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Abstract
Water quality evaluation is critically important for the protection and sustainable management of groundwater resources, 
which are variably vulnerable to ever-increasing human-induced physical and chemical pressures (e.g., overexploitation and 
pollution of aquifers) and to climate change/variability. Preceding studies have applied a variety of tools and techniques, 
ranging from conventional to modern, for characterization of the groundwater quality worldwide. Recently, geographic 
information system (GIS) technology has been successfully integrated with the advanced statistical/geostatistical methods, 
providing improved interpretation capabilities for the assessment of the water quality over different spatial scales. This review 
intends to examine the current standing of the GIS-integrated statistical/geostatistical methods applied in hydrogeochemical 
studies. In this paper, we focus on applications of the time series modeling, multivariate statistical/geostatistical analyses, and 
artificial intelligence techniques used for groundwater quality evaluation and aquifer vulnerability assessment. In addition, 
we provide an overview of salient groundwater quality indices developed over the years and employed for the assessment of 
groundwater quality across the globe. Then, limitations and research gaps of the past studies are outlined and perspectives 
of the future research needs are discussed. It is revealed that comprehensive applications of the GIS-integrated advanced 
statistical methods are generally rare in groundwater quality evaluations. One of the major challenges in future research 
will be implementing procedures of statistical methods in GIS software to enhance analysis capabilities for both spatial and 
temporal data (multiple sites/stations and time frames) in a simultaneous manner.

Keywords  Artificial intelligence methods · Geostatistical modeling · GIS · Hydrogeochemistry · Multivariate analysis · 
Time series modeling · Water quality index

Introduction

Groundwater is the major source of freshwater supply 
worldwide, which is currently used to meet nearly half of 
the drinking water needs, including requirement of about 
two billion people all over the world (WWAP 2009; Gleeson 
et al. 2010). In addition, groundwater provides around 43% 
of the water consumed in irrigation (Siebert et al. 2010). 
Accordingly, the major groundwater systems of the world do 
not remain in dynamic equilibrium rather do show signifi-
cantly declining groundwater level trends (WWAP 2012). It 
has been estimated that about 700–800 km3 of groundwa-
ter has been depleted from the aquifers in the USA during 
the twentieth century (Konikow and Kendy 2005). Like-
wise, a World Bank Report (World Bank 2010) states that 
India is the largest consumer of groundwater in the world, 
with an estimated annual groundwater use of 230 km3. 
The fast-depleting groundwater resources, as depicted by 
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the declining groundwater levels, caused deterioration in 
groundwater quality in many parts of the world. Groundwa-
ter quality may be further degraded due to pressure created 
over hydrologic and hydrogeologic systems in view of the 
impacts of climate change and variability (e.g., Gurdak et al. 
2012; Bondu et al. 2016).

The degradation of groundwater quality has also led to 
the reduction of the exploitable quantities. There are two 
major sources of the groundwater quality degradation, i.e., 
natural (geogenic) processes and anthropogenic activities. 
For example, in agricultural areas, excessive use of ferti-
lizers has resulted in nitrate contaminations in groundwa-
ter well above the water quality guidelines (e.g., Machiwal 
et al. 2011; Paradis et al. 2016). In coastal areas, the over-
exploitation of aquifers via numerous wells and boreholes 
has established a negative water balance triggering seawa-
ter intrusion and salinization of groundwater (Ferguson and 
Gleeson 2012). Anthropogenic activities that pollute the 
natural environment with potential toxic elements (such 
as hexavalent chromium, arsenic, and antimony) include 
paint manufacturing, tannery industry, mining activities, 
phosphate fertilizer manufacturing and the combustion of 
coal and fly ash deposits (Molina et al. 2009; Jacobs and 
Testa 2004). Natural processes also influence groundwater 
quality at both local and regional scales depending on the 
geological, hydrochemical and hydrogeological regimes. 
The release of arsenic (As) in groundwater is mainly con-
trolled by the oxidation of organic carbon coupled with the 
reductive dissolution of As-bearing iron oxides (Postma 
et al. 2012), while As concentrations exceeding the WHO 
provisional guideline value of 10 µg/L (WHO 2017) were 
measured in groundwater from fractured bedrock aquifer of 
the Canadian Shield, primarily derived from the weathering 
of As-bearing sulfides in the oxic/suboxic zone of the aquifer 
(Bondu et al. 2017). Additionally, geothermal fluids can also 
enhance As concentrations in shallow aquifers through deep 
fractures (Pique et al. 2010; Iskandar et al. 2012). Iskandar 
and Koike (2011) identified the deep-seated hydrothermal 
system as the major source of As contamination along the 
fault zone in North Sulawesi, Sulawesi Island, Indonesia, 
by applying geostatistical and numerical simulation models. 
The geogenic origin of hexavalent chromium is attributed to 
ophiolitic rocks and specifically their serpentinized deriva-
tives (Nriagu and Nieboer 1988), while the concentrations 
of hexavalent chromium are influenced by the prevailing 
hydrogeological conditions (Kazakis et al. 2015). It is very 
much needed to pay adequate attention for evaluation of 
the quality of this vital but invisible resource from local to 
regional scales based on scientific knowledge, to manage it 
in a sustainable manner. Therefore, throughout the world, 
increasing demands for safe drinking water, agricultural 
and industrial use of it, as well as maintaining healthy eco-
systems are leading stakeholders and scientists to develop 

appropriate strategies and methods varying from simple to 
complex nature for rational groundwater resource manage-
ment and protection (e.g., Council of Canadian Academies 
2009).

There exist several conventional tools and techniques 
ranging from graphical to statistical that have been used 
by various researchers for interpreting groundwater quality 
(Freeze and Cherry 1979; Karanth 1987; Sara and Gibbons 
1991; Güler et al. 2002; Machiwal and Jha 2010). In recent 
times, researchers felt a need for application of the modern 
techniques such as time series modeling (e.g., trend identi-
fication), multivariate statistics, and geostatistical modeling, 
among others, to better interpret and precisely character-
ize the groundwater quality for the efficient management 
and protection of groundwater resources (e.g., Güler et al. 
2002; Jha et al. 2007; Cloutier et al. 2008; Steube et al. 2009; 
Machiwal and Jha 2010, 2015). The modern techniques also 
contribute to distinguish between the anthropogenic and 
natural processes and/or factors influencing the groundwa-
ter quality. Salient popular methods used for groundwater 
quality evaluation and protection are classified into distinct 
groups and subgroups as shown in Fig. 1.

With the advent of geographic information system (GIS) 
technology, especially after 1990s, visualization, interpre-
tation and presentation of groundwater quality evaluations 
over large spatial scales has been drastically improved. The 
GIS is capable of capturing, storing, analyzing, manipulat-
ing, retrieving and displaying a large volume of spatial data 
for swift organization, quantification and interpretation for 
decision-making in areas including engineering and environ-
mental sciences (e.g., Stafford 1991; Goodchild et al. 1993; 
Burrough and McDonnell 1998; Lo and Yeung 2003). It has 
been proved to be a powerful tool for analyzing and mapping 
the hydrologic/hydrogeologic data over spatial and temporal 
scales in order to provide useful information about spatio-
temporal variability that ultimately helps in decision-making 
(Burrough and McDonnell 1998; Gurnell and Montgom-
ery 2000; Chang 2002; Chen et al. 2004; Güler and Thyne 
2004a; Machiwal and Jha 2014). The GIS applications are 
advantageous in groundwater quality evaluation studies 
particularly for mapping spatial variations of water quality, 
subsurface flow and pollution modeling, and groundwater-
quality monitoring network design, etc. (Jha et al. 2007). 
In addition, GIS-based water quality mapping is imperative 
for pollution-hazard modeling, assessment and protection 
planning, and detection of environmental changes (Good-
child et al. 1993; Skidmore et al. 1997; Chen et al. 2004; 
Jha et al. 2007).

Recently, advanced statistical tools are successfully inte-
grated with GIS by researchers for illustrating spatial dis-
tribution of the chemical composition of groundwater over 
the large areas, sometimes up to regional scale. In addition, 
many studies have utilized the GIS-integrated statistical 
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techniques and approaches to determine the hydrochemi-
cal regime and establish strategies to manage groundwa-
ter resources under the complexity of natural processes in 
conjunction with the anthropogenic practices that influence 
groundwater quality. The purpose of this paper is to explore 
the literature in order to evaluate the current standing of 
the GIS-integrated statistical analyses used for groundwater 

quality evaluation, and to focus on the future research direc-
tions. To the authors’ knowledge, this kind of review does 
not currently exist in the literature. This paper deals with 
the past studies having application of time series mod-
eling and multivariate statistical/geostatistical techniques 
for groundwater evaluation and artificial intelligence tech-
niques for groundwater vulnerability assessment. Then, 

Fig. 1   Classification of salient methods for the groundwater quality evaluation and protection
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this paper outlines distinct GIS-based water quality indices 
developed and applied for groundwater quality assessment 
worldwide. Finally, it highlights the limitations and research 
gaps incurred in the past studies, and then it emphasizes 
on the future research needs to be considered for a better 
evaluation of groundwater quality under the framework of 
GIS-integrated statistical techniques.

Time series modeling of groundwater 
quality variables

Components, steps and assumptions of time series 
analysis

A “time series” may be defined as “a sequence of values col-
lected over time on a particular variable” (Haan 1977). Simi-
lar to the time-variable data series, there exist “spatial data 
series” in hydrogeology. In spatial series, data are location-
dependent instead of time-dependent as in the time series. 
Most time series analysis techniques are equally applicable 
to spatial data series (Shahin et al. 1993), and hence, spatial 
data series is sometimes referred to as time series. In gen-
eral, a hydrologic or hydrogeologic time series is composed 
of deterministic and stochastic components (Haan 1977; 
Shahin et al. 1993). The deterministic component presents 
a systematic pattern in the time series and can be classi-
fied as a trend, a shift or jump, a periodic component, or a 
combination of these (Haan 1977). The time series analy-
sis intends at detection and quantitative description of each 
of the generating processes underlying a given sequence 
of observations (Shahin et al. 1993). There are four major 
steps involved in a time series modeling (McCuen 2003): 
(i) detection, (ii) analysis, (iii) synthesis, and (iv) verifica-
tion. In the detection step, systematic components of the 
time series such as trends and periodicity are identified. In 
the analysis step, the systematic components are analyzed 
to identify their characteristics, including magnitudes, form 
and their duration over which the effects exist. In the synthe-
sis step, information from the analysis step is accumulated to 
develop a time series model and to evaluate goodness-of-fit 
of the developed model. Finally, in the verification step, the 
developed time series model is evaluated using independent 
sets of data. For further details of the time series analysis, 
the reader is referred to the specialized books on time series 
analysis, such as Yevjevich (1972), Salas et al. (1980), Bras 
and Rodriguez-Iturbe (1985), Cryer (1986), Clarke (1998), 
and Machiwal and Jha (2012). Most statistical analyses using 
hydrologic time series are based on fundamental assump-
tions of the time series characteristics, which include; the 
series is homogenous and follows normal probability distri-
bution, stationary, free from trends and shifts, non-periodic 
with no persistence (Adeloye and Montaseri 2002).

About five decades ago, hydrologic application of time 
series modeling was confined up to surface water problems, 
especially for analyzing the hydrologic extremes, such as 
floods and droughts (McCuen 2003). However, with enlarg-
ing domain of statistical hydrology over the past few dec-
ades, time series analyses presently encompass the problems 
of surface water as well as groundwater systems (Shahin 
et al. 1993; Machiwal and Jha 2006). With such a broad 
domain, time series analysis has emerged as a powerful 
tool for analyzing surface and subsurface hydrologic time 
series data. An extensive review on the applications of time 
series analysis in surface water hydrology, climatology and 
groundwater hydrology has been presented by Machiwal 
and Jha (2006). That review revealed that although several 
studies deal with the application of time series analysis in 
surface water hydrology, the application of time series analy-
sis in groundwater hydrology is highly limited. Salient stud-
ies analyzing characteristics of the hydrogeochemistry time 
series are reviewed in the following sub-sections.

Normality of groundwater quality variables

The assumption of presence of normality in time series of 
groundwater quality variables is very crucial in obtaining 
reliable results of the parametric statistical tests (USEPA 
1996). In the past studies dealing with geochemistry data, 
normality tests are applied to the point data of the ground-
water quality variables, and not to the spatial data/maps on 
GIS platform. For example, Mouser et al. (2005) tested pH, 
electrical conductivity (EC) and calcium concentration data 
from the Molly Bog peatland located between Stowe and 
Morristown in Vermont, USA, for presence of normality 
using normal probability plot and Shapiro–Wilk test. Results 
suggested that calcium concentration did not follow a nor-
mal distribution, which was then subjected to logarithmic-
transformation. Chou (2006) suggested use of normal prob-
ability plot for testing normality in environmental data, and 
transforming the non-normal data by applying logarithmic or 
Box–Cox transformations (Box and Cox 1964). Aguilar et al. 
(2007) applied three tests (i.e., Shapiro–Wilk, Shapiro–Fran-
cia, and D’Agostino tests) to identify presence of normality 
in nitrate concentrations of 24 sites located in Hesbaye chalk 
aquifer of the Geer basin of Belgium. The Shapiro–Wilk test 
was employed for a sample size < 50, and the Shapiro–Fran-
cia test for a sample size ≥ 50. In another study, Kolmogo-
rov–Smirnov test was used to examine normality of chemical 
(i.e., ammonium, nitrate, nitrite, soluble reactive phosphorus 
and total phosphorus) and microbiological (i.e., bacterial 
abundance, cell biomass and bacterial biomass) variables 
of groundwater samples collected in Doñana aquifer system 
of southwest Spain (Ayuso et al. 2009). The non-normal 
variables identified by the Kolmogorov–Smirnov test were 
then transformed to make them normal. Nas and Berktay 
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(2010) used frequency plot and quantile–quantile plot to 
check normality of urban groundwater quality data (i.e., 
pH, EC, chloride, sulfate, hardness and nitrate) for 177 sites 
in Konya City (Turkey). Results revealed non-normality of 
EC, chloride, sulfate, hardness and nitrate, which were then 
normalized by log-transformation. Hosseini and Mahjouri 
(2014) employed Anderson–Darling test to assess normality 
of nitrate concentrations in Karaj aquifer of Iran. The non-
normal data were transformed by using logarithmic trans-
formations. Jovein and Hosseini (2017) examined normality 
of EC of the groundwater samples collected from Mahve-
lat Plain located in the northeastern part of Iran by normal 
quantile–quantile and frequency plots, and transformed the 
data by applying Box–Cox transformation. Recently, Leite 
et al. (2018) evaluated multivariate normality using Shap-
iro–Wilk generalized test of 14 water quality parameters for 
12 sites comprising three distinct micro-regions of Santa 
Catarina State (four sites per region) in the municipality of 
Ponte Alta do Norte and São Cristóvão do Sul, Brunópolis, 
and Curitibanos located in Marombas River basin of south-
ern Brazil.

In addition to statistical tests, skewness and kurtosis val-
ues were also computed to test normality of trace elements 
(i.e., arsenic, lead, cadmium, and aluminum) present in 
groundwater of Dhemaji district of Assam, India (Burago-
hain et al. 2010). All trace elements followed non-uniform 
distribution in the area. Similarly, skewness and kurtosis 
values besides Kolmogorov–Smirnov test were used to eval-
uate normality of groundwater quality parameters in Amol-
Babol Plain (Narany et al. 2014) and Torbat-Zaveh Plain, 
Khorasan Razavi (Nematollahi et al. 2016) of Iran, Modena 
Plain of central Italy (Barca and Passarella 2008), Antonio-
El Triunfo mining district, Baja California Sur of Mexico 
(Wurl et al. 2014) and Pingtung Plain of Taiwan (Jang et al. 
2016). The normality of trace elements present in ground-
water of Greece was evaluated by computing skewness and 
kurtosis values, and Box–Cox transformations were used to 
normalize data (Dokou et al. 2015). Using Shapiro–Wilk 
test, Noshadi and Ghafourian (2016) checked normality 
of groundwater quality parameters (i.e., calcium, chloride, 
bicarbonate, magnesium, sodium, nitrite, nitrate, pH, sul-
fate, total dissolved solids (TDS), hardness, EC, and sodium 
adsorption ratio) at 298 sites in Fars province of Iran. Results 
indicated presence of normality in all the parameters except 
magnesium that was later on considered normal looking at 
value of skewness (< 2). In addition, Gan et al. (2018) log-
transformed chloride, sulfate and arsenic with substantial 
skewness and kurtosis values to improve the normality of 
distribution in groundwater of Jianghan Plain, located in 
central Yangtze River Basin of central China.

It is clear from the above discussion that a variety of tech-
niques has been used in literature to examine presence of 
normality in the time series of groundwater quality variables. 

The normality of groundwater quality variables is mainly 
evaluated by applying graphical (histograms, box–whisker 
plots, normal probability plots, quantile–quantile plots, 
etc.) and statistical tests (skewness and kurtosis, Chi-square 
(χ2) test, Kolmogorov–Smirnov test, Lilliefors test, Ander-
son–Darling test, Cramér–von Mises test, Shapiro–Wilk 
test, probability plot correlation coefficient, Jarque–Bera 
test, D’Agostino Pearson Omnibus test, etc.). Furthermore, 
normality is tested for point data of individual sites without 
their GIS integration. In fact, a methodology for examin-
ing normality of the spatially distributed values of the point 
estimates is currently lacking that restricts the researchers to 
test normality as well as to present the normality test results 
in a spatially distributed manner.

Trends in groundwater quality variables

Identifying trends and understanding their underlying mech-
anisms can help make appropriate decisions for groundwa-
ter quality management (McBride 2005). Loftis (1996), for 
the first time, presented a review on trends in groundwater 
quality by discussing case studies from different parts of the 
world ranging from regional to local scales. Based on the 
review, the exact meaning of “trend” was emphasized as a 
critical step for groundwater quality studies in both temporal 
and spatial contexts. In literature, studies dealing with trend 
identification in groundwater quality are very less in com-
parison to those exploring trends in surface water quality 
(Taylor and Loftis 1989; Loftis 1996). Since the last decade, 
application of statistical trend tests in groundwater quality 
studies has been receiving an increasing attention (Visser 
et al. 2009; Kaown et al. 2012; Machiwal and Jha 2015; 
Yazdanpanah 2016; Koh et al. 2017).

Since the inception of the GIS technology in groundwater 
studies during 1990s, in studies involving trend identifica-
tion of groundwater quality variables, researchers adopted 
the GIS mainly to present point-wise results of trend tests 
geographically for depicting spatial distribution of presence/
absence of the trends (e.g., Mendizabal et al. 2012). Review 
of the literature revealed that most of the trend detection 
studies have dealt with individual parameters of the ground-
water quality, such as sulfate (Malapati et al. 2011), chlo-
ride (Scanlon et al. 2010), hardness (Hudak 2001), etc. 
Few researchers explored trends in multiple groundwater 
quality parameters (e.g., Machiwal and Jha 2015; Masoud 
et al. 2016). Machiwal and Jha (2015) detected trends in 
15 groundwater quality parameters of 53 sites located in 
Udaipur district of Rajasthan, India, by applying three tests, 
i.e., Kendall’s rank correlation test, Spearman rank order 
correlation test and Mann–Kendall test. The presence of 
serial correlation in all groundwater quality parameters was 
also tested before applying the Mann–Kendall test as the 
outcome of this test gets affected under the presence of serial 
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correlation (Yue et al. 2002). Similarly, trends in multiple 
groundwater quality parameters (23 quality variables) were 
assessed for 20 sites located in Tanta district of Egypt by 
applying Mann–Kendall test (Masoud et al. 2016). Results 
indicated that the statistically significant trends at 5% sig-
nificance level were remarkable for the total hardness, total 
alkalinity, TDS, iron, manganese, nitrite, ammonium, phos-
phate and silica. However, the major focus of the past stud-
ies has been on identifying trends in nitrate (Hudak 2000a, 
b; Scanlon et al. 2008; Bronson et al. 2009; Enwright and 
Hudak 2009; Chaudhuri et al. 2012). Since 2000, researchers 
have been investigating how best to regionalize the nitrate 
concentration trends in the groundwater.

Statistical trends are generally detected by two 
approaches: parametric and nonparametric (Machiwal and 
Jha 2015). The most widely used parametric method is 
regression test, which is more powerful than the commonly 
employed nonparametric Mann–Kendall test, but the for-
mer approach requires the data be independent and normally 
distributed (Gilbert 1987; Bethea and Rhinehart 1991), and 
the latter approach is free from such normality assump-
tion. Helsel and Frans (2006) developed a regional-Kendall 
method based on the principle of the seasonal-Kendall test 
to determine regional trends in the groundwater quality. The 
performance of the regional-Kendall test was found satis-
factory by researchers such as Frans (2008), Sprague and 
Lorenz (2009), and Kaown et al. (2012). Recently, Lopez 
et al. (2015) developed a methodology for application of the 
regional-Kendall test in GIS platform by using geostatistics. 
In addition, Yazdanpanah (2016) made an effort to integrate 
results of linear trend analysis with GIS using geostatistical 
modeling of slope values of the linear trend model.

Similar to the normality-testing of the point-wise ground-
water quality variables, it is evident that the literature stud-
ies have identified trends in a variety of groundwater qual-
ity parameters over individual sites in different parts of the 
world. However, trend detection studies using spatially 
distributed GIS maps of the groundwater quality variables 
are not found in the literature. The major cause for non-
consideration of spatial maps for trend assessment is non-
availability of a methodology for coupling statistical trend 
tests with GIS to identify the temporal trends directly into 
the GIS framework. In contrast to normality-testing, a large 
number of the studies used GIS to present the results of the 
trend tests for groundwater quality time series over space. 
Recently, Kumar et al. (2017) developed a standard method-
ology to identify spatial trends using spatial raster datasets in 
GIS framework by coupling three statistical tests (i.e., Ken-
dall rank correlation test, Spearman rank order correlation 
test, and Mann–Kendall test) with GIS. However, the meth-
odology developed was demonstrated through a case study 
to identify trends in rainfall of Gujarat state, India using sat-
ellite datasets. There is a need to employ such methodology 

for trend identification in time series of groundwater quality 
variables.

Persistence

Persistence of a time series is the tendency of the successive 
data to “remember” their antecedent data and to be influ-
enced by them (Giles and Flocas 1984). In other words, it is 
defined as the correlational dependency of order or time lag 
“k” between each ith element and the (i–k)th element of time 
series (Kendall 1973), and is measured by autocorrelation 
(i.e., correlation between two terms of the same time series). 
In hydrogeochemistry, persistence testing is reported in a 
few studies (e.g., Jones and Smart 2005). They investigated 
internal structure of long-term nitrate concentration records 
for five karst springs in Mendip Hills, England (UK) by 
using stochastic autoregressive modeling. The results indi-
cated the significant short-term persistence of 1–2 months 
in three of five springs.

It is also seen that except normality and trends, the 
remaining characteristics of the time series such as homoge-
neity, stationarity, periodicity, and persistence, are generally 
ignored in the studies dealing with groundwater quality over 
spatial and temporal scales.

Evaluation of groundwater quality data 
using GIS‑integrated multivariate statistical 
methods

Application of multivariate statistical methods 
in groundwater quality studies

As it was put forth by J.D. Hem in his seminal work (Hem 
1985), water chemistry (i.e., hydrochemistry)—the field of 
study mainly concerned with chemical and physical proper-
ties of natural waters—“hardly qualified as a scientific dis-
cipline” until the late 1950s. Interest to groundwater chem-
istry (i.e., hydrogeochemistry) studies occurred even much 
later and was not extensive until 1972 (Niu et al. 2014). 
Furthermore, at the time being, water quality testing was 
mostly an expensive and arduous endeavor requiring a vari-
ety of volumetric, gravimetric, colorimetric, turbidimetric, 
complexometric, and potentiometric procedures (Rainwa-
ter and Thatcher 1960). Today, with a wide array of mod-
ern analytical instruments and technologies at our disposal 
(APHA-AWWA-WEF 2017), it is possible to identify and 
quantify a great number of chemical constituents (inorganic 
and organic) and to measure various physical parameters in 
water samples of different matrix complexity (ranging from 
freshwater to brine) with a better measurement accuracy/pre-
cision and at a lesser cost than ever before. Obviously, statis-
tical analysis of such multidimensional datasets, acquired at 
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different spatial and temporal scales, require computation-
ally efficient and sophisticated techniques to close the wid-
ening gap between our data-generating and data-analyzing 
capabilities. Especially after 1980s, dramatic increase in the 
processing and storage capacities of computer hardware, 
coupled with the emergence of powerful multi-tasking 
(GIS-based) software packages integrating relational data-
base management (RDBM), statistical/spatial analysis, and 
two or three dimensional (2-D/3-D) visualization tools have 
made possible to analyze such large datasets for extracting 
and summarizing relevant quantitative information hidden 
in data. This type of insight cannot be solely gained from the 
conventional graphical plots (Hem 1985; Zaporozec 1972; 
Güler et al. 2002; Machiwal and Jha 2010) that are used in 
visualization and interpretation of water quality data.

The chemical composition of natural water is derived 
from many different complex processes and sources (nat-
ural and/or anthropogenic), all of which imprint a unique 
physicochemical signature on the water constantly recycling 
through the Earth’s spheres (atmosphere, hydrosphere, geo-
sphere, and biosphere). Therefore, statistical analysis of 
hydrochemical data entails the simultaneous evaluation 
of all the chemical and physical parameters (or variables) 
measured, since water quality is a function of these proper-
ties (Williams 1982). One of the ways to accomplish such 
an evaluation is through multi-variate statistical analysis 
(MVSA). Generally speaking, the main objective of the 
MVSA is to simplify the data matrix (composed of p vari-
ables and n cases) by finding associations among dataset 
variables (called R-mode analysis) and/or cases (called 
Q-mode analysis) (Dalton and Upchurch 1978). Ideally, the 
information extracted from the data matrix should be easily 
understood and potentially useful, providing new insights 
about data. More often, MVSA is a stepwise procedure with 
the obvious first step getting acquainted with data at hand. 
Therefore, prior to conducting any formal statistical analysis 
(i.e., univariate, bivariate, and multivariate), all variables 
in the dataset should be carefully scrutinized for data qual-
ity, measurement/entry errors, missing/censored values, and 
outliers in order to verify data integrity/consistency and 
identify the variables/cases violating certain rules and/or 
method assumptions (Güler et al. 2002). Nonetheless, most 
of these data quality issues can be minimized, if not resolved 
completely, by developing and implementing reliable quality 
assurance/quality control (QA/QC) protocols for collection, 
handling, and analysis of water samples, both in the field and 
in laboratory. While most quantitative analytical data, espe-
cially the ones related to naturally occurring trace elements, 
do not lend themselves directly to inferential MVSA due 
to problems related to non-normality and heteroscedasticity 
(i.e., heterogeneity of variances), there are techniques avail-
able (e.g., Box–Cox transformations (Box and Cox 1964; 
Box et al. 1978) and z score scaling, i.e., standardization) 

(Johnson and Wichern 1992) to improve the overall data 
distribution for elucidating latent associations among data 
variables and/or cases. Although such statistical associations 
do not directly establish cause-and-effect relationships, they 
can assist in creating hypotheses to make viable predictions 
about the underlying complex processes and phenomena 
responsible for the data variance and noise (Güler et al. 
2002, 2017). However, the challenge is to decide which 
MVSA methods are best suited for the problem at hand, and 
understanding their theoretical assumptions and inherent 
strengths/weaknesses.

Up until late 1960s, statistical treatment of the water qual-
ity variables was mainly limited to univariate and bivariate 
numerical analysis (e.g., calculation of ionic ratios, mean/
extreme values, and correlation coefficients) and graphi-
cal displays (e.g., frequency distributions and scatter plots) 
(Hem 1970). Most of the MVSA methods in common use 
today for tackling Earth Science problems have been adopted 
from other scientific disciplines (e.g., physics, astronomy, 
biology, and social/behavioral sciences), where the use of 
these methods was widespread long before the computer era, 
thanks to Hollerith’s electromechanical punch-card tabula-
tor and dedicated human computers. Pioneering applica-
tions of the MVSA methods in water-related fields occurred 
much later, and was not as extensive until 1990s. A simple 
bibliometric analysis (this study) of peer-reviewed journals 
(published from 1980 forward) listed by The Institute for 
Scientific Information (ISI) Web of Science online data-
base revealed that factor analysis (FA) is by far the most 
frequently used MVSA method in groundwater studies, 
followed by principal component analysis (PCA), cluster 
analysis (CA), and discriminant analysis (DA) (Fig. 2). How-
ever, applications of canonical correlation analysis (CCA) 
and Correspondence Analysis to groundwater studies are 
extremely rare or non-existent. It is further evident that the 
number of studies involving use of the MVSA techniques in 
hydrogeology has an overall increasing trend over the years, 
with a significant increment during the period 2011–2016. In 
the following sections, we briefly introduce salient explora-
tory MVSA methods, along with examples from the scien-
tific literature that focus on their different applications, for 
extraction of relevant information concealed in data.

Eigenvector methods: factor analysis vs. principal 
component analysis

FA and PCA can be described as “eigenvector” methods for 
finding lines and planes of closest fit to systems of points in 
multidimensional space, mathematical foundation of which 
was first established by Pearson as early as 1901 (Thurstone 
1931). Both FA and PCA have been extensively applied in 
many disciplines (especially in social and behavioral sci-
ences) mainly for data reduction purposes, (e.g., reduction 
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of variables or cases). The data reduction using these meth-
ods is achieved through finding the directions of maximum 
variances (i.e., eigenvalues) in a multivariate dataset and 
representing them in a much lower dimension (usually 
2–5) than the original dataset. In both methods, the vari-
ance analysis involves decomposition of the matrix of cor-
relations, which presents interrelations among all pairs of 
the original variables. However, PCA is often preferred as 
a method for data reduction, while FA is often used when 
the goal of the analysis is to detect the structure (i.e., a few 
underlying, but unobservable, latent constructs or factors) 
in a dataset (Suk and Lee 1999). Indeed, combining two or 
more correlated variables (or vectors) into one “factor” or 
“principal component (PC)”, exemplifies the basic idea of 
FA and PCA. The new factors and PCs extracted by FA and 
PCA (respectively) are uncorrelated and ordered so that each 
successively extracted factor (e.g., F1, F2, and so on) or PC 
(e.g., PC1, PC2, and so on) accounts for a lesser amount of 
variance of the original dataset than the previous one (Davis 
1986; Brown 1998). FA and PCA are occasionally mistaken 
as the same MVSA method, probably because of the appar-
ent similarities in the terminology and methodology used for 
both. Despite the similarities in the terminology, there are 
distinct differences between the methodologies of FA and 
PCA methods. However, in most cases, FA and PCA usually 
yield very similar results, if communalities (i.e., proportion 
of variance that each variable or case has in common with 
other variables or cases) are close to unity.

Assumptions of both FA and PCA include that: (i) each 
original variable follows normal distribution; (ii) original 
variables display linear relationships; (iii) there are no outli-
ers in data; (iv) sample size is adequate (n ≥ 50, or n ≥ 100 
for more stable estimates) and balanced (i.e., case to variable 
ratio is at least 5). These multi-step MVSA methods (FA 
and PCA) have been used extensively in hydrogeochemi-
cal studies (both in R- and Q-modes) to extract the relevant 

information hidden in data matrices, e.g., to: (i) extract and 
ordinate the most important and influential parameters (i.e., 
physical and chemical variables) responsible for the spa-
tial and/or temporal variations in water quality (Ashley and 
Lloyd 1978; Melloul and Collin 1992; Ribeiro and Macedo 
1995; Reghunath et al. 2002; Thyne et al. 2004; Cloutier 
et al. 2008); (ii) ascertain the similarities/dissimilarities or 
continuity/overlap in spatially and/or temporally distributed 
groundwater samples (i.e., cases) (Güler et al. 2002; Dalton 
and Upchurch 1978; Usunoff and Guzman–Guzman 1989; 
Farnham et al. 2002); (iii) reveal underlying latent factors 
(e.g., key processes, phenomena, sources, and end-members) 
that account for the structure of the hydrochemical data 
(Dawdy and Feth 1967; Melloul and Collin 1992; Suk and 
Lee 1999; Meng and Maynard 2001; Lambrakis et al. 2004; 
Güler et al. 2017; Kazakis et al. 2017; Busico et al. 2018), 
and (iv) produce data for further investigation or for other 
methods (e.g., factor score mapping, multiple regression, 
cluster analysis, GIS analysis, etc.) (Dalton and Upchurch 
1978; Subbarao et al. 1996; Suk and Lee 1999; Güler et al. 
2012).

Many past studies applied FA or PCA in combination 
with GIS techniques to identify the anthropogenic and natu-
ral hydrogeologic processes functioning in the aquifer sys-
tems [e.g., (Thyne et al. 2004; Dragon 2006; Güler et al. 
2012; Petrişor et al. 2012)]. However, precise and proper 
spatial analyses integrating PC scores with GIS-based geo-
statistical modeling are rarely carried out (e.g., Güler et al. 
2012; Narany et al. 2014; Machiwal and Jha 2015).

Cluster analysis

The term “Cluster Analysis”, first introduced by Tryon 
(Tryon 1939), encompasses a wide variety of classifica-
tion algorithms applied in many fields (including hydro-
geochemistry) to organize data variables and/or cases into 

Fig. 2   Bar charts depicting 
usage and growth of multivari-
ate statistical analysis methods 
in SCI-expanded publications 
related to hydrogeochemical 
studies (as of July 4, 2017). 
CCA​ canonical correlation 
analysis, DA discriminant analy-
sis, CA cluster analysis, PCA 
principal component analysis, 
FA factor analysis
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homogenous and non-overlapping subsets or groups, called 
clusters (Hartigan 1975). Using this method, the original 
data matrix, composed of p variables and n cases, is parti-
tioned into k number of subsets (where k is generally much 
smaller than p (in R-mode) and/or n (in Q-mode); hence, 
data reduction is achieved. In general, the members of 
each cluster share similar characteristics (e.g., in terms of 
chemical composition) compared to non-members (mem-
bers belonging to other clusters). In this method, grouping 
of individual variables and/or cases is generally achieved 
through an iterative process, where the number of clusters 
(k) may or may not be known a priori. The cluster centroids 
(or means) obtained from the resulting partition can be used 
as representative members (a.k.a. prototypes) of their respec-
tive groups. In hydrochemical studies, commonly used par-
titioning algorithms include hierarchical clustering (joining 
or tree clustering) and K-means clustering.

The hierarchical clustering analysis (HCA) employs vari-
ous types of distance (similarity/dissimilarity) measures 
and linkage methods (i.e., amalgamation rules) (Sneath and 
Sokal 1973; Hartigan 1975) and the choice of which com-
bination to use does not have an easy answer and greatly 
affects outcomes (Güler et al. 2002). One of the most widely 
used combination in HCA is the Euclidean distance (as dis-
tance measure) and Ward’s method (for linkage), which 
forms distinct and easily interpretable clusters that may be 
significant in the hydrochemical, hydrologic, and geologic 
contexts (Gong and Richman 1995; Güler et al. 2002). Since, 
the results of HCA are mostly presented in a tree-like 2-D 
diagram called dendrogram (Davis 1986), the method is gen-
erally appropriate for partitioning small datasets (Güler et al. 
2002). However, this apparent shortcoming can be overcome 
by employing a multi-step clustering approach (e.g., pre-
clustering and then re-clustering) (Güler and Thyne 2004a) 
or using another MVSA method (e.g., PCA) first for data 
reduction and noise filtering (Pirkle et al. 1984). Dendro-
grams can also be spatially projected in 3-D, in a map form 
using color-coded clusters (Forina et al. 2002), but to our 
knowledge this technique has not been used in hydrochemi-
cal and hydrogeochemical studies. The HCA is generally 
accepted as a semi-objective procedure, not requiring a pri-
ori specification of the number of clusters (k), where their 
numbers is usually defined post-process (somewhat subjec-
tively), drawing a line (i.e., phenon line) that cuts through 
dendrogram branches at a certain distance value (Güler et al. 
2002). Unlike HCA, K-means clustering (KMC) is a nonhi-
erarchical method that can allow classification of a substan-
tially large number of samples (Gong and Richman 1995; 
Pacheco 1998). KMC follows a simple iterative procedure, 
which assumes exactly k number of random cluster centers at 
the onset of the analysis (MacQueen 1967). If k is unknown 
a priori, a subjective bias may be introduced into the results. 
The KMC tries to define exactly k different cluster centroids 

(one for each cluster) with the greatest possible distinction. 
From the computational point of view, KMC can be thought 
of as analysis of variance (ANOVA) in reverse (Güler et al. 
2002). The KMC process is initiated with k random clus-
ters, and then objects to be clustered are iteratively relocated 
between those clusters with the aim to: (i) reduce within-
cluster variance and (ii) increase between-cluster variances 
(Pacheco 1998). However, the resulting KMC partition is 
highly sensitive to the initial randomly selected cluster cent-
ers. Executing multiple KMC runs on the dataset can help 
to minimize this effect. The results from KMC are typically 
presented in matrix form, which shows members of each 
cluster and their distances from respective cluster centers 
(Güler et al. 2002).

CA techniques mentioned here relies on assumptions such 
as normal distribution and equal variance (homoscedastic-
ity) of the water chemistry data variables that are continuous 
in nature (Alther 1979). In addition, the use of variables 
having specific relationships or displaying a high intercorre-
lation among themselves (i.e., multicollinearity) may cause 
unwanted redundancies in the clustering process (Güler et al. 
2002). However, CA using factor scores obtained from the 
factor analysis (FA) can be used in order to reduce multi-
collinearity (Suk and Lee 1999). Outliers should also be 
treated with caution, since they tend to strongly distort the 
results. Another important and essentially unsettled issue 
in cluster analysis is the “cluster validity problem” (Hardy 
1996), which mainly involves determination of the “true” 
number of groups (k) in a dataset (mostly unknown a priori). 
In hydrogeochemical studies, the spatial coherence of the 
statistically defined groups (e.g., similarity/proximity of geo-
graphical locations, altitudes, and distances of within and 
between group members) can be verified using GIS-based 
spatial analysis techniques for cluster validation purposes, 
which may also provide insights into aquifer heterogene-
ity/connectivity and the processes governing water quality 
(Güler and Thyne 2004a). As a general rule of thumb, dis-
tinctly different hydrogeochemical groups should be both 
statistically and spatially (in a geographical sense) well 
separated, due to increasing water–rock interactions along 
hydrological flow-paths (Thyne et al. 2004).

Since the late 1970s, CA has been successfully applied 
to water-chemistry data in many groundwater studies to: 
(i) classify samples into distinct hydrogeochemical groups 
(Ashley and Lloyd 1978; Riley et al. 1990; Johnson and 
Wichern 1992; Suk and Lee 1999), (ii) identify hydraulic 
connections between surface and deep zones (Williams 
1982), (iii) interpret groundwater flow (Ochsenkühn et al. 
1997), (iv) find optimal number of natural clusters (Pacheco 
1998), (v) classify samples from different aquifers (Stein-
horst and Williams 1985; Saleh et al. 1999), and (vi) evalu-
ate temporal changes in groundwater composition (Ribeiro 
and Macedo 1995; Suk and Lee 1999; Berzas et al. 2000). 
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A number of researchers (Farnham et al. 2000; Meng and 
Maynard 2001; Güler et al. 2002; Güler and Thyne 2004a; 
Thyne et al. 2004; Helstrup et al. 2007; Cloutier et al. 2008) 
used R- and Q-mode cluster analyses, in conjunction with 
other MVSA, geochemical (modeling), and spatial analysis 
techniques (e.g., GIS) for hydrogeological and hydrogeo-
chemical site characterization in groundwater studies with 
scales ranging from local to regional.

Discriminant analysis

The main purpose of discriminant (function) analysis (DA) 
is to determine a set of characteristics (i.e., variables, p) 
that permit for the best prediction (discrimination) between 
two or more naturally occurring a priori defined groups 
(k ≥ 2) within the dataset or assigning new objects (i.e., 
cases, n) accurately into these homogeneous groups on 
this basis (Izenman 2013). The basic notion underlying 
DA is to decide whether groups differ with regard to the 
mean of a predictor variable, and then to use that variable 
to predict group membership of new cases. The prediction 
is achieved by linear discriminant functions (Johnson and 
Wichern 1992; Wunderlin et al. 2001), which are vectors 
(linear combination of the selected independent variables) 
in the directions of optimal separation between the groups. 
DA initially requires a reference set of (representative) sam-
ples for each group, for “training” purposes. DA is generally 
a stepwise procedure, with forward- and backward-modes, 
where variables are added or removed one-by-one in a 
sequential manner to improve the separation between groups 
(Machiwal and Jha 2010). DA algorithm tries to maximize 
between group variance–covariance and minimize within-
group variance–covariance under simultaneous considera-
tion of all analyzed features. The impact of each variable 
on the discriminant function can be assessed by comparing 
their partial F values, where the higher the value is the more 
impact it has on the discriminant function. In addition, the 
Wilk’s lambda (λ) value is used as a measure of the statisti-
cal significance of the discriminatory power of the model 
(λ = 0, perfect discriminatory power and λ = 1, no discrimi-
natory power), while Mahalanobis distance statistic (D2) is 
used to assess for separation of groups. Computationally, DA 
is analogous to the one-way/multivariate analysis of vari-
ance methods (ANOVA/MANOVA). When three or more 
groups (k) present, the method is referred to as multiple 
discriminant analysis (MDA), which has close associations 
with other MVSA methods, including multiple regression 
analysis, FA, and canonical correlation. DA or MDA can be 
used to classify and, thus, to confirm the groups found by 
means of CA. DA relies on the same assumptions that are 
required for the CA (e.g., normal distribution, homogeneity 
of variances/covariances, multicollinearity, and no outli-
ers) (Izenman 2013). In addition, the variables that are used 

to discriminate between groups should not be completely 
redundant with the other variables. In other words, if a vari-
able (e.g., total dissolved solids) is the sum of a number of 
other variables (e.g., ionic constituents) that are also being 
evaluated, then the “ill-conditioned matrix” problem may 
occur. DA can be used successfully when the dependent 
variable is “categorical” and the independent variables are 
“metric” and normally distributed.

In hydrogeochemical studies, DA is infrequently used and 
has been applied for the assessment of spatio-temporal vari-
ations in datasets (Steinhorst and Williams 1985; Wunderlin 
et al. 2001), where site (spatial) and season (temporal) can 
be coded as grouping variables, while the measured physical 
and/or chemical parameters constitute independent variables 
(Machiwal and Jha 2010). The further details on the proce-
dure can be found in Cooley and Lohnes (1971) and Johnson 
and Wichern (1992).

Canonical correlation analysis

Canonical correlation analysis (CCA) is considered as one 
of the correlation techniques (Hotelling 1936). However, it 
is different from the FA or PCA in spite of certain simi-
larities in concept and terminology. In general, it is used to 
investigate the intercorrelation between two datasets of vari-
ables, whereas FA, PCA or empirical orthogonal functions 
detect a pattern of relationship within one dataset (Clark 
1975). The CCA can be used for examining presence of any 
similar kind of pattern that may occur simultaneously in 
two different datasets, and if it is present, then the corre-
lation between associated patterns is calculated. In hydro-
geochemistry studies, the application of CCA could not be 
found in literature. However, for measuring trophic status 
of reservoirs and lakes, Cairns et al. (1997) applied CCA on 
the water parameters (namely chlorophyll, total suspended 
and dissolved solids, and turbidity) and digital values of 
three bands and numerous band ratios of SPOT (Systeme 
Pour 1′Observation de la Terre) satellite data. The results 
indicated that the turbidity and chlorophyll contributed 0.91 
and 0.76, respectively, to the first canonical water variable 
showing a good relationship. It is worth mentioning that the 
DA is one of the special cases of CCA.

Application of geostatistical modeling 
in groundwater quality evaluation

Geostatistical modeling techniques were originally devel-
oped and applied in geological studies for estimating min-
eral concentrations in ore bodies and recoverable reserves 
(David 1977; Journel 1974; Journel and Huijbregts 1978). 
It is seen from the literature that the first attempts of geo-
statistical-modeling application to geochemical data were 



Environmental Earth Sciences (2018) 77:681	

1 3

Page 11 of 30  681

made by David and Dagbert (1975) and David (1977). Dur-
ing the 1940s, an important contribution of geostatistics in 
meteorology was made by the Soviet School of Meteorology 
(Drozdov and Shepelevskii 1946). Later on, Gandin (1965) 
and Kagan (1967) emphasized the need of recognizing spa-
tial variability along with quantification of estimation error. 
Kriging is the widely used geostatistical technique developed 
by Matheron (1965, 1973). In hydrogeology, Delhomme 
(1978) paved the way for the geostatistical-modeling appli-
cations. Application of the geostatistical-modeling tech-
niques in groundwater quality studies was very limited up 
to the end of 1990s. However, with integration of GIS, use 
of geostatistical-modeling techniques in groundwater qual-
ity evaluation significantly increased. After 2000, studies 
involving GIS-integrated geostatistical-modeling techniques 
mushroomed in literature. Cooper and Istok (1988a, b) made 
an excellent effort by developing a comprehensive methodol-
ogy for applying geostatistics to the problems of groundwa-
ter contamination, and demonstrated its application through 
a case study at the Chem-Dyne Superfund site in Ohio, USA. 
Istok and Cooper (1988) developed techniques for combin-
ing local estimates obtained by kriging to obtain global esti-
mates and estimation errors for the expected contaminant 
concentration in any specified portion of the contaminant 
plume. An overview of the basic concepts of the geostatis-
tics and its proposed linear and nonlinear kriging estima-
tion techniques is provided by the ASCE Task Committee 
(1990a). The ASCE Task Committee (1990b) reviewed 
the applications of the geostatistical-modeling techniques 
in groundwater hydrology under the five major sections: 
(i) mapping, (ii) simulation of hydrological variables, (iii) 
estimation using the flow equations, (iv) sampling design, 
and (v) geostatistical-modeling applications in groundwater 
system management.

In 1980s, few researchers applied geostatistics in hydro-
geochemistry studies (e.g., Myers et al. 1982). Myers et al. 
(1982) developed four variogram models (i.e., linear, con-
stant-linear, concave and convex) for 12 variables (U, B, 
Ba, Ca, Li, Mg, Mo, As, V, SO4, Specific conductance, and 
total alkalinity) in Ogallala formation and Permian geologic 
units in Texas, USA. The results of the geostatistical mod-
eling were compared with the inverse distance weighting 
(IDW) technique, which revealed a better performance of 
the IDW technique in spatial interpolations of the variables. 
Rouhani and Hall (1988) used geostatistical techniques for 
the design of a regional shallow groundwater quality moni-
toring network in the Dougherty Plain, located in southwest 
Georgia, USA. In Spain, reliability of groundwater-quality 
monitoring network in controlling saltwater intrusion was 
assessed by using lognormal kriging for mapping chloride 
distribution in the Llobregat delta confined aquifer of Barce-
lona (Candela et al. 1988). Bárdossy and Kundzewicz (1990) 
applied two geostatistical methods (i.e., point kriging and 

intrinsic random function of order ‘k’) for detection of outli-
ers in chloride and total hardness data of groundwater from 
the Upper Rhine Valley, extending across three countries: 
France, Germany, and Switzerland. Bjerg and Christensen 
(1992) evaluated horizontal variations in groundwater-qual-
ity parameters (i.e., pH, alkalinity, Cl, NO3, Ca and K) in a 
shallow sandy aquifer located in western part of Denmark. 
Results indicated substantial variations in all parameters 
even at smaller distances. Istok et al. (1993) presented a 
case history of the alluvial aquifer underlying the Malheur 
River Basin, Oregon, USA, where isotropic and spherical 
geostatistical models were applied for estimating pesticide 
concentrations from the measured nitrate and pesticide 
concentrations under the limited sampling of the pesticides. 
Rautman and Istok (1996) presented a geostatistical frame-
work for probabilistic assessment of groundwater contami-
nation and illustrated the approach using synthetic data of 
a hypothetical site. The approach is further demonstrated 
through a case study in agricultural area in the Lower Mal-
heur River Basin and the Western Snake River Plain near the 
eastern Oregon, USA (Istok and Rautman 1996). Pebesma 
and de Kwaadsteniet (1997) prepared spatial maps of 25 
groundwater-quality variables based on median measure-
ments of 425 sites in 4 × 4 km block in the Netherlands using 
block kriging. Their study quantified the effect of monitoring 
network density, and evaluated changes in the groundwater 
quality over a span of 20 years.

Ordinary kriging and cokriging were compared for 
studying spatial distribution of nitrate in Lucca Plain 
aquifer of Central Italy (D’Agostino et al. 1998). Results 
indicated that the cokriging improved the estimation and 
reduced the uncertainty in terms of estimation variance. 
In multivariate geostatistical problems, two related vari-
ables are used to improve estimation of the primary vari-
able by using the secondary variable. The ordinary kriging 
and cokriging have a smoothing effect causing underesti-
mation (or overestimation) of the variable due to large (or 
small) sample values in cross-validation. This smoothing 
effect was reduced by applying Gaussian random-process 
based principle in simulating kriged and cokriged estimates 
using chloride (primary variable) and resistivity (second-
ary variable) data in Horonobe area of northern Japan (Lu 
et al. 2016). Sânchez-Martos et al. (2001) first applied the 
PCA technique to identify three factors (i.e., sulfate, thermal 
and marine influences) that affect groundwater processes in 
the detrital aquifer of the Bajo Andarax (Almeria, Spain). 
Then, the identified three factors were analyzed using 
ordinary block kriging to obtain their spatial distribution. 
Geostatistical approach has been used with Bayesian analy-
sis for contaminant source identification by developing a 
methodology to estimate release history of a conservative 
solute (Snodgrass and Kitanidis 1997). This approach is 
subsequently extended to the estimation of the antecedent 
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distribution of a contaminant at a given point back in time 
(Michalak and Kitanidis 2004). Later on, Sun (2007) fur-
ther extended this approach to develop a robust geostatistical 
approach to contaminant source identification by solving the 
linear estimation problems. Empirical Bayesian kriging is 
another technique of kriging family, which is different from 
other kriging methods as the former uses an intrinsic random 
function for spatial interpolation (Gupta et al. 2017). This 
technique is rarely used for spatial interpolation of ground-
water quality variables (e.g., Mirzaei and Sakizadeh 2016).

After the year 2000, several studies have applied geosta-
tistical-modeling techniques for mapping spatial variabil-
ity of the chemical concentrations for groundwater quality 
assessment/evaluation (e.g., Goovaerts 1999; Castrignanò 
et al. 2000; Yu et al. 2003; Mouser et al. 2005; Schaefer and 
Mayor 2007; Machiwal and Jha 2015). At present, abundant 
studies on this aspect exist in literature, and there has been 
an increasing trend in appearance of such studies in research 
journals after the year 2000. Salient studies, reported after 
2000, dealing with the use of geostatistical-modeling tech-
niques for the groundwater quality assessment/evaluation 
are enlisted in Table 1. It is revealed that ordinary kriging 
is the most widely used geostatistical-modeling technique 
in groundwater quality studies. The spatial distribution of 
almost all kind of groundwater-quality parameters along 
with scores of the principal components obtained through 
PCA is determined in different parts of the world. It is also 
observed that the estimation error of the geostatistical mod-
eling is computed in a large number of studies by using 
cross-validation criteria. However, some of these studies 
ignored the important step of validation while applying the 
geostatistical modeling.

Application of hybrid methods 
for groundwater vulnerability assessment 
in GIS platform

Concept of groundwater vulnerability, first introduced by 
Margat (1968), is based on the assumption that the physi-
cal environment may provide some degree of protection to 
groundwater against human activities. The groundwater vul-
nerability is classified into two types: specific vulnerabil-
ity and intrinsic vulnerability (National Research Council 
1993). Intrinsic vulnerability of an aquifer can be defined 
as the ease with which a contaminant introduced onto the 
ground surface can reach and diffuse in groundwater (Vrba 
and Zaporozec 1994). On the other hand, specific vulner-
ability is used to define the vulnerability of groundwater 
to particular contaminant or a group of contaminants by 
taking into account the physicochemical properties of the 
contaminants and their relationships (Gogu and Dassargues 
2000). Initially, groundwater vulnerability of an aquifer is 

mapped, and hence, it can be used as an assessment tool 
against groundwater pollution. Since the year 1968, numer-
ous groundwater vulnerability assessment methods have 
been developed and applied worldwide, which are coupled 
with the GIS. The vulnerability assessment methods can be 
classified into: (i) index-based methods, (ii) quantitative or 
simulation models, (iii) statistical and artificial intelligence 
methods, and (iv) hybrid methods that are the combination 
of the earlier three methods mainly integrating index-based 
methods with statistical and artificial intelligence methods. 
A tree diagram illustrating classification of methods for 
groundwater vulnerability assessment is presented in Fig. 3. 
Shirazi et al. (2012) presented a review of application of the 
GIS-based DRASTIC method for groundwater vulnerability 
assessment. Later on, Wachniew et al. (2016) summarized 
review of intrinsic methods of groundwater vulnerability 
assessment. It is learnt that earlier reviews emphasized on 
a particular vulnerability assessment method or only index-
based methods for groundwater vulnerability. Recently, 
Machiwal et al. (2018) presented a comprehensive review 
of groundwater vulnerability highlighting current status and 
challenges of index-based, quantitative and statistical meth-
ods including methods for source protection. However, in 
this paper, we focus mainly on hybrid methods developed 
by combining advanced statistical and artificial intelligence 
techniques with index-based methods. The index-based 
methods are parameter weighting and rating methods, which, 
apart from classifying the various parameters, also introduce 
relative weight coefficients for each factor. Such methods are 
usually coupled with statistical methods, so as to overcome 
the subjectivity of weights and ratings of each parameter.

Rupert (2001) introduced, perhaps for the first time, a 
hybrid approach for groundwater vulnerability assessment 
by using a calibration procedure. The groundwater vulner-
ability map, initially developed using the DRASTIC method, 
was modified according to its correlation with nitrate con-
centrations in the Snake River Basin in USA. Similarly, 
Panagopoulos et al. (2006) used Spearman’s � and Kend-
all’s � correlation coefficients to modify both the weights 
and ratings of the DRASTIC parameters. A major concern 
in the assessment of groundwater vulnerability to nitrates 
constitutes the use of qualitative parameters. Kazakis and 
Voudouris (2015) replaced the qualitative parameters of 
DRASTIC method with quantitative ones, and proposed 
a new method to estimate groundwater vulnerability to 
nitrate. Additionally, nitrate concentration was correlated 
with grading methods in order to determine the more suit-
able classes of the proposed method. The grading methods 
of natural breaks, equal interval, quantile and geometrical 
intervals were used to define the class ranges of the final vul-
nerability to nitrate-based index, whilst sensitivity analysis 
and ANOVA F test statistics were used to verify the results. 
Other more complex hybrid methods include integration of 
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Table 1   Salient studies that utilized geostatistical techniques for mapping spatial distribution of groundwater quality after the year 2000

Country Geostatistical-modeling tech-
nique

Validation technique Parametersa References

Australia Ordinary kriging Data from other study Cl Davies and Crosbie (2018)
Bangladesh Cokriging None As Hassan and Atkins (2007)

Ordinary kriging Cross-validation Groundwater quality index, 
degree of contamination, 
heavy metal pollution index, 
heavy metal evaluation index, 
principal component scores

Bhuiyan et al. (2016)

Ordinary kriging Cross-validation Groundwater quality index, 
degree of contamination, 
heavy metal pollution index, 
heavy metal evaluation index

Bodrud-Doza et al. (2016)

Cameroon Ordinary and block kriging Cross-validation Groundwater quality index Nshagali et al. (2015)
China Ordinary kriging None TDS, Ca, Mg, Na, K, Cl, SO4, 

HCO3

Chen and Feng (2013)

Egypt Ordinary kriging None TDS, Fe, Mn Masoud et al. (2018)
Germany Ordinary kriging None N2O von der Heide et al. (2008)

Ordinary and indicator kriging Cross-validation Cl, As, deethylatrazine Bárdossy (2011)
Greece Ordinary Kriging Mean standardized prediction 

error
EC, NO3, NH4, PO4 Stamatis et al. (2011)

India Ordinary kriging Cross-validation EC, TDS, Hardness, SAR, 
Mg-Ca ratio, Cl, HCO3, NO3

Adhikary et al. (2012)

Ordinary kriging None Principal component scores Machiwal and Jha (2015)
Empirical Bayesian Kriging Prediction standard error F Magesh et al. (2016)

Iran Ordinary, simple, universal, 
indicator, probability, and 
disjunctive kriging

Cross-validation EC, SAR, Ca, Mg, Na, Cl, 
SO4, HCO3

Yazdanpanah (2016)

Ordinary kriging Cross-validation EC, TDS, total hardness, SAR, 
Na, Cl, SO4

Karami et al. (2018)

Italy Disjunctive kriging Cross-validation NO3 Passarella et al. (2002)
Disjunctive kriging Cross-validation NO3 Barca and Passarella (2008)

Japan Ordinary kriging and cokriging Cross-validation Cl Lu et al. (2016)
Korea Ordinary kriging None Cl, NO3, Fe, factor analysis 

scores
Kim et al. (2012)

Ordinary kriging None Ca, Mg, Na, K, Cl, SO4, HCO3, 
NO3-N

Venkatramanan et al. (2016)

Lebanon Ordinary kriging Cross-validation NO3 Assaf and Saadeh (2009)
Malaysia Ordinary kriging None Ca, Mg, Na, K, Cl, H4SiO4, Al, 

Ba, Fe, Mn, Pb, Se, Sr
Lin et al. (2012)

Saudi Arabia Ordinary kriging Cross-validation Temp, EC, TDS, Salinity, Ca, 
Mg, Cl, NO3

Marko et al. (2014)

Ordinary and probability 
kriging

None TDS, pH, Ca, Mg, Na, K, Cl, 
SO4, HCO3, NO3

Salman et al. (2015)

Spain Ordinary kriging None Principal component scores Sánchez-Martos et al. (2001)
Taiwan Indicator kriging None As Jang et al. (2007)

Multivariate indicator kriging Cross-validation Multiplication of indicator 
variables, average of indica-
tor variables

Jang (2013)

Turkey Ordinary kriging Cross-validation EC, pH, hardness, Cl, SO4, 
NO3

Nas and Berktay (2010)

Ordinary kriging Cross-validation Fuzzy membership function 
values of four groundwater 
classes

Güler et al. (2012)
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index-based methods and artificial intelligence (AI) tech-
niques such as fuzzy logic and artificial neural networks 
(ANNs).

Regression analysis has been widely used in environmen-
tal studies. In the region of Osona (NE Spain), Boy-Roura 
et al. (2013) used multiple linear regression and isotopes for 
the assessment of groundwater vulnerability to nitrates. In 
another study, logistic regression and weights of evidence 
statistical procedures were coupled with DRASTIC method 
for the development of two hybrid methods, which were 
applied in Korinthia prefecture in South Greece (Antonakos 
and Lambrakis 2007). In the Pearl Harbor-Honolulu aquifer 

in the USA, stepwise logistic regression and capture zones 
of wells were coupled for the assessment of groundwater 
vulnerability (Mair and El-Kadi 2013). Among other tech-
niques, Pacheco et al. (2015) applied analytic hierarchy pro-
cess (AHP) for the factor weighting of DRASTIC parameters 
and the estimation of groundwater vulnerability in different 
aquifers of Portugal. Fuzzy logic and ANNs are successfully 
utilized to assess groundwater vulnerability (Dixon 2005a, 
b). Fijani et al. (2013) coupled Sugeno fuzzy logic (SFL), 
Mamdani fuzzy logic (MLF), ANNs, and Neuro-Fuzzy (NF) 
techniques in order to estimate groundwater vulnerability 
in the Maragheh-Bonab basin of Iran. Likewise, Larsen 

a TDS total dissolved solids, EC electrical conductivity, SAR sodium adsorption ratio, Temp temperature, DO dissolved oxygen, RSC residual 
sodium carbonate

Table 1   (continued)

Country Geostatistical-modeling tech-
nique

Validation technique Parametersa References

Block kriging None Temp, DO, salt content, NO3, 
NH4, P, Cd, Co, Cr, Cu, Fe, 
Mn, Ni, Zn

Ağca et al. (2014)

Ordinary kriging None EC, SAR, Kelly index, Mg 
ratio, RSC, potential salinity, 
%Na

Arslan (2017)

USA Ordinary kriging None EC, pH, Ca Mouser et al. (2005)
Indicator kriging Cross-validation As Goovaerts et al. (2005)

Fig. 3   Tree diagram illustrating classification of methods for groundwater vulnerability assessment
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fuzzy logic (LFL) was applied in conjunction with SFL and 
MFL for the assessment of groundwater vulnerability in the 
Varzeqan Plain, in northwestern Iran (Nadiri et al. 2017). In 
addition to above techniques, multivariate statistical analy-
sis, e.g., PCA and CA have also been used in groundwater 
vulnerability assessment studies. The CA has been used to 
determine the most influential chemical factors in determin-
ing aquifer vulnerability in the Visakhapatnam district of 
India (Rao et al. 2013). Additionally, the CA was coupled 
with PCA for the modification of DRASTIC method in the 
Qazvin aquifer, in northern Iran (Javadi et al. 2017).

Thirumalaivasan et al. (2003) made a first attempt to 
apply AHP for the modification of DRASTIC method, 
which was then employed for vulnerability assessment in 
Tamil Nadu, India. The AHP is a structured multi-criteria 
analysis technique used for analyzing complex problems, 
and thus, the AHP is widely used for the calibration of 
parameters’ weights in vulnerability assessment methods. 
In vulnerability assessment study of the Eğirdir Lake basin 
of Turkey, DRASTIC method was modified using the AHP 
technique (Sener and Davraz 2013). Furthermore, overlay 
and index-based techniques were coupled with the AHP in 
a GIS platform for estimating groundwater vulnerability in 
northern India (Gangadharan et al. 2016). Decision support 
systems (DSSs) constitute a valuable and flexible tool for 
groundwater resource management, and it has been also inte-
grated with groundwater vulnerability assessment methods. 
For instance, the DSSs have been coupled with vulnerabil-
ity maps in intensively irrigated areas of Italy and Greece 
providing an integrated tool for sustainable management of 
groundwater and optimal use of fertilizers (Voudouris et al. 
2010). Gemitzi et al. (2006) developed a groundwater vul-
nerability index based on decision-making techniques, such 
as fuzzy logic and GIS. Stumpp et al. (2016) established an 
intrinsic vulnerability index in a decision tree form, which 
leads the user through the stages of vulnerability assessment. 
Kazakis et al. (2018a) modified the GALDIT method using 
fuzzy sets in order to estimate groundwater vulnerability of 
coastal aquifer to seawater intrusion.

The weights of evidence (WoE) method have also been 
used for the modification of index-based methods of ground-
water vulnerability assessment. This method can evaluate 
the importance of each single factor class, and thus, allowing 
the range of values that influences the nitrate concentration 
to be determined. Abbasi et al. (2013) modified the DRAS-
TIC method using WoE in the Charmahal-Bakhtyari Prov-
ince in southwest Iran. In Po Plain area of Northern Italy, 
Sorichetta et al. (2012) used positive and negative WoE in 
order to assess groundwater vulnerability to nitrate. Genetic 
algorithm has also been used for the site selection of ground-
water production wells considering groundwater vulnerabil-
ity to pollution. Elçi and Ayvaz (2014) applied this approach 
in Tahtalı watershed in İzmir, Turkey. It is revealed from the 

literature that genetic algorithm has not been widely used in 
studies involving assessment of the groundwater vulnerabil-
ity, and therefore, this promising AI technique has the vast 
scope in future studies. It is worth mentioning that the appli-
cations of the aforementioned hybrid methods performed in 
a GIS platform highlight importance of the statistical and AI 
methods in development and application of the new hybrid 
methods. Salient hybrid methods developed by modifying 
the original groundwater vulnerability assessment methods 
are summarized in Table 2.

GIS‑based groundwater quality index

The previous sections reviewed the application of time series 
modeling, multivariate statistical/geostatistical and artificial 
intelligence techniques in hydrogeochemistry, as for ground-
water quality evaluation and vulnerability assessment. 
Combined with more conventional methods (e.g., Piper and 
Durov diagrams, Wilcox chart, descriptive statistics), these 
techniques are powerful to get a better knowledge of the 
geochemical processes associated to groundwater chemi-
cal evolution, both in space and time. On the other hand, 
a challenge remains to properly communicate the relevant 
geochemical knowledge to groundwater managers in a way 
to integrate groundwater quality issues within groundwater 
sustainability action framework. To do so, there was a need 
to develop indices that could be applied for groundwater 
quality assessment. Combined to GIS, these water quality 
indices can be integrated into other spatial data related to 
natural resources and human geography, thus contributing 
to proper development and management of the groundwater 
resources.

Water quality index (WQI)

In their book dealing on water quality indices (WQIs), 
Abbasi and Abbasi (2012) pointed out that expressing 
water quality brings numerous challenges. In fact, the qual-
ity of water can be defined for different uses (e.g., drinking, 
agricultural irrigation, livestock, and industrial), may vary 
in time and space, and can be categorized by a number of 
parameters (chemical, physical, microbiological, and radio-
logical), with some parameters being more problematic than 
others, regarding health issues.

To face the complexity to describe water quality and to 
provide water resources managers with representation of 
water quality that allows comparisons between samples, 
regulatory agencies of different countries and international 
agencies have developed different types of WQIs, includ-
ing the US Geological Survey (Stoner 1978), CCME-
WQI (Canadian Council of Ministers of the Environment 
2001), and Global Drinking (GD)-WQI (United Nations 
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Environment Programme 2007). Lumb et al. (2011) pub-
lished an extensive review of the evolution of the WQI 
concept, including the CCME-WQI and the GD-WQI. 
Later on, Sutadian et al. (2016) presented a review of 30 
WQIs, developed for evaluating river water quality, based 
on selection of parameters, generation of sub-indices, gen-
eration of parameter weights, and aggregation procedure 
to compute index. Abbasi and Abbasi (2012) defined the 
objective of WQI as translating the concentrations of the 
measured parameters (variables) of a water sample into 
a single value (the index value). By doing so, the index 
value of each sample can be used to compare the water 
quality between samples (observations). When computing 
WQI with GIS, numerous applications leading to proper 

and sustainable management of water resources can be 
implemented. Abbasi and Abbasi (2012) provide detailed 
information on WQI development and common genera-
tion steps, starting with the Horton’s WQI (Horton 1965). 
Figure 4 illustrates the basic steps generally followed to 
develop WQI (Abbasi and Abbasi 2012). The selection of 
parameters (Step 1) from the water quality dataset and the 
attribution of a weight to each of the parameters (Step 3) 
are leading subjectivity to the technique. The parameters’ 
transformation (Step 2) is needed to bring parameters 
of different units or ranges to a single scale, producing 
sub-indices. It is during this step that one can index the 
parameters numerically to water quality guideline, such 
as the World Health Organization standards (WHO 2017). 

Table 2   Methods used for 
groundwater vulnerability 
assessment and their 
modifications in literature

No. Vulnerability assessment method Type References

1 DRASTIC Index Aller et al. (1985)
2 SINTACS Index Civita and De Maio (2004)
3 AVI Index Van Stempvoort et al. (1992)
4 GOD Index Foster (1987)
5 SEEPAGE Index Moore (1988)
6 Kansas leachability index Index Kissel et al. (1982)
7 California hotspots Index Cohen et al. (1986)
8 Washington map overlay vulnerability Index Sacha et al. (1987)
9 Iowa ground water vulnerability Index Hoyer and Hallberg (1991)
10 EPA/UIC Index Pettyjohn et al. (1991)
11 EPIK Index Doerfliger et al. (1999)
12 COP Index Zwahlen (2004)
13 PaPRIKa Index Kavouri et al. (2011)
14 RISKE Index Pételet-Giraud et al. (2000)
15 PI Index Goldscheider et al. (2000)
16 DRASTIC-FM Index Denny et al. (2007)
17 GALDIT Index Chachadi and Lobo-Ferreira (2001)
18 PESTANS Simulation Enfield et al. (1982)
19 MOUSE Simulation Steenhuis et al. (1987)
20 LEACHM Simulation Wagenet and Hutson (1987)
21 RUSTIC Simulation Dean et al. (1989)
22 Discriminant analysis Statistical Teso et al. (1988)
23 Regression analysis Statistical Chen and Druliner (1988)
24 Groundwater vulnerability/probability map Hybrid Rupert (2001)
25 DRASTIC fuzzy modification Hybrid Dixon (2005b)
26 DRATI Hybrid Panagopoulos et al. (2006)
27 DATIL Hybrid Antonakos and Lambrakis (2007)
28 DRASTIC fuzzy modification Hybrid Mohammadi et al. (2009)
29 DRASTIC fuzzy modification Hybrid Fijani et al. (2013)
30 DRASTIC-PAN Hybrid Kazakis and Voudouris (2015)
31 P3 Hybrid Sullivan and Gao (2017)
32 DRASTIC SICM modification Hybrid Nadiri et al. (2017)
33 SINTACS-SV Hybrid Busico et al. (2017)
34 GALDIT-F Hybrid Kazakis et al. (2018a)
35 PaPRIKaRa Hybrid Kazakis et al. (2018b)
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Finally, the aggregation of the sub-indices (Step 4) allows 
the determination of the final index score of the WQI.

Several indices were developed for assessment of surface 
water quality (e.g., Prati et al. 1971; Smith 1990; Dojlido 
et al. 1994; Nasiri et al. 2007; Thi Minh; Hanh et al. 2011; 
Şener et al. 2017). The following sub-section emphasizes 
on the application of WQI in the field of hydrogeology, 
where specific indices, including the groundwater quality 
index (GWQI; e.g., Machiwal et al. 2011), contamination 
index (Cd; e.g., Backman et al. 1998), metal pollution index 
(MPI; e.g., Giri et al. 2010) and index of aquifer water qual-
ity (IAWQ; e.g., Melloul and Collin 1998), were developed 
to define the quality of groundwater. With advancement of 
the computing facilities, WQIs are now integrated with GIS 
to provide quantitative groundwater quality maps for differ-
ent geographical regions and scales (e.g., Machiwal et al. 
2011; Ketata et al. 2012; Sadat-Noori et al. 2014).

Groundwater quality index (GWQI) and GIS‑based 
GWQI mapping

For the purpose of this review, GWQI is used as the general 
term to describe indices developed to address groundwater 
quality, predominantly based on physicochemical param-
eters (e.g., GWQI, Cd, MPI, and IAWQ). Research studies 
on GWQI have been reported on groundwater geochemical 
data from many countries, as shown in Table 3. Such studies 
have increased since the pioneering work of Backman et al. 
(1998) and Melloul and Collin (1998), with an important 
number of publications from semi-arid and arid regions of 
the world, including parts of India, where several states are 
facing severe water scarcity (Machiwal et al. 2011).

With the objective to provide a general view of the degree 
of groundwater contamination of a region, Backman et al. 

(1998) tested the applicability of mapping groundwater con-
tamination index (Cd) in Finland and Slovakia. There Cd 
takes into account the number of parameters exceeding the 
guideline values, as well as the concentrations exceeding 
these limit values. As shown by Backman et al. (1998), the 
groundwater contamination degree calculated for each sam-
ple can then be represented on maps for aesthetic and health-
risk parameters distinguishing between groundwater con-
tamination of geogenic origin and anthropogenic sources. 
By dressing parallels to DRASTIC model (Aller et al. 1985), 
Melloul and Collin (1998) developed the IAWQ, a GWQI 
that allowed delineating areas where land uses are already 
affecting groundwater quality. Stigter et al. (2006) used mul-
tivariate analysis to develop a GWQI and a groundwater 
composition index (GWCI) as monitoring tools for ground-
water contamination from agricultural activities and to serve 
as communication tool as part of agro-environmental poli-
cies in Portugal.

In the last decade, several studies integrated the GWQI 
concept to GIS to support efficient strategies to assess 
groundwater quality, as well as to properly manage and 
monitor aquifers and groundwater resources (Table  3). 
Babiker et al. (2007) proposed a GIS-based GWQI with 
the objective to summarize available water quality data into 
easily understood maps. They used GIS to implement the 
proposed GWQI and to test the sensitivity of the model. In 
another GIS-based GWQI spatio-temporal study, Machiwal 
et al. (2011) utilized, following GWQI map, an optimum 
index factor (OIF) to generate a potential GWQI (P-GWQI) 
map in western India. They summarized the entire process 
to develop GWQI and P-GWQI maps within a flowchart. 
Following Babiker et al. (2007), Machiwal et al. (2011) also 
performed a map removal sensitivity analysis to identify the 
most influential water quality parameters, and so, the param-
eters that should be monitored with higher accuracy. Khan 
et al. (2011) used GIS-based GWQI to assess the impact of 
land use changes on the groundwater quality from a rapidly 
urbanizing region of South India. Sadat-Noori et al. (2014) 
combined the use of GIS and GWQI to assess groundwater 
quality of the Saveh-Nobaran aquifer in Iran.

GWQI has also been used in various applications in ground-
water quality and hydrogeochemical studies. As an example, 
Ramos Leal et al. (2004) used a GWQI and the Cd of Backman 
et al. (1998), combined to aquifer vulnerability evaluation, to 
support the design of a water quality monitoring network for 
Mexico. Nobre et al. (2007) calculated a GWQI, based on the 
IAWQ of Melloul and Collin (1998), in conjunction with vul-
nerability, contamination and well capture indices, to develop 
GIS-based groundwater vulnerability and risk mapping. The 
approach of Nobre et al. (2007), where several elements are 
integrated within GIS environment, was successful to assess 
groundwater pollution risks and to identify areas to be prior-
itized for groundwater monitoring and landuse restriction. The 

Fig. 4   Flowchart illustrating basic steps generally involved in water 
quality index (WQI) determination as presented by Abbasi and 
Abbasi (2012)
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concept of GWQI is still in evolution, as shown by the work 
of Li et al. (2014) and Vadiati et al. (2016). With the objec-
tive to minimize uncertainties associated with traditional WQI 
calculations, Vadiati et al. (2016) investigated the potential of 
a hybrid fuzzy-based GWQI (FGWQI) to assess groundwater 
quality in the Sarab Plain of Iran. They found that the hybrid 
FGWQI produces significantly more accurate assessments 
of groundwater quality than traditional WQI. Even though 
the application of FGWQI is promising, Vadiati et al. (2016) 

concluded that more research is needed to test the approach 
and compare it to deterministic WQI techniques in different 
contexts.

Table 3   Salient studies that developed and applied various types of groundwater quality indexes (GWQIs)

a GWQI/GQI groundwater quality index, IQNAS WQI groundwater natural quality index, SWQI surface water quality index, WQI water quality 
index, MPI metal pollution index, Cd contamination index, FGWQI fuzzy ground water quality index, EWQI entropy-weighted water quality 
index, PWQI potability water quality index, IAWQ index of aquifer water quality, GWCI groundwater composition index, HPI heavy metal pollu-
tion index
b TDS total dissolved solids, temp temperature, DO dissolved oxygen, BOD biochemical oxygen demand, EC electrical conductivity, FC fecal 
coliform, TC total coliform, SAR sodium adsorption ratio
c Studies with “*” have strong GIS-based GWQI applications

Country Name of indexa Parametersb Referencesc

Brazil GWQI Cl, NO3 Nobre et al. (2007)*
IQNAS WQI TDS, pH, hardness, Cl, F, NO3 Leite et al. (2018)

China Entropy-weighted fuzzy WQI TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, F, NO3-N, NO2-N, NH4-N, Al, 
As, Cr, Cu, Hg, Mn, Zn

Li et al. (2014)

Croatia GWQI/SWQI (WQI) Temp, DO, BOD, mineralization, corrosion coefficient, total N, 
protein N, total P, TC

Stambuk-Giljanovic (1999)

Egypt GWQI (WQI) TDS, BOD, NO3, Cl, PO4, Cd, Cr, Ni, Pb Soltan (1999)
WQI EC, TDS, pH, Na, K, hardness, SAR El-Shahat et al. (2017)

Finland GWQI (Cd) pH, Na, Cl, SO4, F, NO3, UO2, Ag, Al, As, B, Ba, Cd, Cr, Cu, Fe, 
Mn, Ni, Pb, Rn, Se, Zn, KMnO4 consumption

Backman et al. (1998)

Ghana GWQI (WQI) EC, Ca, Mg, Na, Cl, F, NO3 Banoeng-Yakubo et al. (2009)
WQI EC, TDS, pH, Ca, Mg, Cl, SO4, HCO3, NO3, PO4 Boateng et al. (2016)

India GWQI (WQI) TDS, pH, hardness, Ca, Mg, Cl, SO4, HCO3, F, NO3, Fe, Mn Ramakrishnaiah et al. (2009)
MPI Cu, Fe, Mn, Ni, Pb, Zn Giri et al. (2010)
GWQI EC, pH, hardness, Ca, Mg, Na, Cl, SO4, alkalinity, F, NO3, NO2, Cd, 

Cr, Cu, Fe, Mn, Ni, Pb, Zn, TC, Salmonella
Ramesh et al. (2010)

GWQI TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, F, NO3, PO4, Si Vasanthavigar et al. (2010)
GWQI (GQI) TDS, Ca, Mg, Na, Cl, SO4 Khan et al. (2011)*
GWQI EC, TDS, pH, hardness, Ca, Mg, Na, Cl, SO4, HCO3, NO3 Machiwal et al. (2011)*
GWQI (GQI) TDS, pH, Ca, Mg, Na, K, Cl, SO4, HCO3, NO3 Sethy et al. (2017)*

Iran GWQI TDS, pH, Ca, Mg, Na, K, Cl, SO4 Saeedi et al. (2010)
GWQI TDS, pH, Ca, Mg, Na, K, Cl, SO4, HCO3 Sadat-Noori et al. (2014)*
GWQI/FGWQI TDS, Ca, Mg, Na, Cl, SO4, NO3 Vadiati et al. (2016)*
EWQI EC, Ca, Mg, Na, K, Cl, SO4, HCO3, F, NO3, Al, As, Fe, Mn, Pb Gorgij et al. (2017)
PWQI EC, TDS, pH, hardness, Ca, Mg, Na, K, Cl, SO4, HCO3 Jamshidzadeh and Barzi (2018)

Israel GWQI (IAWQ) Cl, NO3 Melloul and Collin (1998)
Japan GWQI (GQI) TDS, Ca, Mg, Na, Cl, SO4, NO3 Babiker et al. (2007)*
Lebanon GWQI TDS, Ca, Mg, Na, Cl, SO4, HCO3, F, NO3, NO2, FC, TC El-Fadel et al. (2014)*
Mexico GWCI (Cd) Temp, EC, pH, major ions Ramos Leal et al. (2004)
Portugal GWQI/GWCI Ca, Cl, SO4, NO3 Stigter et al. (2006)
Slovakia GWCI (Cd) TDS, Cl, SO4, F, NO3, NH4, Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Pb, 

Sb, Se, Zn
Backman et al. (1998)

Syria HPI Cd, Cu, Pb, Zn Zakhem and Hafez (2015)
Tunisia GWQI EC, TDS, pH, Ca, Mg, Na, K, Cl, SO4, NO3 Ketata et al. (2012)*
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Limitations and research gaps

Whether time series analysis in hydrogeochemistry 
has been comprehensively applied?

This review highlighted that studies are generally lack-
ing where multiple characteristics, i.e., normality, homo-
geneity, stationarity, trends, persistence, periodicity and 
stochasticity of a hydrogeochemical time series are char-
acterized for the same time series. Every time series char-
acteristics have their own importance, however, in litera-
ture studies dealing with hydrogeochemical data series, 
the major emphasis was only on testing normality and 
presence/absence of trends.

Has time series modeling been adequately 
integrated with GIS?

Literature reviewed in this study clearly pointed out that 
the studies dealing with time series of hydrogeochemical 
variables could not adequately integrate time series mod-
eling with GIS technology. This is mainly due to unavail-
ability of the essential time series analysis modules in GIS 
software required for analyzing time series characteristics 
of hydrogeochemical variables in a spatially distributed 
manner.

Whether all multivariate statistical techniques may 
adequately be coupled with GIS?

It is evident from this review that FA, PCA, and CA tech-
niques have been extensively used to analyze the multi-
variate hydrogeochemical datasets. However, other MVSA 
techniques such as DA and CCA could not receive much 
attention of the researchers. In addition, it is learnt that 
the options for analyzing hydrogeochemical variables by 
applying GIS-coupled PCA technique are available in 
many GIS software. However, such procedures for cou-
pling of other multivariate techniques with GIS are gener-
ally not available.

Although multivariate statistical techniques provide a 
powerful means for the analysis of hydrogeochemical data 
series (allowing simultaneous evaluation of all physico-
chemical variables), due to their supervised nature, there 
are no unified methodologies on how to conduct such 
analyses. For instance, there are certain decisions to be 
made in certain steps of these analyses (e.g., variables to 
be included or excluded, use of raw or transformed/stand-
ardized variables, selection of methods, algorithms, cut-off 
levels, and criteria for evaluation), which may introduce a 

subjective bias in the process, with the potential of greatly 
affecting outcomes. Even using the same dataset, differ-
ent results can be obtained as a result of options chosen 
to conduct the analyses and during interpretation stage.

Have geostatistical‑modeling techniques been 
advanced in mapping groundwater quality 
variations?

In groundwater quality mapping studies, it has been a cus-
tomary practice to apply ordinary kriging technique. There 
have been fewer efforts in exploring applicability and effi-
cacy of other kriging techniques, e.g., cokriging, indicator 
kriging, empirical Bayesian kriging, etc. Only a few studies 
comparatively evaluated multiple kriging techniques for get-
ting the best results. Validation of the mapped variable is an 
essential step in the procedure of applying the geostatisti-
cal-modeling technique for estimating spatial distributions. 
However, uncertainty in spatial estimations of the ground-
water quality variables remains unaddressed in few studies 
due to non-computation of error variance.

Is quantitative assessment of groundwater 
vulnerability more comprehensive than qualitative?

The modern and advanced approaches of groundwater vul-
nerability assessment are based on both using hybrid meth-
ods involving a coupling of qualitative–quantitative meth-
ods and integration of statistical and artificial intelligence 
techniques with index-based qualitative methods. However, 
these approaches demand a large number of field data, which 
are difficult to be collected/measured. Additionally, the trend 
to establish a method for all hydrogeological regimes might 
neglect the specific conditions of each aquifer. Although the 
qualitative approaches are characterized by subjectivity and 
strong dependence on the researchers, they might be more 
flexible, adaptable and cost-effective. It is clear that vulner-
ability assessment using intelligence techniques should be 
carefully applied and evaluated. In the future, a deeper dis-
cussion and comparison between quantitative and qualitative 
approaches will be needed to determine the most suitable 
approach.

Does GIS‑based groundwater quality index provide 
consistent evaluation?

It is apparent from the results of past GWQI studies that 
index score calculation remains highly dependent on the set 
of parameters selected, as well as on the weights assigned 
to each of the parameters, making this technique subjective. 
Of the several developed GWQIs, hardly any GWQI have 
the ability to be consistent and comparable if applied over 
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different areas. Thus, a universally accepted and consistent 
GIS-based GWQI is currently not available in literature.

Are different water quality indices steady 
and comparable over spatial and temporal scales?

As revealed from the review of literature, most of the WQIs 
are dependent upon the water quality guidelines that vary 
among jurisdictions/institutions, and thus, lead to difficulties 
in interpreting water quality when comparing WQI maps 
at regional scale, sometimes at country-level. Furthermore, 
there are chances that the water quality guideline for some 
parameters may change in time, and in such a case, the WQI 
map needs to be updated prior to interpretation or use.

Perspectives on future research needs

This review clearly evidenced that application of statisti-
cal techniques such as time series modeling, multivariate 
statistical/geostatistical techniques, artificial intelligence 
techniques and water quality indices are gaining popular-
ity in the field of hydrogeochemistry. Integration of statisti-
cal techniques with GIS enhanced capabilities for precisely 
interpreting the hydrogeologic processes occurring within 
the aquifer systems. Still, some research gaps and limita-
tions in integration of the advanced statistical techniques 
within the GIS platform are experienced by the researchers 
as explained in the previous section, which may be a chal-
lenge for future studies undertaking water quality evaluation 
of the hydrogeologic systems. Few of the major needs for 
future research are pointed out below.

•	 In hydrogeochemistry, first two steps of time series 
modeling, i.e., detection and analysis, have been widely 
adopted. However, the future research will need to focus 
on the last two steps, i.e., synthesis and verification 
including stochastic time series modeling of groundwater 
quality variables.

•	 Time series characteristics other than normality and 
presence of trend such as homogeneity, stationarity, 
periodicity and persistence need to be considered equally 
important in hydrogeochemistry, and wide applications 
of statistical methods for their detection are required.

•	 Due to inherent complexities of and spatial continuities 
observed in the chemical and physical properties of 
water chemistry data, sometimes multivariate statistics 
may not be able to produce the expected results. This 
is mostly because, most of the multivariate statistical 
methods are based on binary logic (i.e., Aristotelian 
logic), which imposes sharp boundaries. According to 
this logic, a water sample can only be a member of a 
certain group and no overlapping groups are allowed, 

e.g., in cluster analysis. However, methods using a 
multi-valued logic (e.g., fuzzy c-means clustering) 
can be used to overcome such limitations, where par-
tial memberships can be evaluated (a water sample can 
be partial member of other groups) (Güler and Thyne 
2004b; Güler et al. 2012).

•	 In future studies, uncertainty associated with the spatial 
estimations of groundwater quality variables predicted 
by geostatistical-modeling techniques will have to be 
properly addressed by validating the mapped variables 
using the cross-validation criteria. Also, accuracy of 
the customary ordinary kriging and few advanced tech-
niques such as empirical Bayesian kriging will need 
to be comparatively evaluated in order to find the best 
interpolation technique under a set of given hydrogeo-
logic conditions.

•	 For groundwater vulnerability assessment studies, a 
need is felt to develop some sort of protocol for moni-
toring of the groundwater quality in order to have com-
parative appraisal of vulnerability degree of the aquifer 
over different parts of the world.

•	 In studies dealing with groundwater quality index 
(GWQI) for groundwater quality assessments, a robust 
methodology will have to be developed to reduce sub-
jectivity from the processes of parameter selection and 
weight attribution.

•	 Development of a universal GWQI for assessing 
groundwater quality for different purposes would 
really be a challenging task for prospective research-
ers. Attempts should be made to develop a framework 
for generating a unique as well as versatile index that 
allows comparisons in groundwater quality among 
different spatial scales ranging from local to regional 
(Lumb et al. 2011).

•	 It is emphasized to investigate the applicability of hybrid 
GWQI involving coupling of artificial intelligence tech-
niques such as fuzzy or neuro-fuzzy technique with 
index-based weights, along with integration of various 
additional parameters such as physicochemical, organic 
matter, microbiological, major anions/cations and heavy 
metals (Vadiati et al. 2016).

•	 One of the major future research needs will be adequate 
integration of all kind of statistical methods in GIS plat-
form. Procedures for different time series modeling tests, 
multivariate statistical and artificial intelligence tech-
niques and water quality indices need to be adequately 
incorporated in GIS software.

•	 Finally, it is realized that a deep sense of cooperation, 
sharing of experience and exchange of ideas among the 
hydrogeologists working in different regions of the world 
having a diverse setting of economic, social and political 
ethics would be needed to ensure thorough investigations 
and reliability of outcomes.
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Concluding remarks

Application of modern techniques such as time series 
modeling, multivariate statistical/geostatistical and arti-
ficial intelligence techniques to characterize groundwa-
ter quality for efficient management and protection of 
groundwater resources has been attracting the research-
ers increasingly over the past five decades. After advent 
of Geographic Information System (GIS) in 1990s, the 
advanced statistical and artificial intelligence techniques 
with their GIS-based integration have emerged as more 
powerful tools than the traditional methods for a better 
evaluation of groundwater quality. It is revealed from the 
literature that time series modeling has not been exten-
sively utilized in hydrogeochemistry studies, and there 
exists a huge scope for its comprehensive applications 
in future. Mainly, presence of normality and trend are 
examined in groundwater quality time series, and other 
important time series properties such as homogeneity, 
stationarity, periodicity, persistence and stochasticity are 
generally ignored on the temporal scale. Also, adequate 
GIS integration of time series modeling techniques are 
generally lacking. It is apparently depicted that the past 
studies have mostly adopted Factor Analysis, Principal 
Component Analysis (PCA) and Cluster Analysis (CA) 
for evaluating the groundwater quality. However, other 
multivariate statistical analysis techniques could not be 
widely employed. Recently, factor loadings/scores of the 
PCA have been integrated with GIS-coupled geostatistical 
modeling, although such studies are quite rare in litera-
ture. A need is felt to find the accuracy of the advanced 
geostatistical-modeling techniques, e.g., Empirical Bayes-
ian Kriging and geostatistical-simulation, in spatial map-
ping of the groundwater quality variables, and their spatial 
comparisons with the traditional techniques, e.g., Ordinary 
Kriging. It is evident from literature that the concept of 
groundwater vulnerability has been developed widely over 
the past five decades since its inception in 1968, and cur-
rently a very large number of artificial intelligence tech-
niques have seen their GIS-integrated applications for pro-
tection of the groundwater resources worldwide. In recent 
times, a hybrid approach amalgamating index-based rating 
methods with statistical methods is gaining wide atten-
tion of the researchers across the globe for groundwater 
vulnerability assessments. Furthermore, review of the past 
studies clearly highlighted that studies dealing with water 
quality assessment based on certain indices are relatively 
less for the groundwater in comparison to those for the 
surface water. Over the last one decade, there has been 
an increase in the number of studies, either developing a 
groundwater quality index (GWQI) or applying an existing 
GWQI for groundwater quality appraisals.

This review emphasizes the importance of salient time 
series characteristics in GIS-based hydrogeochemistry 
studies. In future groundwater quality studies, time series 
modeling should be employed in a comprehensive manner 
by including synthesis and verification steps. Similarly, 
potential of the multivariate statistical techniques, other 
than PCA and CA, need to be explored for groundwater 
quality evaluation and protection. Also, it will be impera-
tive to minimize uncertainty of the aquifer vulnerability 
assessments by developing the hybrid methods with a 
proper balance of qualitative and quantitative methods. In 
addition, a robust and global GWQI would have to be gen-
erated in order to have consistent and steady water qual-
ity evaluations of the hydrogeologic systems that can be 
comparable over different spatial scales across the globe. 
Finally, one of the major future challenges would be to 
develop a variety of modules for implementing advanced 
statistical and artificial intelligence methods in GIS plat-
form to enable advanced analyses of these techniques in 
a spatial manner.

Acknowledgements  The authors are grateful to Dr. Olaf Kolditz (Edi-
tor-in-Chief) and two anonymous reviewers for their useful suggestions 
and comments, which helped improve earlier version of this article.

References

Abbasi T, Abbasi SA (2012) Water quality indices. Elsevier, Oxford, 
UK, p 384

Abbasi S, Mohammadi K, Kholghi MK, Howard K (2013) Aquifer 
vulnerability assessments using DRASTIC, weights of evidence 
and the analytic element method. Hydrol Sci J 58(1):186–197

Adeloye AJ, Montaseri M (2002) Preliminary streamflow data 
analyses prior to water resources planning study. Hydrol Sci J 
47(5):679–692

Adhikary PP, Dash CJ, Chandrasekharan H, Rajput TBS, Dubey SK 
(2012) Evaluation of groundwater quality for irrigation and 
drinking using GIS and geostatistics in a peri-urban area of 
Delhi, India. Arab J Geosci 5:1423–1434

Ağca N, Karanlık S, Ödemiş B (2014) Assessment of ammonium, 
nitrate, phosphate, and heavy metal pollution in groundwa-
ter from Amik Plain, southern Turkey. Environ Monit Assess 
186(9):5921–5934

Aguilar JB, Orban P, Dassargues A, Brouyère S (2007) Identification 
of groundwater quality trends in a chalk aquifer threatened by 
intensive agriculture in Belgium. Hydrogeol J 15:1615–1627

Ahmed S (2006) Application of Geostatistics in Hydrosciences. In: 
Thangarajan M (ed) Groundwater resource evaluation, augmen-
tation, contamination, restoration, modeling and management. 
Capital Publishing Company, New Delhi, pp 78–111

Aller L, Bennett T, Lehr JH, Petty RJ (1985) DRASTIC: a standardized 
system for evaluating ground water potential using hydrogeo-
logical settings. In: EPA/600/285/018, Environmental Research 
Laboratory. US Environmental Protection Agency, Ada

Alley WM (1993) Regional ground-water quality. Wiley, New York, 
p 634

Alther GA (1979) A simplified statistical sequence applied to rou-
tine water quality analysis—a case history. Ground Water 
17(6):556–561



	 Environmental Earth Sciences (2018) 77:681

1 3

681  Page 22 of 30

Antonakos AK, Lambrakis NL (2007) Development and testing of 
three hybrid methods for assessment of aquifer vulnerability to 
nitrates, based on the DRASTIC model, an example from NE 
Korinthia, Greece. J Hydrol 333(2–4):288–304

APHA-AWWA-WEF (2017) Standard methods for the examination of 
water and wastewater, 23rd edn. American Public Health Asso-
ciation (APHA)-American Water Works Association (AWWA)-
Water Environment Federation (WEF), Washington, DC

Arslan H (2017) Determination of temporal and spatial variability of 
groundwater irrigation quality using geostatistical techniques 
on the coastal aquifer of Çarşamba Plain, Turkey, from 1990 
to 2012. Environ Earth Sci 76:38. https​://doi.org/10.1007/s1266​
5-016-6375-x

ASCE Task Committee (1990a) Review of geostatistics in geohydrol-
ogy. I: Basic concepts. Journal of Hydraul Eng ASCE 116(5):612, 
https​://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(612)

ASCE Task Committee (1990b) Review of geostatistics in geohydrol-
ogy. II: applications. J Hydraul Eng ASCE 116(5):612. https​://
doi.org/10.1061/(ASCE)0733-9429(1990)116:5(633)

ASCE Task Committee (2000) Artificial neural networks in hydrol-
ogy—I: preliminary concepts. J Hydrol Eng ASCE 5(2):115–123

Ashley RP, Lloyd JW (1978) An example of the use of factor analysis 
and cluster analysis in groundwater chemistry interpretation. J 
Hydrol 39:355–364

Assaf H, Saadeh M (2009) Geostatistical assessment of groundwater 
nitrate contamination with reflection on DRASTIC vulnerability 
assessment: the case of the Upper Litani Basin, Lebanon. Water 
Resour Manag 23:775–796

Ayuso SV, Acebes P, López-Archilla AI, Montes C, Guerrero MC 
(2009) Environmental factors controlling the spatiotemporal 
distribution of microbial communities in a coastal, sandy aqui-
fer system (Doñana, southwest Spain). Hydrogeol J 17:767–780

Babiker IS, Mohamed MMA, Hiyama T (2007) Assessing groundwater 
quality using GIS. Water Resour Manag 21:699–715

Backman B, Bodiš D, Lahermo P, Rapant S, Tarvainen T (1998) Appli-
cation of a groundwater contamination index in Finland and Slo-
vakia. Environ Geol 36(1–2):55–64

Banoeng-Yakubo B, Yidana SM, Emmanuel N, Akabzaa T, Asiedu D 
(2009) Analysis of groundwater quality using water quality index 
and conventional graphical methods: the Volta region, Ghana. 
Environ Earth Sci 59(4):867–879

Barca E, Passarella G (2008) Spatial evaluation of the risk of ground-
water quality degradation. A comparison between disjunctive 
kriging and geostatistical simulation. Environ Monit Assess 
137:261–273

Bárdossy A (2011) Interpolation of groundwater quality parameters 
with some values below the detection limit. Hydrol Earth Syst 
Sci 15:2763–2775

Bárdossy A, Kundzewicz ZW (1990) Geostatistical methods for detec-
tion of outliers in groundwater quality spatial fields. J Hydrol 
115:343–359

Berzas JJ, Garcia LF, Rodriguez RC, Martinalvarez PJ (2000) Evolu-
tion of the water quality of a managed natural wetland: Tablas 
de Daimiel National Park (Spain). Water Res 34(12):3161–3170

Bethea RM, Rhinehart RR (1991) Applied engineering statistics. Mar-
cel Dekker, Inc., New York

Bhuiyan MAH, Bodrud-Doza M, Islam ARMT, Rakib MA, Rahman 
MS, Ramanathan AL (2016) Assessment of groundwater quality 
of Lakshimpur district of Bangladesh using water quality indices, 
geostatistical methods, and multivariate analysis. Environ Earth 
Sci 75:1020. https​://doi.org/10.1007/s1266​5-016-5823-y

Bjerg PL, Christensen TH (1992) Spatial and temporal small-scale 
variation in groundwater quality of a shallow sandy aquifer. J 
Hydrol 131:133–149

Boateng TK, Opoku F, Acquaah SO, Akoto O (2016) Groundwater 
quality assessment using statistical approach and water quality 

index in Ejisu-Juaben Municipality, Ghana. Environ Earth Sci 
75:489. https​://doi.org/10.1007/s1266​5-015-5105-0

Bodrud-Doza Md, Islam ARMT, Ahmed F, Das S, Saha N, Rah-
man MS (2016) Characterization of groundwater quality using 
water evaluation indices, multivariate statistics and geostatis-
tics in central Bangladesh. Water Sci 30:19–40

Bondu R, Cloutier V, Rosa E, Benzaazoua M (2016) A review 
and evaluation of the impacts of climate change on geogenic 
arsenic in groundwater from fractured bedrock aquifers. 
Water Air Soil Pollut 227:296. https​://doi.org/10.1007/s1127​
0-016-2936-6

Bondu R, Cloutier V, Rosa E, Benzaazoua M (2017) Mobility and 
speciation of geogenic arsenic in bedrock groundwater from the 
Canadian Shield in western Quebec, Canada. Sci Total Environ 
574:509–519

Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc 
Ser B 26(2):211–252

Box GEP, Hunter WG, Hunter JS (1978) Statistics for experiment-
ers: an introduction to design, data analysis, and model building. 
Wiley Interscience, New York

Boy-Roura M, Nolan BT, Menció A, Mas-Pla J (2013) Regression 
model for aquifer vulnerability assessment of nitrate pollution in 
the Osona region (NE Spain). J Hydrol 505:150–162

Bras RL, Rodriguez-Iturbe I (1985) Random functions and hydrology. 
Addison-Wesley, Reading

Bronson KF, Malapati A, Booker JD, Scanlon BR, Hudnall WH, 
Schurbert AM (2009) Residual soil nitrate in irrigated Southern 
High Plains cotton fields and Ogallala groundwater nitrate. J Soil 
Water Conserv 64(2):98–104

Brown CE (1998) Applied multivariate statistics in geohydrology and 
related sciences, 1st edn. Springer, New York

Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of 
lead, arsenic, cadmium and aluminium contamination of ground-
water in Dhemaji district, Assam, India. Environ Monit Assess 
170:345–351

Burrough PA, McDonnell RA (1998) Principles of geographical infor-
mation systems. Oxford University Press, Oxford, 333 pp

Busico G, Kazakis N, Colombani N, Mastrocicco M, Voudouris K, 
Tedesco D (2017) A modified SINTACS method for groundwater 
vulnerability and pollution risk assessment in highly anthropized 
regions based on NO3

– and SO4
2– concentrations. Sci Total Envi-

ron 609:1512–1523
Busico G, Cuoco E, Kazakis N, Colombani N, Mastrocicco M, Tedesco 

D, Voudouris K (2018) Multivariate statistical analysis to char-
acterize/discriminate between anthropogenic and geogenic trace 
element occurrence in Campania Plain, Southern Italy. Environ 
Pollut 234:260–269

Cairns SH, Dickson KL, Atkinson SF (1997) An examination of meas-
uring selected water quality trophic indicators with SPOT satel-
lite HRV data. Photogramm Eng Remote Sens 63(3):263–265

Canadian Council of Ministers of the Environment (2001) Canadian 
water quality guidelines for the protection of aquatic life. CCME 
Water Quality Index 1.0, Technical Report, in Canadian Environ-
mental Quality Guidelines, 1999, Canadian Council of Ministers 
of the Environment, Winnipeg, Canada

Candela L, Olea RA, Custodio E (1988) Lognormal kriging for the 
assessment of reliability in groundwater quality control observa-
tion networks. J Hydrol 103:67–84

Castrignanò A, Giugliarini L, Risaliti R, Martinelli N (2000) Study of 
spatial relationships among some soil physicochemical proper-
ties of a field in central Italy using multivariate geostatistics. 
Geoderma 97:39–60

Chachadi AG, Lobo-Ferreira JP (2001) Seawater intrusion vulnerability 
mapping of aquifers using the GALDIT method. In: Proceedings 
of the workshop on modelling in hydrogeology, Anna University, 
Chennai, pp 143–156

https://doi.org/10.1007/s12665-016-6375-x
https://doi.org/10.1007/s12665-016-6375-x
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(612)
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(633)
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(633)
https://doi.org/10.1007/s12665-016-5823-y
https://doi.org/10.1007/s12665-015-5105-0
https://doi.org/10.1007/s11270-016-2936-6
https://doi.org/10.1007/s11270-016-2936-6


Environmental Earth Sciences (2018) 77:681	

1 3

Page 23 of 30  681

Chang K-T (2002) Introduction to geographic information systems. 
Tata McGraw-Hill Publishing Company Ltd., New Delhi, p 348

Chaudhuri S, Ale S, Delaune P, Rajan N (2012) Spatio-temporal 
variability in groundwater nitrate concentration in Texas: 
1960–2010. J Environ Qual 41:1806–1817

Chen H, Druliner AD (1988) Agricultural chemical contamina-
tion of ground water in six areas of the high plains aquifer, 
Nebraska. National Water Summary 1986—hydrologic events 
and ground-water quality, water-supply Paper 2325. U.S. Geo-
logical Survey, Reston

Chen L, Feng Q (2013) Geostatistical analysis of temporal and spa-
tial variations in groundwater levels and quality in the Minqin 
Oasis, Northwest China. Environ Earth Sci 70(3):1367–1378

Chen Y, Takara K, Cluckie ID, Smedt FHD (eds) (2004) GIS and 
remote sensing in hydrology, Water resources and environ-
ment. IAHS Publication No. 289. IAHS Press, Wallingford, 
p 422

Chou CJ (2006) Assessing spatial, temporal, and analytical variation of 
groundwater chemistry in a large nuclear complex, USA. Environ 
Monit Assess 119:571–598

Civita M, De Maio M (2004) Assessing and mapping groundwater 
vulnerability to contamination: the Italian “combined” approach. 
Geofísica Internacional 43(4):513–532

Clark D (1975) Understanding canonical correlation analysis. Concepts 
and techniques in modern geography No. 3, geo abstracts. Uni-
versity of East Anglia, Norwich

Clarke RT (1998) Stochastic processes for water scientists: develop-
ment and applications. Wiley, New York

Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivari-
ate statistical analysis of geochemical data as indicative of the 
hydrogeochemical evolution of groundwater in a sedimentary 
rock aquifer system. J Hydrol 353:294–313

Cohen DB, Fisher C, Reid ML (1986) Ground-water contamination 
by toxic substances: a california assessment. In: Garner WY, 
Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in ground 
water, ACS Symposium Series 315. American Chemical Society, 
Washington, DC, pp. 499–529

Collins WD (1923) Graphic representation of water analyses. Ind Eng 
Chem 15(4):394

Cooley WW, Lohnes PR (1971) Multivariate data analysis. Wiley, New 
York

Cooper RM, Istok JD (1988a) Geostatistics applied to groundwa-
ter contamination. I: methodology. J Environ Engin ASCE 
111(2):270–286

Cooper RM, Istok JD (1988b) Geostatistics applied to groundwater 
contamination. II. Appl J Environ Eng ASCE 111(2):287–299

Council of Canadian Academies (2009) The sustainable management 
of groundwater in canada. Report of the expert panel on ground-
water. Council of Canadian Academies, Ottawa

Cryer JD (1986) Time series analysis. PWS Publishers, Duxbury Press, 
Boston

D’Agostino V, Greene EA, Passarella G, Vurro M (1998) Spatial and 
temporal study of nitrate concentration in groundwater by means 
of coregionalization. Environ Geol 36(3–4):285–295

Dalton MG, Upchurch SB (1978) Interpretation of hydrochemical 
facies by factor analysis. Ground Water 16(4):228–233

David M (1977) Geostatistical ore reserve estimation. Elsevier Scien-
tific Publishing Company, New York, p 364

David M, Dagbert M (1975) Lakeview revisited: variograms and corre-
spondence analysis-new tools for the understanding of geochemi-
cal data. In: Proceedings of the 5th international geochemical 
exploration symposium, geochemical exploration, pp 163–181

Davies PJ, Crosbie RS (2018) Mapping the spatial distribution of chlo-
ride deposition across Australia. J Hydrol 561:76–88

Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, 
New York

Dawdy DR, Feth JH (1967) Applications of factor analysis in study of 
chemistry of ground water quality, Mojave River Valley, Califor-
nia. Water Resour Res 3(2):505–510

Dean JD, Huyakorn PS, Donigian AS Jr, Voos KA, Schanz RW, Meeks 
YJ, Carsel RF (1989) Risk of unsaturated/saturated transport and 
transformation of chemical concentrations (RUSTIC). Volumes I 
and II. EPA/600/3–89/048a. United States Environmental Protec-
tion Agency, Athens

Delhomme JP (1978) Kriging in hydrosciences. Adv Water Resour 
1:251–266

Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm: a modified 
vulnerability mapping method for structurally controlled aquifers 
in the southern Gulf Islands, British Columbia, Canada. Hydro-
geol J 15:483–493

Deutsch WJ (1997) Groundwater geochemistry: fundamentals and 
applications to contamination. CRC Press LLC, Boca Raton, p 
221

Dillon R, Goldstein M (1984) multivariate analyses: methods and 
applications. Wiley, New York

Dixon B (2005a) Groundwater vulnerability mapping: A GIS and fuzzy 
rule based integrated tool. J Appl Geogr 25:327–347

Dixon B (2005b) Applicability of neuro-fuzzy techniques in predicting 
groundwater vulnerability: a GIS-based sensitivity analysis. J 
Hydrol 309(1–4):17–38

Dixon B (2009) A case study using support vector machines, neural 
networks and logistic regression in a GIS to identify wells con-
taminated with NO3-N. Hydrogeol J 17:1507–1520

Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assess-
ment in karst environments: a new method of defining protec-
tion areas using a multi-attribute approach and GIS tools (EPIK 
method). Environ Geol 39(2):165–176

Dojlido J, Raniszewsk IJ, Woyciechowska J (1994) Water quality index 
—application for rivers in Vistula river basin in Poland. Water 
Sci Technol 30:57–64

Dokou Z, Kourgialas NN, Karatzas GP (2015) Assessing groundwa-
ter quality in Greece based on spatial and temporal analysis. 
Environ Monit Assess 187:774. https​://doi.org/10.1007/s1066​
1-015-4998-0

Dragon K (2006) Application of factor analysis to study contamination 
of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, 
Poland). J Hydrol 331:272–279

Drozdov OA, Shepelevskii AA (1946) The theory of interpolation in 
a stochastic field of meteorological elements and its application 
to meteorological maps and network rationalization problems (in 
Russian). Trudy NIU GUGMS Series, 1(13), Russian Hydrologi-
cal and Meteorological Service, Russia

Eheart JW, Cieniawski SE, Ranjithan S (1993) Genetic-algorithm-
based design of groundwater quality monitoring system. WRC 
Research Report No. 218, Water Resources Center, University 
of Illinois at Urbana-Champaign, 205 North Mathews. Avenue 
Urbana Illinois 61801, p 50

Elçi A, Ayvaz MT (2014) Differential-evolution algorithm based opti-
mization for the site selection of groundwater production wells 
with the consideration of the vulnerability concept. J Hydrol 
511:736–749

El-Fadel M, Tomaszkiewicz M, Adra Y, Sadek S, Najm MA (2014) 
GIS-based assessment for the development of a groundwater 
quality index towards sustainable aquifer management. Water 
Resour Manag 28:3471–3487

El-Shahat MF, Sadek MA, Embaby AA, Salem WM, Mohamed FA 
(2017) Hydrochemical and multivariate analysis of groundwater 
quality in the northwest of Sinai, Egypt. J Water Health. https​://
doi.org/10.2166/wh.2017.276

Enfield CG, Carsel RF, Cohen SZ, Phan T, Walters DM (1982) 
Approximating pollutant transport to ground water. Ground 
Water 20(6):711–722

https://doi.org/10.1007/s10661-015-4998-0
https://doi.org/10.1007/s10661-015-4998-0
https://doi.org/10.2166/wh.2017.276
https://doi.org/10.2166/wh.2017.276


	 Environmental Earth Sciences (2018) 77:681

1 3

681  Page 24 of 30

Enwright N, Hudak PF (2009) Spatial distribution of nitrate and 
related factors in the high plains aquifer. Texas Environ Geol 
58:1541–1548

Farnham M, Klaus JS, Ashok KS, Johannesson KH (2000) Decipher-
ing groundwater flow systems in Oasis Valley, Nevada, using 
trace element chemistry, multivariate statistics, and geographi-
cal information system. Math Geol 32(8):943–968

Farnham M, Singh AK, Stetzenbach KJ, Johannesson KH (2002) 
Treatment of nondetects in multivariate analysis of groundwa-
ter geochemistry data. Chemometr Intell Lab Syst 60:265–281

Felmy AR, Girvin DC, Jenne EA (1983) MINTEQ: A Computer 
Program for Calculating Aqueous Geochemical Equilibria. 
EPA/600/3–84/032, Pacific Northwest Laboratory, United 
States Environmental Protection Agency (USEPA), Washing-
ton, DC

Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers 
to groundwater use and climate change. Nat Clim Change 
2:342–345

Fijani E, Nadiri AA, Moghaddam AA, Tsai FT-C, Dixon B (2013) 
Optimization of DRASTIC method by supervised committee 
machine artificial intelligence to assess groundwater vulnerabil-
ity for Maragheh-Bonab plain aquifer, Iran. J Hydrol 503:89–100

Forina M, Armanino C, Raggio V (2002) Clustering with dendrograms 
on interpretation variables. Anal Chim Acta 454(1):13–19

Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pol-
lution risk and protection strategy. In: Van Duijvenbooden W, and 
Waegeningh HG (eds), Vulnerability of soil and groundwater 
to pollutants. In: TNO committee on hydrological research, the 
Hague, Proc. Inf., vol 38, pp 69–86

Frans L (2008) Trends of pesticides and nitrate in ground water of the 
Central Columbia Plateau, Washington, 1993–2003. J Environ 
Qual 37:273–280

Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Inc., Engle-
wood Cliffs

Gan Y, Zhao K, Deng Y, Liang X, Ma T, Wang Y (2018) Groundwa-
ter flow and hydrogeochemical evolution in the Jianghan Plain, 
central China. Hydrogeol J 26(5):1609–1623

Gandin LS (1965) Objective analysis of meteorological fields. Israel 
Program for Scientific Translations, Jerusalem, p 242

Gangadharan R, Nila Rekha P, Vinoth S (2016) Assessment of ground-
water vulnerability mapping using AHP method in coastal water-
shed of shrimp farming area. Arab J Geosci 9: 107. https​://doi.
org/10.1007/s1251​7-015-2230-8

Gemitzi A, Petalas C, Tsihrintzis VA, Pisinaras V (2006) Assessment 
of groundwater vulnerability to pollution: a combination of 
GIS, fuzzy logic and decision making techniques. Environ Geol 
49:653–673

Gibbs RJ (1970) Mechanisms controlling world water chemistry. Sci-
ence 170:1088–1090

Giggenbach WF (1988) Geothermal solute equilibria. Derivation 
of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 
52(12):2749–2765

Gilbert RO (1987) Statistical methods for environmental pollution 
monitoring. Van Nostrand Reinhold, New York

Giles BD, Flocas AA (1984) Air temperature variation in Greece, Part-
I: persistence, trend and fluctuations. Int J Climatol 4:531–539

Giri S, Singh G, Gupta SK, Jha VN, Tripathi RM (2010) An evalua-
tion of metal contamination in surface and groundwater around 
a proposed uranium mining site, Jharkhand, India. Mine Water 
Environ 29(3):225–234

Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, 
Allen DM, Zhou Y (2010) Groundwater sustainability strategies. 
Nat Geosci 3:378–379

Gogu RC, Dassargues A (2000) Current trends and future challenges 
in groundwater vulnerability assessment using overlay and index 
methods. Environ Geol 39(6):549–559

Goldscheider N, Klute M, Sturm S, Hotzl H (2000) The PI method—
a GIS-based approach to mapping groundwater vulnerability 
with special consideration of karst aquifers. Z Angew Geol 
46(3):157–166

Gong X, Richman MB (1995) On the application of cluster analysis to 
growing season precipitation data in North America East of the 
Rockies. J Clim 8:897–931

Goodchild MF, Parks BO, Steyaert LT (eds) (1993) Environmental 
modeling with GIS. Oxford University Press, New York

Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and 
perspectives. Geoderma 89:1–45

Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J 
(2005) Geostatistical modeling of the spatial variability of arse-
nic in groundwater of southeast Michigan. Water Resour Res 
41:W07013. https​://doi.org/10.1029/2004W​R0037​05

Gorgij AD, Kisi O, Moghaddam AA, Taghipour A (2017) Groundwater 
quality ranking for drinking purposes, using the entropy method 
and the spatial autocorrelation index. Environ Earth Sci 76:269. 
https​://doi.org/10.1007/s1266​5-017-6589-6

Güler C, Thyne GD (2004a) Hydrologic and geologic factors con-
trolling surface and groundwater chemistry in Indian Wells-
Owens Valley area, southeastern California, USA. J Hydrol 
285(1–4):177–198

Güler C, Thyne GD (2004b) Delineation of hydrochemical facies dis-
tribution in a regional groundwater system by means of fuzzy 
c-means clustering. Water Resour Res 40(12):W12503. https​://
doi.org/10.1029/2004W​R0032​99

Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of 
graphical and multivariate statistical methods for classification 
of water chemistry data. Hydrogeol J 10(4):455–474

Güler C, Kurt MA, Alpaslan M, Akbulut C (2012) Assessment of the 
impact of anthropogenic activities on the groundwater hydrology 
and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using 
fuzzy clustering, multivariate statistics and GIS techniques. J 
Hydrol 414–415:435–451

Güler C, Thyne GD, Tağa H, Yıldırım Ü (2017) Processes governing 
alkaline groundwater chemistry within a fractured rock (ophi-
olitic mélange) aquifer underlying a seasonally inhabited head-
water area in the Aladağlar Range (Adana, Turkey). Geofluids. 
https​://doi.org/10.1155/2017/31539​24 (article ID 3153924)

Gupta A, Kamble T, Machiwal D (2017) Comparison of ordinary and 
Bayesian kriging techniques in depicting rainfall variability in 
arid and semi-arid regions of northwest India. Environ Earth Sci 
76:512. https​://doi.org/10.1007/s1266​5-017-6814-3

Gurdak JJ, McMahon PB, Bruce BW (2012) Vulnerability of ground-
water quality to human activity and climate change and vari-
ability, high plains aquifer, USA. In: Treidel H, Martin-Bordes 
JL, Gurdak JJ (eds) Climate Change effects on groundwater 
resources—a global synthesis of findings and recommendations. 
Taylor & Francis Group, London, pp 145–168

Gurnell AM, Montgomery DR (eds) (2000) Hydrological applications 
of GIS. Wiley, Chichester, p 176

Haan CT (1977) Statistical methods in hydrology. Iowa State Univer-
sity Press, Iowa

Hanh TM, Sthiannopkao P, The Ba S, D. and Kim K-W (2011) Devel-
opment of water quality indexes to identify pollutants in Viet-
nam’s surface water. J Environ Eng ASCE 137(4):273–283

Hardy A (1996) On the number of clusters. Comput Stat Data Anal 
23:83–96

Hartigan A (1975) Clustering algorithms. Wiley, New York
Hassan MM, Atkins PJ (2007) Arsenic risk mapping in Bangladesh: A 

simulation technique of cokriging estimation from regional count 
data. J Environ Sci Health Part A Toxic/Hazard Substan Environ 
Engin 42(12):1719–1728

Helsel DR, Frans LM (2006) Regional Kendall test for trend. Environ 
Sci Technol 40(13):4066–4073

https://doi.org/10.1007/s12517-015-2230-8
https://doi.org/10.1007/s12517-015-2230-8
https://doi.org/10.1029/2004WR003705
https://doi.org/10.1007/s12665-017-6589-6
https://doi.org/10.1029/2004WR003299
https://doi.org/10.1029/2004WR003299
https://doi.org/10.1155/2017/3153924
https://doi.org/10.1007/s12665-017-6814-3


Environmental Earth Sciences (2018) 77:681	

1 3

Page 25 of 30  681

Helstrup T, Jørgensen NO, Banoeng-Yakubo B (2007) Investigation 
of hydrochemical characteristics of groundwater from the Creta-
ceous-Eocene limestone aquifer in southern Ghana and southern 
Togo using hierarchical cluster analysis. Hydrogeol J 15:977–989

Hem JD (1970) Study and interpretation of the chemical characteristics 
of natural water, 2nd edition, United States Geological Survey 
Water-Supply Paper 1473, Washington DC

Hem JD (1985) Study and Interpretation of the chemical characteristics 
of natural water. 3rd edition, United States Geological Survey 
Water-Supply Paper 2254, Washington DC

Horton RK (1965) An index number system for rating water quality. J 
Water Pollut Control Fed 37(3):300–306

Hosseini SM, Mahjouri N (2014) Developing a fuzzy neural network-
based support vector regression (FNN-SVR) for regionalizing 
nitrate concentration in groundwater. Environ Monit Assess 
186:3685–3699

Hotelling H (1936) Relations between two sets of variates. Biometrika 
28:312–377

Hoyer BE, Hallberg GR (1991) Ground water vulnerability regions of 
iowa, special map 11. Iowa Department of Natural Resources, 
Iowa City

Hudak PF (2000a) Sulfate and chloride concentrations in Texas aquifer. 
Environ Int 26:55–61

Hudak PF (2000b) Regional trends in nitrate content of Texas ground-
water. J Hydrol 228:37–47

Hudak PF (2001) Water hardness and sodium trends in Texas aquifers. 
Environ Monit Assess 68:177–185

Iskandar I, Koike K (2011) Distinguishing potential sources of arsenic 
released to groundwater around a fault zone containing a mine 
site. Environ Earth Sci 63:595–608

Iskandar I, Koike K, Sendjaja P (2012) Identifying groundwater arsenic 
contamination mechanisms in relation to arsenic concentrations 
in water and host rocks. Environ Earth Sci 65:2015–2026

Istok JD, Cooper RM (1988) Geostatistics applied to groundwater 
contamination. III: global estimates. J Environ Engin ASCE 
111(2):915–928

Istok JD, Rautman CA (1996) Probabilistic assessment of ground-
water contamination: 2. Results of case study. Ground Water 
34(6):1050–1064

Istok JD, Smyth JD, Flint FL (1993) Multivariate geostatistical analysis 
of ground-water contamination: a case history. Ground Water 
31(1):63–74

Izenman AJ (2013) Modern multivariate statistical techniques: regres-
sion, classification, and manifold learning, 2nd edn. Springer, 
New York

Jacobs J, Testa S (2004) Overview of chromium (VI) in the environ-
ment: background and history. In: Guertin J, Jacobs J, Avakian 
C (eds) Chromium (VI) handbook. CRC Press, New York. 
http://www.engr.uconn​.edu/~bahol​men/docs/ENVE2​90W/Natio​
nal%20Chr​omium​%20Fil​es%20Fro​m%20Luk​e/Cr(VI)%20Han​
dbook​/L1608​_C01.pdf. Accessed 21 June 2017

Jamshidzadeh Z, Barzi MT (2018) Groundwater quality assessment 
using the potability water quality index (PWQI): a case in the 
Kashan plain, Central Iran. Environ Earth Sci 77:59. https​://doi.
org/10.1007/s1266​5-018-7237-5

Jang C-S (2013) Use of multivariate indicator kriging methods for 
assessing groundwater contamination extents for irrigation. Envi-
ron Monit Assess 185:4049–4061

Jang C-S, Liu C-W, Lu KL, Lin CC (2007) Delimitation of arsenic-
contaminated groundwater using risk-based indicator approaches 
around blackfoot disease hyperendemic areas of southern Tai-
wan. Environ Monit Assess 134:293–304

Jang C-S, Chen C-F, Liang C-P, Chen J-S (2016) Combining ground-
water quality analysis and a numerical flow simulation for spa-
tially establishing utilization strategies for groundwater and sur-
face water in the Pingtung Plain. J Hydrol 533:541–556

Javadi S, Hashemy SM, Mohammadi K, Howard KWF, Neshat A 
(2017) Classification of aquifer vulnerability using K-means 
cluster analysis. J Hydrol 549:27–37

Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwa-
ter management and development by integrated remote sensing 
and geographic information systems: prospects and constraints. 
Water Resour Manag 21(2):427–467

Johnson RA, Wichern DW (1992) Applied multivariate statistical 
analysis, 3rd edn. Prentice-Hall International, Englewood Cliffs, 
p 642

Jones AL, Smart PL (2005) Spatial and temporal changes in the struc-
ture of groundwater nitrate concentration time series (1935–
1999) as demonstrated by autoregressive modeling. J Hydrol 
310:201–215

Journel A (1974) Geostatistics for conditional simulation of orebodies. 
Econ Geol 69(5):673–687

Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic 
Press, London, p 600

Jovein EB, Hosseini SM (2017) Predicting saltwater intrusion into 
aquifers in vicinity of deserts using spatio-temporal kriging. 
Environ Monit Assess 189:81. https​://doi.org/10.1007/s1066​
1-017-5795-8

Kagan RL (1967) Some problems relative to the interpretation of rain-
fall data (in Russian). Trudy GGO 208:64–75

Kallio MP, Mujunen SP, Hatzimihalis G, Koutoufides P, Minkkinen 
P, Wilki PJ, Connor MA (1999) Multivariate data analysis of 
key pollutants in sewage samples: a case study. Anal Chim Acta 
393(1–3):181–191

Kaown D, Hyun Y, Bae G-O, Oh CW, Lee K-K (2012) Evaluation of 
spatio-temporal trends of groundwater quality in different land 
uses using Kendall test. Geosci J 16(1):65–75

Karami S, Madani H, Katibeh H, Marj AF (2018) Assessment and 
modeling of the groundwater hydrogeochemical quality param-
eters via geostatistical approaches. Appl Water Sci 8:23. https​://
doi.org/10.1007/s1320​1-018-0641-x

Karanth KR (1987) Ground water assessment: development and man-
agement. Tata McGraw-Hill Publishing Company Limited, New 
Delhi, p 720

Kavouri K, Plagnes V, Tremoulet J, Dorfliger N, Rejiba F, Marchet 
P (2011) PaPRIKa: a method for estimating karst resource and 
source vulnerability—application to the Ouysse karst system 
(southwest France). Hydrogeol J 19:339–353

Kazakis N, Voudouris KS (2015) Groundwater vulnerability and pol-
lution risk assessment of porous aquifers to nitrate: modifying 
the DRASTIC method using quantitative parameters. J Hydrol 
525:13–25

Kazakis N, Kantiranis N, Voudouris KS, Mitrakas M, Kaprara E, 
Pavlou A (2015) Geogenic Cr oxidation on the surface of mafic 
minerals and the hydrogeological conditions influencing hexava-
lent chromium concentrations in groundwater. Sci Total Environ 
514:224–238

Kazakis N, Kantiranis N, Kalaitzidou K, Kaprara Ε, Mitrakas M, 
Frei R, Vargemezis G, Tsourlos P, Zouboulis A, Filippidis A 
(2017) Origin of hexavalent chromium in groundwater: the 
example of Sarigkiol Basin, Northern Greece. Sci Total Environ 
593–594:552–566

Kazakis N, Spiliotis M, Voudouris K, Pliakas FK, Papadopoulos B 
(2018a) A fuzzy multicriteria categorization of the GALDIT 
method to assess seawater intrusion vulnerability of coastal 
aquifers. Sci Total Environ 621:552–566

Kazakis N, Chalikakis K, Mazzilli N, Ollivier C, Manakos A, Vou-
douris K (2018b) Management and research strategies of karst 
aquifers in Greece: Literature overview and exemplification 
based on hydrodynamic modelling and vulnerability assessment 
of a strategic karst aquifer. Sci Total Environ 643:592–609

Kendall MG (1973) Time series. Charles Griffin and Co. Ltd., London

http://www.engr.uconn.edu/~baholmen/docs/ENVE290W/National%20Chromium%20Files%20From%20Luke/Cr(VI)%20Handbook/L1608_C01.pdf
http://www.engr.uconn.edu/~baholmen/docs/ENVE290W/National%20Chromium%20Files%20From%20Luke/Cr(VI)%20Handbook/L1608_C01.pdf
http://www.engr.uconn.edu/~baholmen/docs/ENVE290W/National%20Chromium%20Files%20From%20Luke/Cr(VI)%20Handbook/L1608_C01.pdf
https://doi.org/10.1007/s12665-018-7237-5
https://doi.org/10.1007/s12665-018-7237-5
https://doi.org/10.1007/s10661-017-5795-8
https://doi.org/10.1007/s10661-017-5795-8
https://doi.org/10.1007/s13201-018-0641-x
https://doi.org/10.1007/s13201-018-0641-x


	 Environmental Earth Sciences (2018) 77:681

1 3

681  Page 26 of 30

Ketata M, Gueddari M, Bouhlila R (2012) Use of geographical infor-
mation system and water quality index to assess groundwater 
quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). 
Arab J Geosci 5:1379–1390

Khan HH, Khan A, Ahmed S, Perrin J (2011) GIS-based impact assess-
ment of land-use changes on groundwater quality: study from 
a rapidly urbanizing region of South India. Environ Earth Sci 
63:1289–1302

Kim TH, Chung SY, Park N, Hamm S-Y, Lee SY, Kim B-W (2012) 
Combined analyses of chemometrics and kriging for identifying 
groundwater contamination sources and origins at the Masan 
coastal area in Korea. Environ Earth Sci 67(5):1373–1388

Kissel DE, Bidwell OW, Kientz JF (1982) Leaching classes in Kansas 
Soils. Bulletin No. 641. Kansas State University, Manhattan

Koh E-H, Lee SH, Kaown D, Moon HS, Lee E, Lee K-K, Kang BR 
(2017) Impacts of land use change and groundwater management 
on long-term nitrate-nitrogen and chloride trends in groundwater 
of Jeju Island, Korea. Environ Earth Sci, 76: 176. https​://doi.
org/10.1007/s1266​5-017-6466-3

Konikow L, Kendy L (2005) Groundwater depletion: a global problem. 
Hydrogeol J 13(1):317–320

Kumar S, Machiwal D, Dayal D (2017) Spatial modeling of rainfall 
trends using satellite datasets and geographic information sys-
tem. Hydrol Sci J 62(10):1636–1653

Kurumbein WC, Graybill FA (1965) An introduction to statistical mod-
els in geology. McGraw-Hill, New York

Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multi-
component statistical analysis in hydrogeological environmental 
research. Water Res 38:1862–1872

Langelier W, Ludwig H (1942) Graphical methods for indicating 
the mineral character of natural waters. J Am Water Assoc 
34:335–352

Leite NK, Stolberg J, da Cruz SP, de Tavela OA, Safanelli JL, Mar-
chini HR, Exterkoetter R, Leite GMC, Krusche AV, Johnson MS 
(2018) Hydrochemistry of shallow groundwater and springs used 
for potable supply in Southern Brazil. Environ Earth Sci 77:80. 
https​://doi.org/10.1007/s1266​5-018-7254-4

Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of 
groundwater pollution and associated health risk: a case study 
in an industrial park, northwest China. Environ Geochem Health 
36(4):693–712

Lin CY, Abdullah MH, Praveena SM, Yahaya AHB, Musta B (2012) 
Delineation of temporal variability and governing factors influ-
encing the spatial variability of shallow groundwater chemistry 
in a tropical sedimentary island. J Hydrol 432–433:26–42

Lo CP, Yeung AKW (2003) Concepts and techniques of geographic 
information systems. Prentice-Hall of India Pvt. Ltd., New Delhi, 
p 492

Loftis JC (1996) Trends in groundwater quality. Hydrol Process 
10:335–355

Lopez B, Baran N, Bourgine B (2015) An innovative procedure to 
assess multi-scale temporal trends in groundwater quality: exam-
ple of the nitrate in the Seine-Normandy basin, France. J Hydrol 
522:1–10

Lu L, Kashiwaya K, Koike K (2016) Geostatistics-based regional 
characterization of groundwater chemistry in a sedimentary rock 
area with faulted setting. Environ Earth Sci 75:829. https​://doi.
org/10.1007/s1266​5-016-5619-0

Lumb A, Sharma TC, Bibeault J-F (2011) A review of genesis and 
evolution of water quality index (WQI) and some future direc-
tions. Water Qual Exposure Health 3:1–14

Machiwal D, Jha MK (2006) Time series analysis of hydrologic data 
for water resources planning and management: a review. J Hydrol 
Hydromech 54(3):237–257

Machiwal D, Jha MK (2010) Tools and techniques for water quality 
interpretation. In: Krantzberg G, Tanik A, Antunes do Carmo 

JS, Indarto A, Ekdal A (eds) Advances in water quality control. 
Scientific Research Publishing, Inc., USA, pp 211–252

Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory 
and practice. Springer, the Netherlands and Capital Publishing 
Company, New Delhi, p 303

Machiwal D, Jha MK (2014) Role of geographical information system 
for water quality evaluation. In: Nielson D (ed) Geographic infor-
mation systems (GIS): techniques, applications and technologies. 
Nova Science Publishers, New York, USA, pp 217–278

Machiwal D, Jha MK (2015) Identifying sources of groundwater 
contamination in a hard-rock aquifer system using multivariate 
statistical analyses and GIS-based geostatistical modeling tech-
niques. J Hydrol Reg Stud 4(A):80–110

Machiwal D, Jha MK, Mal BC (2011) GIS-based assessment and char-
acterization of groundwater quality in a hard-rock hilly terrain of 
Western India. Environ Monit Assess 174:645–663

Machiwal D, Jha MK, Singh VP, Mohan C (2018) Assessment and 
mapping of groundwater vulnerability to pollution: current 
status and challenges. Earth Sci Rev 185:901–927. https​://doi.
org/10.1016/j.earsc​irev.2018.08.009

MacQueen J (1967) Some methods for classification and analysis of 
multivariate observations. In: Le Cam L.M, Neyman J (eds). In: 
Proceedings of the Fifth Berkeley symposium on mathematical 
statistics and probability, vol 1, University of California Press, 
Berkeley, California, pp 281–297

Magesh NS, Chandrasekar N, Elango L (2016) Occurrence and distri-
bution of fluoride in the groundwater of the Tamiraparani River 
basin, South India: a geostatistical modeling approach. Environ 
Earth Sci 75:1483. https​://doi.org/10.1007/s1266​5-016-6293-y

Mair A, El-Kadi AI (2013) Logistic regression modeling to assess 
groundwater vulnerability to contamination in Hawaii, USA. J 
Contam Hydrol 153:1–23

Malapati A, Bronson KF, Booker JD, Hudnall WH, Schubert AM 
(2011) Soil profile sulfate in irrigated Southern High Plains 
cotton fields and Ogallala aquifer. J Soil Water Conserv 
66(5):287–294

Margat J (1968) Groundwater vulnerability maps. Conception-esti-
mation-mapping. EEC Institut Europeen de l’ Eau, Paris (in 
French)

Marko K, Al-Amri NS, Elfeki AMM (2014) Geostatistical analysis 
using GIS for mapping groundwater quality: case study in the 
recharge area of Wadi Usfan, western Saudi Arabia. Arab J Geo-
sci 7(12):5239–5252

Masoud AA, Koike K, Mashaly HA, Gergis F (2016) Spatio-temporal 
trends and change factors of groundwater quality in an arid area 
with peat rich aquifers: Emergence of water environmental prob-
lems in Tanta District, Egypt. J Arid Environ 124:360–376

Masoud AA, El-Horiny MM, Atwia MG, Gemail KS, Koike K (2018) 
Assessment of groundwater and soil quality degradation using 
multivariate and geostatistical analyses, Dakhla Oasis, Egypt. J 
Afr Earth Sci 142:64–81

Matheron G (1965) Lee Variables Regionalisées et leur Estimation. 
Masson, Paris, p 306

Matheron G (1973) The intrinsic random functions and their applica-
tions. Adv Appl Prob 5:439–468

McBride GB (2005) Using statistical methods for water quality man-
agement: issues, problems and solutions. Wiley, New York

McCuen RH (2003) Modeling hydrologic change: statistical methods. 
Lewis Publishers, CRC Press LLC, Florida

Melloul A, Collin M (1992) The ‘principal components’ statistical 
method as a complementary approach to geochemical methods 
in water quality factor identification; Application to the Coastal 
Plain aquifer of Israel. J Hydrol 140:49–73

Melloul AJ, Collin M (1998) A proposed index for aquifer water quality 
assessment: the case of Israel’s Sharon region. J Environ Manag 
54:131–142

https://doi.org/10.1007/s12665-017-6466-3
https://doi.org/10.1007/s12665-017-6466-3
https://doi.org/10.1007/s12665-018-7254-4
https://doi.org/10.1007/s12665-016-5619-0
https://doi.org/10.1007/s12665-016-5619-0
https://doi.org/10.1016/j.earscirev.2018.08.009
https://doi.org/10.1016/j.earscirev.2018.08.009
https://doi.org/10.1007/s12665-016-6293-y


Environmental Earth Sciences (2018) 77:681	

1 3

Page 27 of 30  681

Mendizabal I, Baggelaar PK, Stuyfzand PJ (2012) Hydrochemical 
trends for public supply well fields in The Netherlands (1898–
2008), natural backgrounds and upscaling to groundwater bod-
ies. J Hydrol 450–451:279–292

Mendoza GA, Martins H (2006) Multi-criteria decision analysis in 
natural resource management: a critical review of methods and 
new modelling paradigms. For Ecol Manag 230:1–22

Meng SX, Maynard JB (2001) Use of statistical analysis to formulate 
conceptual models of geochemical behavior: Water chemical 
data from the Botucatu aquifer in São Paulo state, Brazil. J 
Hydrol 250:78–97

Michalak AM, Kitanidis PK (2004) Estimation of historical ground-
water contaminant distribution using the adjoint state method 
applied to geostatistical inverse modeling. Water Resour Res 
40:W08302. https​://doi.org/10.1029/2004W​R0032​14

Mirzaei R, Sakizadeh M (2016) Comparison of interpolation 
methods for the estimation of groundwater contamination in 
Andimeshk-Shush Plain, Southwest of Iran. Environ Sci Pollut 
Res 23(3):2758–2769

Mohammadi K, Niknam R, Majd VJ (2009) Aquifer vulnerability 
assessment using GIS and fuzzy system: a case study in Teh-
ran-Karaj aquifer. Iran Environ Geol 58:437–446

Molina M, Aburto FN, Calderan RL, Cazanga M, Escudey M (2009) 
Trace element composition of selected fertilizers used in Chile: 
phosphorus fertilizers as a source of long-term soil contamina-
tion. Soil Sediment Contam 18:497–511

Moore JS (1988) SEEPPAGE: a system for early evaluation of pol-
lution potential of agricultural ground water environments. 
Geology Technical Note 5 (Revision 1), US Department of 
Agriculture, Soil Conservation Service, Washington, DC

Mouser PJ, Hession WC, Rizzo DM, Gotelli NJ (2005) Hydrology 
and geostatistics of a Vermont, USA Kettlehole Peatland. J 
Hydrol 301:250–266

Myers DE, Begovich CL, Butz TR, Kane VE (1982) Variogram 
models for regional groundwater geochemical data. Math Geol 
14(6):629–644

Nadiri AA, Sedghi Z, Khatibi R, Gharekhani M (2017) Mapping 
vulnerability of multiple aquifers using multiple models and 
fuzzy logic to objectively derive model structures. Sci Total 
Environ 593–594:75–90

Narany TS, Ramli MF, Aris AZ, Sulaiman WNA, Fakharian K (2014) 
Spatiotemporal variation of groundwater quality using inte-
grated multivariate statistical and geostatistical approaches in 
Amol-Babol Plain, Iran. Environ Monit Assess 186:5797–5815

Nas B, Berktay A (2010) Groundwater quality mapping in urban 
groundwater using GIS. Environ Monit Assess 160:215–227

Nasiri F, Maqsood I, Huang G, Fuller N (2007) Water quality index: 
A fuzzy river-pollution decision support expert system. J Water 
Resour Plan Manag ASCE 133(2):95–105

National Research Council (1993) Groundwater vulnerability assess-
ment, contaminant potential under conditions of uncertainty. 
National Academy Press, Washington DC

Nematollahi MJ, Ebrahimi P, Razmara M, Ghasemi A (2016) 
Hydrogeochemical investigations and groundwater quality 
assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. 
Environ Monit Assess 188:2. https​://doi.org/10.1007/s1066​
1-015-4968-6

Niu B, Loáiciga HA, Wang Z, Zhan FB, Hong S (2014) Twenty years of 
global groundwater research: a science citation index expanded-
based bibliometric survey (1993–2012). J Hydrol 519:966–975

Nobre RCM, Rotunno Filho OC, Mansur WJ, Nobre MMM, Cosenza 
CAN (2007) Groundwater vulnerability and risk mapping 
using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 
94:277–292

Noshadi M, Ghafourian A (2016) Groundwater quality analysis using 
multivariate statistical techniques (case study: Fars province, 

Iran). Environ Monit Assess 188:419. https​://doi.org/10.1007/
s1066​1-016-5412-2

Nriagu JO, Nieboer E (1988) Chromium in the natural and human 
environments. Wiley-Interscience, New York

Nshagali BG, Nouck PN, Meli’i JL, Arétouyap Z, Manguelle-Dicoum 
E (2015) High iron concentration and pH change detected using 
statistics and geostatistics in crystalline basement equatorial 
region. Environ Earth Sci 73(11):7135–7145

Ochsenkühn M, Kontoyannakos J, Ochsenkühn-Petropulu M (1997) 
A new approach to a hydrochemical study of groundwater flow. 
J Hydrol 194:64–75

Oleson SG, Carr JR (1990) Correspondence analysis of water quality 
data: Implications for fauna deaths at Stillwater Lakes, Neveda. 
Math Geol 22:665–698

Otto M (1998) Multivariate methods. In: Kellner R, Mermet JM, Otto 
M, Widmer HM (eds) Analytical chemistry. Wiley-VCH, Wein-
heim, p 916

Pacheco FAL (1998) Finding the number of natural clusters in ground-
water data sets using the concept of equivalence class. Comput 
Geosci 24(1):7–15

Pacheco FAL, Pires LMGR, Santos RMB, Sanches Fernandes LF 
(2015) Factor weighting in DRASTIC modeling. Sci Total Envi-
ron 505:474–486

Panagopoulos G, Antonakos A, Lambrakis N (2006) Optimization of 
the DRASTIC method for groundwater vulnerability assessment 
via the use of simple statistical methods and GIS. Hydrogeol J 
14:894–911

Paradis D, Vigneault H, Lefebvre R, Savard MM, Ballard J-M, Qian 
B (2016) Groundwater nitrate concentration evolution under 
climate change and agricultural adaptation scenarios: Prince 
Edward Island, Canada. Earth Syst Dyn 7(1):183–202

Park S-C, Yun S-T, Chae G-T, Yoo I-S, Shin K-S, Heo C-H, Lee 
S-K (2005) Regional hydrochemical study on salinization of 
coastal aquifers, western coastal area of South Korea. J Hydrol 
313:182–194

Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE: a 
computer program for geochemical calculations. Water resources 
investigations report 80–96, United States Geological Survey, 
NTIS Technical Report, PB81-167801, Springfield, Virginia 
22161, p 210

Parkhurst DL, Plummer LN, Thorstenson DC (1982) BALANCE: a 
computer program for calculating mass transfer for geochemical 
reactions in ground water. Water resources investigations Report 
82–14, United States Geological Survey, NTIS Technical Report, 
PB82-255902, Springfield, Virginia 22161, p 27

Passarella G, Vurro M, D’Agostino V, Giuliano G, Barcelona MJ 
(2002) A probabilistic methodology to assess the risk of ground-
water quality degradation. Environ Monit Assess 79:57–74

Pebesma EJ, de Kwaadsteniet JW (1997) Mapping groundwater quality 
in the Netherlands. J Hydrol 200:364–386

Pételet-Giraud E, Dörfliger N, Crochet P (2000) RISKE: method 
d’évaluation multicritère de la vulnérabilité des aquifers 
karstiques. Application aux systèmes des Fontanilles et Cent-
Fonts (Hérault, Sud de la France) [Risk: methodology for multic-
riteria evaluation of the vulnerability of karst aquifers. Applica-
tion to systems Fontanilles and Cent-Fonts Fontanilles (Herault, 
southern France]. Hydrogéologie 4:71–88

Petrişor A-I, Ianoş I, Iurea D, Văidianu MN (2012) Applications of 
principal component analysis integrated with GIS. Proc Environ 
Sci 14:247–256

Pettyjohn WA, Savoca M, Self D (1991) Regional assessment of aquifer 
vulnerability and sensitivity in the conterminous United States. 
Report EPA-600/2–91/043, United States Environmental Protec-
tion Agency, Ada, Oklahoma

Piper AM (1944) A graphical procedure in the geochemical interpreta-
tion of water analysis. Am Geophysi Union Trans 25:914–928

https://doi.org/10.1029/2004WR003214
https://doi.org/10.1007/s10661-015-4968-6
https://doi.org/10.1007/s10661-015-4968-6
https://doi.org/10.1007/s10661-016-5412-2
https://doi.org/10.1007/s10661-016-5412-2


	 Environmental Earth Sciences (2018) 77:681

1 3

681  Page 28 of 30

Pique A, Grandia F, Canals A (2010) Processes releasing arsenic to 
groundwater in the Caldes de Malavella geothermal area, NE 
Spain. Water Res 44:5618–5630

Pirkle FL, Howell JA, Wecksung GW, Duran BS, Stablein NK (1984) 
An example of cluster analysis applied to a large geologic data 
set: aerial radiometric data from Copper Mountain, Wyoming. 
Math Geol 16(5):479–498

Plummer LN, Prestemon EC, Parkhurst DL (1991) An Interactive Code 
(NETPATH) for Modeling Net Geochemical Reactions along a 
Flow Path. Water-Resources Investigations Report 94-4078, 
United States Geological Survey, Reston, Virginia 22092, p 227

Postma D, Larsen F, Thai NT, Pham TKT, Jakobsen R, Nhan PQ, 
Long TV, Viet PH, Murray AS (2012) Groundwater arsenic con-
centrations in Vietnam controlled by sediment age. Nat Geosci 
5(9):656–661

Prati L, Pavanello R, Pesarin F (1971) Assessment of surface water 
quality by a single index of pollution. Water Res 5:741–751

Rainwater FH, Thatcher LL (1960) Methods for Collection and Analy-
sis of Water Samples. 1st edition, United States Geological Sur-
vey Water-Supply Paper 1454, Washington, DC

Ramakrishnaiah CR, Sadashivaiah C, Ranganna G (2009) Assessment 
of water quality index for the groundwater in Tumkur taluk, Kar-
nataka state, India. E J Chem 6(2):523–530

Ramesh S, Sumukaran N, Murugesan AG, Rajan MP (2010) An inno-
vative approach of drinking water quality index—a case study 
from southern Tamil Nadu, India. Ecol Ind 10:857–868

Ramos Leal JA, Barrón Romero LE, Sandoval Montes I (2004) Com-
bined use of aquifer contamination risk maps and contamination 
indexes in the design of water quality monitoring networks in 
Mexico. Geofísica Internacional 43(4):641–650

Rao SN, Rao SP, Varma D (2013) Spatial variations of groundwater 
vulnerability using cluster analysis. J Geol Soc India 81:685–697

Rautman CA, Istok JD (1996) Probabilistic assessment of ground-
water contamination: 1. Geostatistical framework. Ground Water 
34(5):899–909

Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of mul-
tivariate statistical techniques in hydrogeochemical studies: an 
example from Karnataka, India. Water Res 36:2437–2442

Ribeiro L, Macedo ME (1995) Application of multivariate statistics, 
trend- and cluster analysis to groundwater quality in the Tejo 
and Sado aquifer. In: Proceedings of the Prague conference on 
groundwater quality: remediation and protection. IAHS Publica-
tion No. 225, Prague, pp 39–47

Riley JA, Steinhorst RK, Winter GV, Williams RE (1990) Statistical 
analysis of the hydrochemistry of ground waters in Columbia 
River basalts. J Hydrol 119:245–262

Rouhani S, Hall TJ (1988) Geostatistical schemes for groundwater 
sampling. J Hydrol 103:85–102

Rupert MG (2001) Calibration of the DRASTIC ground water vulner-
ability mapping method. Ground Water 39(4):625–630

Sacha L, Fleming D, Wysocki H (1987) Survey of pesticides in selected 
areas having vulnerable ground waters in Washington State. 
EPA/910/9–87/169, United States Environmental Protection 
Agency, Region X, Seattle, Washington

Sadat-Noori SM, Ebrahimi K, Liaghat AM (2014) Groundwater qual-
ity assessment using the water quality index and GIS in Saveh-
Nobaran aquifer, Iran. Environ Earth Sci 71:3827–3843

Saeedi M, Abessi O, Sharifi F, Meraji H (2010) Development of 
groundwater quality index. Environ Monit Assess 163:327–335

Salas JD, Delleur JW, Yevjevich V, Lane WL (1980) Applied mod-
eling of hydrologic time series. Water Resources Publications, 
Littleton

Saleh A, Al-Ruwaih F, Shehata M (1999) Hydrogeochemical processes 
operating within the main aquifers of Kuwait. J Arid Environ 
42:195–209

Salman AS, Zaidi FK, Hussein MT (2015) Evaluation of groundwater 
quality in northern Saudi Arabia using multivariate analysis and 
stochastic statistics. Environ Earth Sci 74(12):7769–7782

Sânchez-Martos F, Jiménez-Espinosa R, Pulido-Bosch A (2001) Map-
ping groundwater quality variables using PCA and geostatistics: 
a case study of Bajo Andarax, southeastern Spain. Hydrol Sci J 
46(2):227–242

Sara MN, Gibbons R (1991) Organization and analysis of water quality 
data. In: Nielsen DM (ed) Practical handbook of ground-water 
monitoring. Lewis Publishers, Michigan, pp 541–588

Scanlon BR, Reedy RC, Bronson KF (2008) Impacts of landuse change 
on nitrogen cycling archived in semiarid unsaturated zone nitrate 
profiles, Southern High Plains, Texas. Environ Sci Technol 
42(20):7566–7572

Scanlon BR, Reedy RC, Gates JB (2010) Effects of irrigated agro-
ecosystems: 1. Quantity of soil water and groundwater in the 
Southern High Plains, Texas. Water Resour Res. https​://doi.
org/10.1029/2009W​R0084​27

Schaefer JA, Mayor SJ (2007) Geostatistics reveal the scale of habitat 
selection. Ecol Model 209(2–4):401–406

Schoeller H (1955) Geochimie des eaux souterraines. Rev de l’Inst 
Francais du Petrole Paris 10(3):181–213

Sener E, Davraz A (2013) Assessment of groundwater vulnerability 
based on a modified DRASTIC model, GIS and an analytic hier-
archy process (AHP) method: The case of Egirdir Lake basin 
(Isparta, Turkey). Hydrogeol J 21:701–714

Şener Ş, Şener E, Davraz A (2017) Evaluation of water quality using 
water quality index (WQI) method and GIS in Aksu River (SW-
Turkey). Sci Total Environ 584–585:131–144

Sethy SN, Syed TH, Kumar A (2017) Evaluation of groundwater qual-
ity in parts of the Southern Gangetic Plain using water quality 
indices. Environ Earth Sci 76:116. https​://doi.org/10.1007/s1266​
5-017-6434-y

Shahin M, Van Oorschot HJL, De Lange SJ (1993) Statistical analysis 
in water resources engineering. A.A. Balkema, Rotterdam

Shirazi SM, Imran HM, Akib S (2012) GIS-based DRASTIC method 
for groundwater vulnerability assessment: a review. J Risk Res 
15(8):991–1011

Siebert S, Burke J, Faures J, Frenken K, Hoogeveen J, Döll P, Portmann 
T (2010) Groundwater use for irrigation—a global inventory. 
Hydrol Earth Syst Sci 14:1863–1880

Skidmore AK, Bijer W, Schmidt K, Kumar L, K (1997) Use of 
remote sensing and GIS for sustainable land management. ITC 
J 3(4):302–315

Smith DG (1990) A better water quality indexing system for rivers and 
streams. Water Res 24(10):1237–1244

Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman 
and Co., San Francisco

Snodgrass MF, Kitanidis PK (1997) A geostatistical approach to con-
taminant source identification. Water Resour Res 33(4):537–546

Soltan ME (1999) Evaluation of groundwater quality in Dakhla Oasis 
(Egyptian Western Desert). Environ Monit Assess 57:157–168

Sorichetta A, Masetti M, Ballabio C, Sterlacchini S (2012) Aquifer 
nitrate vulnerability assessment using positive and negative 
weights of evidence methods, Milan Italy. Comput Geosci 
48:199–210

Sprague LA, Lorenz DL (2009) Regional nutrient trends in streams 
and rivers of the United States, 1993–2003. Environ Sci Technol 
43(10):3430–3435

Stafford DB (ed) (1991) Civil engineering applications of remote sens-
ing and geographic information systems. ASCE, New York

Stamatis G, Parpodis K, Filintas A, Zagana E (2011) Groundwater 
quality, nitrate pollution and irrigation environmental manage-
ment in the Neogene sediments of an agricultural region in cen-
tral Thessaly (Greece). Environ Earth Sci 64:1081–1105

https://doi.org/10.1029/2009WR008427
https://doi.org/10.1029/2009WR008427
https://doi.org/10.1007/s12665-017-6434-y
https://doi.org/10.1007/s12665-017-6434-y


Environmental Earth Sciences (2018) 77:681	

1 3

Page 29 of 30  681

Stambuk-Giljanovic N (1999) Water quality evaluation by index in 
Dalmatia. Water Res 33(16):3423–3440

Steenhuis TS, Pacenka S, Porter KS (1987) MOUSE: a management 
model for evaluation ground water contamination from diffuse 
surface sources aided by computer graphics. Appl Agric Res 
2:277–289

Steinhorst RK, Williams RE (1985) Discrimination of groundwater 
sources using cluster analysis, MANOVA, canonical analysis 
and discriminant analysis. Water Resour Res 21(8):1149–1156

Steube C, Richter S, Griebler C (2009) First attempts towards an inte-
grative concept for the ecological assessment of groundwater 
ecosystems. Hydrogeol J 17(1):23–35

Stiff HA Jr. (1951) The interpretation of chemical water analysis by 
means of patterns. J Pet Technol 3(10):15–17

Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Application of a 
groundwater quality index as an assessment and communication 
tool in agroenvironmental policies: two Portuguese case studies. 
J Hydrol 327:578–591

Stoner JD (1978) Water-Quality Indices for Specific Water Uses. Geo-
logical Survey Circular 770, Washington, DC

Stumpp C, Żurek A, Wachniew P, Gargini A, Gemitzi A, Filippini M, 
Witczak S (2016) A decision tree tool supporting the assessment 
of groundwater vulnerability. Environ Earth Sci 75:1057. https​://
doi.org/10.1007/s1266​5-016-5859-z

Subbarao C, Subbarao NV, Chandu SN (1996) Characterization of 
groundwater contamination using factor analysis. Environ Geol 
28(4):175–180

Suk H, Lee KK (1999) Characterization of a ground water hydrochemi-
cal system through multivariate analysis: clustering into ground 
water zones. Ground Water 37(3):358–366

Sullivan T, Gao Y (2017) Development of a new P3 (Probability, Pro-
tection, and Precipitation) method for vulnerability, hazard, and 
risk intensity index assessments in karst watersheds. J Hydrol 
549:428–451

Sun AY (2007) A robust geostatistical approach to contaminant 
source identification. Water Resour Res 43:W02418. https​://doi.
org/10.1029/2006W​R0051​06

Sutadian AD, Muttil N, Yilmaz AG, Perera BJC (2016) Development 
of river water quality indices—a review. Environ Monit Assess 
188:58. https​://doi.org/10.1007/s1066​1-015-5050-0

Taylor CH, Loftis JC (1989) Testing for trend in lake and ground water 
quality time series. J Am Water Resour Assoc 25(4):715–726

Tennant CB, White ML (1959) Study of the distribution of some geo-
chemical data. Econ Geol 54:1281–1290

Teso RR, Younglove T, Peterson MR, Sheeks DL, Gallavan RE (1988) 
Soil taxonomy and surveys: classification of areal sensitivity to 
pesticide contamination of ground water. J Soil Water Conserv 
43(4):348–352

Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRAS-
TIC: software for specific aquifer vulnerability assessment using 
DRASTIC model and GIS. Environ Model Softw 18(7):645–656

Thurstone LL (1931) Multiple factor analysis. Psychol Rev 38:406–427
Thyne G, Güler C, Poeter E (2004) Sequential analysis of hydro-

chemical data for watershed characterization. Ground Water 
42(5):711–723

Tryon RC (1939) Cluster analysis. Edwards Brothers, Ann Arbor
United Nations Environment Programme (2007) Global drinking water 

quality index development and sensitivity analysis report. United 
Nations Environment Programme, Global Environment Monitor-
ing System/Water Programme

USEPA (1996) Guidance for data quality assessment: practical meth-
ods for data analysis. Quality Assurance Division, EPA QA/G-9, 
version QA96, United States Environmental Protection Agency 
(USEPA), Washington, DC

USEPA (1998) Guidance for Data quality assessment: practical 
methods for data analysis. Quality Assurance Division, EPA 

QA/G-9, version QA97, United States Environmental Protec-
tion Agency (USEPA), Washington, DC

USSL (1954) Diagnosis and improvement of saline and alkaline 
soils. United States Salinity Laboratory (USSL). In: Richards 
LA (ed) Hand Book 60. United States Department of Agricul-
ture (USDA), Washington DC, USA, p 159

Usunoff EJ, Guzman-Guzman A (1989) Multivariate analysis in 
hydrochemistry: an example of the use of factor and corre-
spondence analysis. Ground Water 27(1):27–34

Vadiati M, Asghari-Moghaddam A, Nakhaei M, Adamowski J, 
Akbarzadeh AH (2016) A fuzzy-logic based decision-making 
approach for identification of groundwater quality based on 
groundwater quality indices. J Environ Manag 184:255–270

Van Stempvoort D, Evert L, Wassenaar L (1992) Aquifer Vulnerabil-
ity Index: a GIS compatible method for groundwater vulner-
ability mapping. Can Water Resour J 18:25–37

Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Gan-
thi R, Chidambaram S, Anandhan P, Manivannan R, Vasude-
van S (2010) Application of water quality index for groundwa-
ter quality assessment: Thirumanimuttar sub-basin, Tamilnadu, 
India. Environ Monit Assess 171(1–4):595–609

Venkatramanan S, Chung SY, Kim TH, Kim B-W, Selvam S (2016) 
Geostatistical techniques to evaluate groundwater contamina-
tion and its sources in Miryang City. Korea Environ Earth Sci 
75:994. https​://doi.org/10.1007/s1266​5-016-5813-0

Visser A, Dubus I, Broers HP, Brouyère S, Korcz M, Orban P, 
Goderniaux P, Batlle-Aguilar J, Surdyk N, Amraoui N, Job H, 
Pinault JL, Bierkens M (2009) Comparison of methods for the 
detection and extrapolation of trends in groundwater quality. J 
Environ Monit 11:2030–2043

von der Heide C, Böttcher J, Deurer M, Weymann D, Well R, Dui-
jnisveld WHM (2008) Spatial variability of N2O concentra-
tions and of denitrification-related factors in the surficial 
groundwater of a catchment in Northern Germany. J Hydrol 
360:230–241

Voudouris K, Polemio M, Kazakis N, Sifaleras A (2010) An agricul-
tural decision support system for optimal land use regarding 
groundwater vulnerability. Int J Inf Syst Soc Change 1(4):66–79

Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vul-
nerability. International contributions to hydrogeology, vol 16. 
International Association of Hydrogeologists, Hannover

Wachniew P, Zurek AJ, Stumpp C, Gemitzi A, Gargini A, Filippini M, 
Rozanski K, Meeks J, Kværner J, Witczak S (2016) Toward oper-
ational methods for the assessment of intrinsic groundwater vul-
nerability: a review. Crit Rev Environ Sci Technol 46(9):827–884

Wagenet RJ, Hutson JL (1987) LEACHM: a finite-difference model for 
simulating water, salt, and pesticide movement in the Plant root 
zone, continuum 2. New York State Resources Institute, Cornell 
University, Ithaca

WHO (2017) Guidelines for drinking-water quality: fourth edition 
incorporating the first addendum. World Health Organization, 
Geneva (license: CC BY-NC-SA 3.0 IGO)

Wilcox LV (1955) Classification and use of irrigation water. Circular 
696. United States Department of Agriculture (USDA), Wash-
ington, DC

Williams RE (1982) Statistical identification of hydraulic connections 
between the surface of a mountain and internal mineralized 
sources. Ground Water 20(4):466–478

World Bank (2010) Deep wells and prudence: towards pragmatic action 
for addressing groundwater overexploitation in India. World 
Bank Report No. 51676, Washington, DC

Wunderlin DA, del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, 
de los Angeles BM (2001) Pattern recognition techniques for the 
evaluation of spatial and temporal variations in water quality. A 
case study: Suquía River Basin (Córdoba-Argentina). Water Res 
35(12):2881–2894

https://doi.org/10.1007/s12665-016-5859-z
https://doi.org/10.1007/s12665-016-5859-z
https://doi.org/10.1029/2006WR005106
https://doi.org/10.1029/2006WR005106
https://doi.org/10.1007/s10661-015-5050-0
https://doi.org/10.1007/s12665-016-5813-0


	 Environmental Earth Sciences (2018) 77:681

1 3

681  Page 30 of 30

Wurl J, Mendez-Rodriguez L, Acosta-Vargas B (2014) Arsenic content 
in groundwater from the southern part of the San Antonio-El 
Triunfo mining district, Baja California Sur, Mexico. J Hydrol 
518:447–459

WWAP (World Water Assessment Programme) (2009) United Nations 
World Water Development Report 3, water in a changing world, 
United Nations Educational, Scientific and Cultural Organiza-
tion (UNESCO), Paris, 2009. http://unesd​oc.unesc​o.org/image​
s/0021/00215​6/21564​4e.pdf. Accessed 9 May 2017

WWAP (World Water Assessment Programme) (2012) United Nations 
World Water Development Report 4, Managing Water Under 
Uncertainty and Risk, United Nations Educational, Scientific 
and Cultural Organization (UNESCO), Paris, 2012. http://unesd​
oc.unesc​o.org/image​s/0021/00215​6/21564​4e.pdf. Accessed 9 
May 2017

Yazdanpanah N (2016) Spatiotemporal mapping of groundwater qual-
ity for irrigation using geostatistical analysis combined with a 
linear regression method. Model Earth Syst Environ 2:18. https​
://doi.org/10.1007/s4080​8-015-0071-9

Yevjevich VM (1972) Stochastic processes in hydrology. Water 
Resources Publications, Fort Collins

Yu WH, Harvey CM, Harvey CF (2003) Arsenic in groundwater in 
Bangladesh: a geostatistical and epidemiological framework for 
evaluating health effects and potential remedies. Water Resour 
Res 39(6):1146. https​://doi.org/10.1029/2002W​R0013​27

Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of auto-
correlation on the ability to detect trend in hydrological series. 
Hydrol Process 16:1807–1829

Zakhem BA, Hafez R (2015) Heavy metal pollution index for ground-
water quality assessment in Damascus Oasis, Syria. Environ 
Earth Sci 73(10):6591–6600

Zaporozec A (1972) Graphical interpretation of water-quality data. 
Ground Water 10(2):32–43

Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protec-
tion of carbonate (Karst) aquifers, final report (COST Action 
620). European Commission, Directorate-General XII science, 
research and development, Report EUR 20912, Brussels, p 297

http://unesdoc.unesco.org/images/0021/002156/215644e.pdf
http://unesdoc.unesco.org/images/0021/002156/215644e.pdf
http://unesdoc.unesco.org/images/0021/002156/215644e.pdf
http://unesdoc.unesco.org/images/0021/002156/215644e.pdf
https://doi.org/10.1007/s40808-015-0071-9
https://doi.org/10.1007/s40808-015-0071-9
https://doi.org/10.1029/2002WR001327

	A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection
	Abstract
	Introduction
	Time series modeling of groundwater quality variables
	Components, steps and assumptions of time series analysis
	Normality of groundwater quality variables
	Trends in groundwater quality variables
	Persistence

	Evaluation of groundwater quality data using GIS-integrated multivariate statistical methods
	Application of multivariate statistical methods in groundwater quality studies
	Eigenvector methods: factor analysis vs. principal component analysis
	Cluster analysis
	Discriminant analysis
	Canonical correlation analysis

	Application of geostatistical modeling in groundwater quality evaluation
	Application of hybrid methods for groundwater vulnerability assessment in GIS platform
	GIS-based groundwater quality index
	Water quality index (WQI)
	Groundwater quality index (GWQI) and GIS-based GWQI mapping

	Limitations and research gaps
	Whether time series analysis in hydrogeochemistry has been comprehensively applied?
	Has time series modeling been adequately integrated with GIS?
	Whether all multivariate statistical techniques may adequately be coupled with GIS?
	Have geostatistical-modeling techniques been advanced in mapping groundwater quality variations?
	Is quantitative assessment of groundwater vulnerability more comprehensive than qualitative?
	Does GIS-based groundwater quality index provide consistent evaluation?
	Are different water quality indices steady and comparable over spatial and temporal scales?

	Perspectives on future research needs
	Concluding remarks
	Acknowledgements 
	References


