maximum value of radiogenic heat production is 30%, considering a significant proportion of heterogeneity in rock density.
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Introduction

The extraction of deep geothermal energy has become 
a worldwide hot topic in recent years prompting innova-
tive research in the reduction of drilling costs and devel-
opment of deep reservoir stimulation technologies (Tester 

et al. 2006). However, reliable assessment of geothermal 
resources at depth is very challenging because of the great 
uncertainties in the subsurface conditions (Fuchs and Balling 
2016). Numerical simulations are quite a practical method 
to understand subsurface processes but require a solid theo-
retical background of physics and advanced computational 
capabilities (Vidal and Archer 2015). Taking the assess-
ment of a specific deep geothermal reservoir, for example, 
in most cases, all numerical models of the subsurface fluid 
flow in a geothermal system will be strongly dependent on 
the knowledge about the geological structure, subsurface 
rock properties and so on. All these data are obtained from 
a multidisciplinary approach, including geology, geophys-
ics, geochemistry, and drilling activities. The accuracy of a 
thermal model to estimate the spatial distribution of tem-
perature at depth is directly related with the magnitude of 
the physio-chemical parameters (e.g., radiogenic elements 
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concentration, thermal conductivity etc.) and their spatial 
distributions (Li and Heap 2014).

Parameterization of the variables from local points to spa-
tial distribution is the key to a reliable assessment of geother-
mal resources. There are many methods for spatial interpola-
tion of variables (such as radiogenic elements concentration 
and thermal conductivity) related with geothermal energy 
assessment which may be classified into three categories (Li 
and Heap 2008): (1) geostatistical; (2) non-geostatistical; and 
(3) a combination of both. Geostatistics can be regarded as a 
collection of numerical techniques that deal with the charac-
terization of spatial attributes, primarily employing random 
models based on limited sample data points (Olea 1999). In 
geostatistics, semi-variogram analysis, kriging interpolation 
and stochastic simulation are often involved. Variogram-based 
models, also called the two-point statistical models, are widely 
applied in the simulation of groundwater flow, environmental 
pollution, distribution of mineral resources and geothermal 
resources (Yamamoto 2000; Yang et al. 2008). Among them, 
the kriging interpolation method is widely applied to estimate 
the mean value of a variable at un-sampled locations by calcu-
lating the weights of observation samples at un-sampled loca-
tions in a local region (Nshagali et al. 2015). Among the large 
series of kriging interpolation methods, ordinary kriging (OK) 
can provide an optimal unbiased estimation in a local region.

Another variogram-based model, stochastic simulation is a 
general means for generating multiple realizations of a specific 
variable, rather than a map of local best estimates produced by 
kriging (Goovaerts 1997a, b; Song et al. 2013). Unlike krig-
ing, stochastic simulation approach takes into account both the 
spatial variation of original data at sampled locations and the 
variation of estimates at un-sampled locations (Delbari et al. 
2009). The most widely used stochastic simulation method, 
Sequential Gaussian simulation (SGS), is based on the Monte 
Carlo method and overcomes the smoothing effect induced 
by the kriging interpolation method, is often applied in the 
description of the distribution of continuous variables (such as 
porosity, permeability, concentration of elements etc.), in the 
field of hydrogeology, ecology, pedology, mining, petroleum 
etc. (Dubrule 1989; Caers 2005; Doyen 2007). In comparison 
with the partial optimization of the estimator value in the krig-
ing interpolation algorithm, geostatistical stochastic simula-
tion is able to assess the spatial distribution of any desired 
variables while analysing its uncertainty (Soltani et al. 2013) 
and realizing the optimization of the estimator values in the 
whole region through multiple realizations based on the same 
input data (Zhao et al. 2010).

In addition to the high temperature hydrothermal system 
that are mainly related with the magmatic system, in the 
exploration for the production of deep geothermal energy 
potential sites are often located in the hot dry rocks, which 
are reservoirs with high concentrations of radiogenic ele-
ments, including uranium, thorium and potassium. A good 

example of this is the high-quality geothermal resource 
located in the Cooper Basin of Australia. Due to the presence 
of high heat generating granites in the range of 3.8–8.7 µW/
m3, high temperature geothermal resources are attained 
(Meixner et al. 2012). Parameters involved in the calcula-
tion of radiogenic heat production include the concentration 
of uranium, thorium, potassium and rock density. However, 
because of the limited number of samples retrieved from 
the subsurface and the strong heterogeneity of the lithol-
ogy associated with the geological formations, it is difficult 
to have a clear understanding on the spatial distribution of 
radiogenic heat produced over a large region.

The assessment of the geothermal potential in the western 
St. Lawrence Lowlands Basin located in the southwestern 
Québec requires a clear understanding of the characteristics 
of its crystalline basement, especially its radiogenic proper-
ties. However, because of the limited number of samples 
and the partial knowledge of the uncertainties associated 
with the prediction of the distribution of radiogenic ele-
ments in the western St. Lawrence Lowlands Basin, it is 
logic to investigate the radiogenic characteristics in the out-
crops from the neighboring regions (e.g., Portneuf-Mauricie 
domain, Parc des Laurentides domain, Morin Terrane, etc.).

The main objective of this paper is to understand the 
radiogenic characteristics of the Grenvillian basement 
located in the northern part of the western St. Lawrence 
Lowlands Basin using geostatistical methods. Both the ordi-
nary kriging (OK) and sequential Gaussian simulation (SGS) 
methods were applied to investigate the spatial distribution 
of the radiogenic elements to get their optimizations in the 
local and whole region, respectively. The spatial distribution 
of the radiogenic heat production is also studied statistically 
using the SGS to obtain optimal results at the regional scale.

Study area

The study area lies in the Grenville Province (Fig. 1a), 
whose geology is composed of high-grade metamorphic 
terranes and stacks of thrust sheets along ductile shear 
zones (McLelland et al. 2010), equivalent to the roots of 
a Himalayan-type collisional orogeny (Rivers 1983, 2015; 
Davidson 1984; Dufréchou et al. 2014). The north–south 
strike of the Grenville structural belt extends from Canada 
southward into the subsurface of the Appalachian Foreland 
Basin (Shumaker and Wilson 1996), which belongs to part 
of the Appalachian orogeny that extends from Newfound-
land to North Carolina (Fichter and Richard 1993; Hatcher 
et al. 2004). Rocks of Grenvillian age outcrop in the south-
western Québec in the lithotectonic domains of Morin Ter-
rane, Portneuf-Mauricie and Parc des Laurentides.

St. Lawrence Lowlands Basin, located in southwestern 
Québec, is comprised of Cambrian–Ordovician sedimentary 
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rocks and a crystalline Grenvillian basement composed of 
rocks including granite, granitic gneiss, paragneiss, orthog-
neiss, gabbronorite, monzonite, and amphibolite (Tremblay 
et al. 2003; Lavoie et al. 2009; Pinti et al. 2011). Figure 1b 
shows simplified detailed geological map of the western part of 
the St. Lawrence Lowlands Basin and its neighboring regions 
in the Grenvillian province including the Portneuf-Mauricie 
(PM) domain, Morin Terrane (MT) and Parc des Laurentides 
domain (PDLD). The area bounded by the blue rectangle and 
covering the intrusions of Gagnon, Lapeyrere and Montauban 
group was selected in this paper. Figure 2 shows the sampling 

locations and concentrations of uranium, thorium and potas-
sium in the study area.

Methodology

Sampling and analysis methods

170 samples collected using RS-230 spectrometer together 
with data obtained from the Quebec Ministère des Res-
sources naturelles et de la Faune (SIGEOM database 2018) 

Fig. 1   a Location map of the southwestern Grenville Province and St. 
Lawrence Lowlands Basin (SLLB) in Québec Province. b Detailed 
geological map of the study area (composed of Grenville aged rocks) 
in the southwestern St. Lawrence Lowlands Basin and its neighbor-

ing regions including Portneuf-Mauricie (PM) domain, Shawinigan 
domain (SD) that is part of the Morin Terrane (MT) and Parc des 
Laurentides domain (PDLD) (modified from Nadeau and Brouillette 
1994, 1995; Sappin 2012)
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are prepared for the input data. From the SIGEOM database, 
samples for uranium concentration were analysed based on 
NAA-neutron activation method and samples for thorium con-
centration were analysed based on NAA and X-ray fluores-
cence, while those for potassium concentration were analysed 
based on X-ray fluorescence and plasma emission spectrom-
etry. When a much larger region with longitudes ranging from 
73°15′ to 71°45′ west of Greenwich and latitudes ranging from 
46°04′ to 47°50′, see Fig. 1b, in the Grenville Province (cover-
ing Morin Terrane, Portneuf-Mauricie domain, Parc des Lau-
rentides domain) is considered, a total number of 404 uranium, 
357 thorium and 411 potassium samples were collected.

Ordinary kriging estimation method

Ordinary kriging estimation method on this paper aims to 
predict the value of a variable (e.g., concentration of radio-
genic elements, rock density, thermal conductivity etc.) over 

any un-sampled location based on the values of the scattered 
measured data points available (Vidal and Archer 2015). As 
a popular tool of interpolation and extrapolation, kriging is 
a generic name adopted by geostatisticians for the family of 
generalized least-squares regression algorithms, which was 
developed by Matheron (1963) based on the pioneering work 
of Krige (1951).

The basic form of the kriging estimator can be written as 
(Goovaerts 1997a, b)

where x0 and xi are location vectors at the estimation point 
and one of the neighboring data point, indexed i; n is the 
number of data points in local neighborhood used for estima-
tion of Z*(x0); m(x0), m(xi) are the expected means of Z(x0) 
and Z(xi), respectively; �i is the kriging weight assigned to 

(1)Z∗(x0) − m(x0) =

n∑
i=1

�i[Z(xi) − m(xi)],

Fig. 2   Sampling locations and concentration of a uranium (ppm), b thorium (ppm) and c potassium (%) in the study area of the Grenville Prov-
ince
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datum Z(xi) at the estimation location point x0; note that 
the same datum may produce different weights at different 
estimation locations.

The number of data points involved in the estimation 
as well as their weights may change from one location to 
another. However, ordinary kriging (OK) allows one to 
account for the local variation of the mean by limiting the 
domain of stationarity of the mean to the local neighborhood 
centered at the location point x0 (Goovaerts 1997a, b).

The following generic equation can be used to describe 
the linear regression ordinary kriging estimator at a specific 
location:

where Z∗
OK

(x0) is the ordinary kriging estimator at the loca-
tion x0; x1,…, xn is a series of observation locations and 
Z(x1), …, Z(xn) are the corresponding measurement values 
at the observation or sampling locations; �OK

i
 is the vector 

of ordinary kriging weights for the surrounding data points 
and satisfy the relationship as follows:

Based on the unbiased condition and the relation that

where C(0) is the sill value in the semi-variogram diagram 
�(h).

The ordinary kriging system is expressed in terms of 
covariant (semi-variograms) as

where � is the Lagrangian parameter.
The ordinary kriging system can be written in the matrix 

form as

and the ordinary kriging weights can be described as 
[λOK] = [KOK]−1 [MOK]:

(2)Z∗

OK
(x0) =

n∑
i=1

�OK
i

Z(xi),

(3)
n∑
i=1

�OK
i

(x0) = 1.

(4)C(h) = C(0) − �(h),

⎧⎪⎨⎪⎩

n∑
i=1

C(xi − xj)�
OK

i
(x0) + � = C(x0 − xj), (j = 1,… , n) (5)

n∑
i=1

�OK
i

(x0) = 1, (6)

(7)KOK�OK(x0) = MOK,

(8)

⎡⎢⎢⎢⎢⎢⎣

�1
�2
…

�n
−�

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
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1
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1

…

…

…

…

1

C1n
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…
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1

1

1

…

1

0

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣

C01

C02

…

C0n

1

⎤⎥⎥⎥⎥⎥⎦

.

The solution of �i depends on the solution of the covar-
iance Cij between the point locations i, j. This requires 
the selection of a reasonable semi-variogram theoretical 
model (e.g., spherical, exponential, Gaussian model etc.) 
to fit the experimental data.

Sequential Gaussian simulation method

The sequential Gaussian simulation (SGS) requires a 
standard Gaussian data with mean of 0 and variance of 1. 
Therefore, the input data should be transformed into a nor-
mal (Gaussian) distribution through a quantile transform. 
In the SGS algorithm the mean and variance of the Gauss-
ian distribution at any location point along the simulation 
path is estimated by the kriging estimate and the kriging 
variance (Vidal and Archer 2015). Rather than choosing 
the mean as the estimate at each grid node like in the krig-
ing interpolation method, SGS uses a random deviate from 
the normal distribution. This random deviate is selected 
according to a uniform random number representing the 
probability level. The variable at each unknown grid node 
is simulated sequentially according to its normal condi-
tional cumulative distribution function (ccdf). During mul-
tiple realizations, it uses not only the original data but also 
all the previously simulated values.

The detailed workflow of the conditional simulation of 
a continuous variable Z(xi) in a Gaussian space during 
one realization have already been investigated by many 
previous authors (e.g., Deutsch and Journel 1998; Remy 
et al. 2009; Soltani et al. 2013) thus not mentioned here. 
Randomization allows to perform multiple realizations 
including their mean values.

Calculation of radiogenic heat production

When the concentration of a radiogenic element (e.g., ura-
nium, thorium or potassium) is known, together with the 
values of rock density at the sampled locations, radiogenic 
heat production can be calculated using the following 
empirical function (Mareschal and Jaupart 2004; Rybach 
1976, 1988):

where �r is the dry density of rock (in kg/m3), Cu is the ura-
nium content (in ppm), CTh is the thorium content (in ppm), 
and Ck is the potassium content (in %), A is the radiogenic 
heat production (measured in units of µW/m3).

(9)A = �r[9.52Cu + 2.56CTh + 3.48Ck] × 10−5,
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Results and discussion

Concentration of radiogenic elements at sampled 
sites

In the study area (Fig. 1b), a region enclosed by longitudes 
in the range between 73°15′ and 71°45′ west of Greenwich 
and latitudes in the range between 46°04′ and 47°50′, a 
total of 404 uranium data, 357 thorium data and 411 potas-
sium data were collected. Comparing the concentration 
of radiogenic elements for different rock types, including 
granitic gneiss, paragneiss, quartzite, amphibolite, gran-
ite, diorite, quartz monzonite and gabbro-gabbronorite that 
comprise the Precambrian Grenville Province (Fig. 3), it 
can be demonstrated that the distribution of radiogenic 
elements is very sparse in all types of rocks. In general, 
the concentration of uranium is in the range of 1–2 ppm 
for most samples (e.g., in granitic gneiss, amphibolite, 

granite, diorite and quartz monzonite), although a little 
higher in quartzite and lowest in gabbro-gabbronorite.

Similarly, the concentration of thorium for most rocks 
in the study area is in the range of 3–10 ppm, with gabbro-
gabbronorite and quartz monzonite having the lowest and 
highest values, respectively.

The concentration of potassium ranges from 1 to 4% in 
most rock types investigated, with granite and quartz mon-
zonite showing the highest values.

According to the boxplot the average concentration of 
uranium, thorium and potassium is 1.78 ppm, 6.01 ppm and 
2.64%, with a standard deviation error of 3.57, 7.27 and 
1.85, respectively. It can also be observed that 90% of the 
total samples have uranium concentration of less than 3 ppm, 
64% of the samples have thorium concentration of less than 
5 ppm, and 56% of the samples have potassium concentra-
tion of less than 3%.

The cumulative distribution frequency diagrams (in 
Fig. 4), it can be seen that only 3 and 4% of the samples 
from the Portneuf-Mauricie domain and Morin Terrane, 

Fig. 3   Boxplot of the concentration of radiogenic elements a ura-
nium (ppm), b thorium (ppm) and c potassium (%) for different 
rock types sampled from outcrops in the Grenville Province includ-
ing the Portneuf-Mauricie (PM) Domain, Morin Terrane (MT) and 
Parc des Laurentides Domain (PDLD). n the number of samples, 

Q1 the first quartile value, Q2 median value, Q3 the third quartile 
value, A1 = Q1 − 1.5  ×  (Q3 − Q1), is the smallest non-outlier value; 
A2 = Q3 + 1.5 × (Q3 − Q1), is the largest non-outlier value. The circu-
lar symbols represent extreme outlier values
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respectively, have a uranium concentration of more than 
6 ppm. As regards to thorium concentration, less than 2 
and 12% of samples from the Portneuf-Mauricie domain 
and the Morin Terrane, respectively, have their concentra-
tions higher than 15 ppm. This result demonstrates that 
radiogenic elements concentration for most samples in 

the research region is very low. Besides, the Portneuf-
Mauricie domain is less radiogenic compared with the 
Morin Terrane.

Fig. 4   Cumulative distribution curves for K2O, uranium (U) and thorium (Th) concentrations in the Portneuf-Mauricie domain and the Morin 
Terrane
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Kriging estimation of uranium concentration

Results of the experimental semi-variance study and a 
spherical model fit to raw data for uranium concentration 

in the study area (of size 35 km × 80 km) are presented in 
Fig. 5. It can be observed that the omni-directional iso-
tropic semi-variogram is identical to a spherical structural 

Fig. 5   Omni-directional vari-
ogram for the concentration of 
uranium in the study area and 
the best fitting spherical model

Fig. 6   Spatial distribution of concentration of a uranium (ppm), b thorium (ppm) and c potassium (%) in the study area obtained through apply-
ing the ordinary kriging method (note: the sampling locations presented by rectangles and the main geological boundaries by contours)
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curve type, however, with a nugget effect of 0.4, and 
attains a sill of 0.8 (i.e., 1.2–0.4) at a range of 4500 m.

Using the spherical semi-variogram in Fig.  5 and a 
search ellipsoid range of 20 km for ordinary kriging esti-
mation, Fig. 6a–c shows the variations in the concentration 
of radiogenic elements uranium, thorium and potassium, 
respectively, in the study area. When these results of Figs. 2 
and 6 are compared, it can be seen that the ordinary kriging 
methods describe local estimates better. However, the overall 
distribution of the concentration is poorly illustrated because 
of sample limitation.

Spatial distribution of uranium, thorium 
and potassium based on SGS

Based on SGS modelling method and the omni-directional 
semi-variograms shown in Fig. 5, the spatial distribution of 
uranium (under 100 realizations) is generated in the study 
area of 35 × 80 km2, for a cell size of 175 m × 400 m using 
the geostatistics software—SGeMS.

Compared with the distribution of the uranium con-
centration using ordinary kriging interpolation method 
(Fig. 6) and the omni-directional variogram with a range 

of 3400 m for raw data after normal score transformation 
(as in Fig. 7a), SGS gives much more details for calculat-
ing the concentration of uranium by avoiding the smooth-
ing effect (see Fig. 8a). In ordinary kriging method, the 
overall distribution of the uranium concentration cannot 
be described because of the limitation of the data set in 
the concentration of uranium. In contrast, the sequen-
tial Gaussian simulation method can better describe the 
structure of the database (e.g., uranium concentration, in 
Fig. 8a) using the probability distribution function. Table 1 
presents the range of variations for measured uranium 
data, E-type from the SGS and the results from the ordi-
nary kriging method. Results obtained from the E-type 
tallies well with those derived from the ordinary kriging 
method.

In addition to the uranium concentration, the distribu-
tion of the thorium (Fig. 8b) and potassium (Fig. 8c) using 
SGS simulation method are also shown by applying the 
results of omni-directional variograms with the range of 
7200 m and 6000 m, respectively (Fig. 7b, c). Minor dif-
ferences occur in the E-type results derived from the two 
different realizations 30 and 100, demonstrating that the 
E-type based on the SGS simulation can still be further 
applied.

Fig. 7   Omni-directional variograms for the concentration of uranium, thorium and potassium after the normal score transformation in the study 
area used for the sgs simulation
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Spatial distribution of radiogenic heat production 
based on SGS

In the study area, not all data points that were measured the 
concentration of the radiogenic elements have the density val-
ues. Data points without density values were assigned values 
based on a data set from the neighboring regions according 
to the similar rock types. There is a large range of density for 
a specific rock over a large region, as shown in Fig. 1b, e.g., 
the density of gabbro ranges from 2600 to 3530 kg/m3, with 
a mean of 2995 kg/m3, granite ranges from 2620 to 2760 kg/
m3, with a mean of 2670 kg/m3, granitic gneiss ranges from 
2530 to 3160 kg/m3, with a mean of 2650 kg/m3, granodiorite 
ranges from 2730 to 2970 kg/m3, with a mean of 2840 kg/
m3 etc. Therefore, radiogenic heat production can only be 

calculated using the empirical function Eq. 9 when the con-
centration of uranium, thorium, potassium and their density 
values are known. Accordingly, three types of radiogenic 
heat production can be calculated based on the range of the 
rock density values (i.e., minimum, average and maximum). 
Afterwards, the spatial distribution of the heat production can 
be simulated by applying the SGS method (Fig. 9). Result 
shows that using average densities, the heat production is in the 
range of 0.01–3.4 µW/m3. The difference between calculated 
radiogenic heat production using the minimum and maximum 
density values can reach to an extent of 30%, see Fig. 8a, c for 
comparison.

Fig. 8   Concentration of uranium (a), thorium (b) and potassium (c) using conditional SGS simulation based on 100 realizations applying the 
omni-directional variograms in Fig. 7

Table 1   Basic statistics of 
uranium output data for 
different realizations, a 
comparison for raw data, E-type 
and kriged values

Range (ppm) Min (ppm) Max (ppm) Mean (ppm) Variance (ppm)

Raw data 4.850 0.050 4.900 1.460 1.184
E-type 3.360 0.142 3.502 1.383 0.344
Kriged 3.209 0.208 3.417 1.319 0.348
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Conclusions

Knowledge of the radiogenic characteristics of the crystal-
line basement of the western St. Lawrence Lowlands Basin 
is essential to evaluate the potential of geothermal resources 
at depth. Since data are typically sparse and expensive to 
acquire, the radiogenic characteristics of the outcrops in the 
neighboring Grenville Province may provide a good refer-
ence in understanding the heterogeneity of the basement 
buried by sedimentary rocks in the western St. Lawrence 
Lowlands Basin. Both the ordinary kriging and the sequen-
tial Gaussian simulation methods were applied to analyse 
the spatial distribution of radiogenic element concentration 
in a selected region of size 35 km × 80 km to calculate the 
spatial distribution of radiogenic heat production.

Some main conclusions can be drawn as follows: (1) for 
most rocks from the study region that may represent the 
granitic basement of the western St. Lawrence Lowlands 
Basin, the concentration of uranium, thorium and potassium 
is in the range of 1–2 ppm, 3–10 ppm and 1–4%, respec-
tively; (2) a strong anisotropy exists in the distribution of the 
radiogenic elements concentration data; (3) compared with 
the ordinary kriging method, which is better in describing 
the estimates at a local scale, SGS gives much more details 

for calculating the concentration of radiogenic elements in 
the overall region when data are very sparse; (4) the spatial 
distribution of radiogenic heat production in the study area 
is highly dependent on the value of rock density, and con-
centrations of the radiogenic elements uranium, thorium and 
potassium; and (5) using the sequential Gaussian simulation 
method the difference between the minimum and the maxi-
mum radiogenic heat production values is 30%, considering 
the differences in radiogenic element concentration values 
and different rock density values.
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