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Abstract
Toroud Watershed in Semnan Province, Iran is a prone area to gully erosion that causes to soil loss and land degradation. 
To consider the gully erosion, a comprehensive map of gully erosion susceptibility is required as useful tool for decreasing 
losses of soil. The purpose of this research is to generate a reliable gully erosion susceptibility map (GESM) using GIS-based 
models including frequency ratio (FR), weights-of-evidence (WofE), index of entropy (IOE), and their comparison to an 
expert knowledge-based technique, namely, Analytic Hierarchy Process (AHP). At first, 80 gully locations were identified 
by extensive field surveys and Google Earth images. Then, 56 (70%) gully locations were randomly selected for modeling 
process, and the remaining 26 (30%) gully locations were used for validation of four models. For considering geo-environ-
mental factors, VIF and tolerance indices are used and among 18 factors, 13 factors including elevation, slope degree, slope 
aspect, plan curvature, distance from river, drainage density, distance from road, lithology, land use/land cover, topography 
wetness index (TWI), stream power index (SPI), normalized difference vegetation index (NDVI), and slope–length (LS) 
were selected for modeling aims. After preparing GESMs through the mentioned models, final maps divided into five classes 
including very low, low, moderate, high, and very high susceptibility. The receiver operating characteristic (ROC) curve and 
the seed cell area index (SCAI) as two validation techniques applied for assessment of the built models. The results showed 
that the AUC (area under the curve) in training data are 0.973 (97.3%), 0.912 (91.2%), 0.939 (93.9%), and 0.926 (92.6%) 
for AHP, FR, IOE, and WofE models, respectively. In contrast, the prediction rates (validating data) were 0.954 (95.4%), 
0.917 (91.7), 0.925 (92.5%), and 0.921 (92.1%) for above models, respectively. Results of AUC indicated that four model 
have excellent accuracy in prediction of prone areas to gully erosion. In addition, the SCAI values showed that the produced 
maps are generally reasonable, because the high and very high susceptibility classes had very low SCAI values. The results 
of this research can be used in soil conservation plans in the study area.
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Introduction

The Earth system has been impacted by mankind abuse of 
resources, lack of management of land uses and planning, 
and climate changes that imposed changes to the natural 
environment such as the water, soil, and carbon or nitrogen 
cycles, which is resulting in land degradation (Keesstra et al. 
2018). Thus, the United Nation has defined the Sustainable 
Development Goals (SDGs) (Griggs et al. 2013). Many 
of the defined goals have a strong relevance to water and 
soil management. Soil is one of the most important com-
ponents of hydrological, biological, and geological cycles 
and, therefore, is in a state of permanent change and evolu-
tion (Kirchhoff et al. 2017). European Commission defined 
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seven functions for soil including: (1) biomass production 
including forestry and agriculture; (2) storing, filtering, and 
transforming nutrients, substances, and water; (3) biodiver-
sity pool such as habitats, species, and genes; (4) physical 
and cultural environment for humans and human activities; 
(5) source of raw material; (6) acting as carbon pool; and 
(7) archive of geological and archaeological heritage (EC, 
2006). In the twenty-first century, soil protection depends 
not only on political decisions in the rules and regulations, 
but also on decisions and actions of land planners, foresters, 
and farmers (Cerdà et al. 2017a, b). Soil erosion is a univer-
sally threat to environment that leads to a various range of 
problems, such as land degradation in agriculture lands, soil 
fertility reduction, and sediment deposition in reservoirs, 
that must be solved by means of nature-based strategies 
(Cerdà et al. 2016; Keesstra et al. 2016; Mekonnen et al. 
2017). High erosion rates in underdeveloped countries are 
mainly due to lack of vegetation cover, excessive grazing, 
deforestation, and intense plowing (Ligonja and Shrestha 
2015), while in the developing countries is due to the heavy 
machinery (Cerdà et al. 2009). Intense erosion rates result 
in the loss of fertile soil and also change on the biological, 
hydrological, and geochemical cycles (Cerdà et al. 2015). 
Gully erosion is one of the most devastating forms of soil 
erosion that causes different types of damage to natural 
resources, agriculture, and infrastructures (Rahmati et al. 
2016). A gully is defined as a profound channel created by 
concentrated flow of water, removing surface soil, and par-
ent material, that is really big to wipe out by normal tillage 
operations (USDA-SCS 1966). When the geomorphologic 
threshold exceeds due to increase in flow water erosivity or 
sediment erodibility, gully erosion is occurred. In general, 
prediction of gully erosion is difficult and requires monitor-
ing and mapping (Rahmati et al. 2017). Preparation of gully 
erosion susceptibility map (GESM) is necessary for better 
realization of the gully erosion mechanism and identifying 
areas that are prone to erosion. For this target, gully inven-
tory map (GIM) and GEFs are required. Meanwhile, the 
results of a GESM strongly depend on the model hypothesis, 
parameter values, and parameter estimation methods. From 
the point of view of reducing the occurrence of gully ero-
sion and sustainable development, there are many models for 
establishing a statistical relationship among GEFs and GIM 
and subsequently identifying sensitive areas to gully ero-
sion. Among these are the following data-driven and knowl-
edge-based models: logistic regression (Conoscenti et al. 
2014; Kornejady et al. 2015), weights-of-evidence (Dube 
et al. 2014; Rahmati et al. 2016), frequency ratio (Rahmati 
et al. 2016), conditional probability (Rahmati et al. 2017); 
AHP (Svoray et al. 2012), maximum entropy (Pourghasemi 
et al. 2017; Kornejady et al. 2017), and information value 
(Conforti et al. 2011). In addition, computational intelli-
gence methods including classification and regression trees 

(Märker et al. 2011), multivariate adaptive regression splines 
(Gómez-Gutiérrez et al. 2015), random forest (Kuhnert et al. 
2010), artificial neural network (Pourghasemi et al. 2017), 
and support vector machine (Pourghasemi et al. 2017) were 
applied for preparing GESM in different countries.

In the study area, due to dry climatic conditions, extreme 
rainfall, favorable erosion geology, overgrazing, and vegeta-
tion destruction, gully erosion is the most important cause 
of soil degradation and soil loss. Therefore, gully erosion 
each year imposes damages on the inhabitants and agricul-
tural lands. Despite the fact that gully erosion is one of the 
environmental problems in the Toroud Watershed, so far, 
no studies have been carried out in this area to assess and 
prepare a gully erosion susceptibility map for it. The main 
purpose of this research is identification of prone areas to 
gully erosion and gully erosion susceptibility mapping using 
data-driven and knowledge-based techniques in Toroud 
Watershed, Iran.

Materials and methods

Study area

The Toroud Watershed with area of 416 km2 is situated 
in Semnan Province, Iran. This area is located between 
35°25′36″ and 35°37′9″ north latitudes, and 54°49′55″ and 
55°11′30″ east longitudes (Fig. 1). According to the climatic 
classification in Iran (IDWRM 2013), the study area is clas-
sified as arid zone (mean annual rainfall of 85 mm). The 
absolute elevation in the study area ranges from about 759 
to 1923 m, with a mean elevation of 1037 m a.s.l. It receives 
approximately 80% of its annual rainfall from November 
to April (WRCS 2015). In winter, the temperature ranges 
from − 5 to 12.7 °C. The main LC in the study area is irri-
gation agriculture, salt pan, and range lands. Most gullies 
in the study area are located on the southern parts due to 
erosion-sensitive formations and human activities such as 
agriculture, overgrazing, and development of roads. Eight 
photographs of the gullies identified in the study area are 
shown in Fig. 2.

Methodology

The methodological work flow used in the current study is 
presented in Fig. 3. Therefore, the steps of this research are 
as follows: (1) preparation of GIM; (2) selection of GEFs 
using VIF and tolerance indices; (3) preparation of gully ero-
sion susceptibility maps using data-driven techniques (FR, 
IOE, and WofE), and their comparison to knowledge-based 
model, namely, AHP; (4) validation of models using ROC 
and SCAI indicators; and (5) selection of the best model in 
the study area.
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Data preparation

Gully inventory map (GIM)

The detailed and accurate GIM was prepared using exten-
sive field surveys with a GPS (Global Positioning System) 
device and Google Earth imagery digitization. Identified 
gullies in the study area are either V-shaped or U-shaped. 
In total, 80 gullies were identified summing an area of 
about 49.23 ha and include 53 V-shaped and 27 U-shaped 
gullies. Maximum and minimum depth and width of the 
identified gullies in the study area are 13.5 and 1.5 and 21 
and 2.10, respectively. Among all the 80 identified gully 
locations, 70% (56 gully locations) were randomly selected 
for modeling, while the remaining 30% (24 gully location) 

were employed for validation of models. In the next step, 
gullies in the polygon format were converted to point for-
mat and were used for modeling and validation aims. The 
locations of training and validating gullies are shown in 
Fig. 1.

Gullies in the study area are mainly created in low 
plains and slopes with high drainage density. The most 
important reason for occurring piping and gully in the 
study area is severe and flood rainfall, the existence of 
gypsum and salt minerals due to high evaporation, and 
the lack of vegetation and organic matter. Therefore, it can 
be admitted that superficial flows and the phenomenon of 
piping are the dominant processes of gully formation in 
the study area.

Fig. 1   Study area
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Gully erosion‑conditioning factors

According to literature review (Conforti et al. 2011; Con-
oscenti et al. 2013; Zakerinejad and Maerker 2015; Rah-
mati et al. 2016, 2017; Pourghasemi et al. 2017; Zabihi et al. 
2018), data availability, and field surveys, 18 effective fac-
tors were identified for considering gully erosion in the study 
area. After multi-collinearity analysis, 13 GEFs including 
elevation, slope degree, slope aspect, plan curvature, dis-
tance from river, drainage density, distance from road, lithol-
ogy, LC, TWI, SPI, NDVI, and slope–length (LS) selected 
for modeling process (Fig. 4a–m).

Topographic factors are one of the most important 
geomorphological parameters that influence soil erosion 
(Achour et al. 2017; Rahmati et al. 2017). Topographic fea-
tures such as elevation affect vegetation type and rainfall 

characteristics and, thus, can control the gully erosion pro-
cess (Gómez-Gutiérrez et al. 2015).

In this research, to provide a digital elevation model, 
InSAR (Interferometric Synthetic Aperture Radar) technique 
and ALOS PALSAR data were used. For preparing DEM 
using InSAR, there are two phases including measurement 
phase and the conversion of measurement phase to height 
(Zhou et al. 2005). InSAR data-processing procedure is 
shown in Fig. 5.

Elevation obtained from the ALOS PALSAR Digital Ele-
vation Model with a spatial resolution of 12.5 m × 12.5 m 
and was divided into five categories (Rahmati et al. 2016): 
<916 m, 916–1065 m, 1065–1229 m, 1229–1473 m, and 
> 1473 m.

Slope factor is appropriate for the accumulation of flow 
surface and gully erosion (Rahmati et al. 2016). The slope 

Fig. 2   Field photographs of some gullies identified in the study area
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angle map of the study area was obtained from the ALOS 
PALSAR-DEM and was divided into six categories (Con-
forti et al. 2011): <5°, 5°–10°, 10°–15°, 15°–20°, 20°–30°, 
and > 30°.

Slope aspect has an important effect on vegetation type, 
so the control duration of sunlight, moisture, evaporation 
and transpiration, and the distribution of vegetation on the 
slopes, and indirectly affect the erosion process (Jaafari 
et al. 2014). The slope aspect map was also prepared from 
ALOS PALSAR-DEM under nine directional classes 
(Rahmati et  al. 2016): flat (− 1°), north (337.5°–360°, 
0°–22.5°), northeast (22.5°–67.5°), east (67.5°–112.5°), 
southeast (112.5°–157.5°), south (157.5°–202.5°), south-
west (202.5°–247.5°), west (247.5°–292.5°), and northwest 
(292.5°–337.5°).

Plan curvature is considered as the earth surface geome-
try and characterizes slope changes (Nefeslioglu et al. 2008). 
Plan curvature is effect on convergence or divergence of flow 
water during downhill flow (Yilmaz et al. 2012). Plan cur-
vature was extracted from the ALOS PALSAR-DEM using 
ArcGIS 10.5 and classified into three categories including 
concave, flat, and convex.

In many cases, gullies are associated with stream network 
(Conoscenti et al. 2014). Using the quantile classification 
(Jiuchun et al. 2017), five different buffer zones are cre-
ated within the study area to determine the effect of streams 
on gullies including: 0–100 m, 100–200 m, 200–300 m, 
300–400 m, and > 400 m.

The drainage pattern of an area is affected by sev-
eral factors such as the nature and structure of geological 

Fig. 3   Methodological work 
flow used in this study

 30% 70% 

Select of GEFs

Geo-Environmental Factors (GEFs)Gully inventory map (GIM)

Geomorphologic factors 

Slope angle

Slope aspect

AltitudePlan curvature

Hydrological factors

Distance from rivers

Drainage density

TWI

Geology

Geological factors

Distance from faults

Environmental factors

Distance from roads

LC

Random partition

Validation Testing
Collinearity
test using 
Tolerance
and VIF

Data-driven 
models

Analytical 
Hierarchy Process 

(AHP)

Provide gully erosion susceptibility maps using 
various models

Validation of maps using area under the curve 
(AUC) and Seed Cell Area Index (SCAI)

Rainfall

Convergence index

Profile curvature

Total curvature

Slope length (LS)

Soil texture

NDVI

Knowledge-driven 
models

Application of models

Weights of 
Evidence (WofE)

Frequency Ratio 
(FR)

Index of Entropy

Selection of the best model and 
offer suggestions 



	 Environmental Earth Sciences (2018) 77:628

1 3

628  Page 6 of 22

Fig. 4   Gully geo-environmental factors (GEFs). a Elevation, b slope 
degree, c slope aspect, d plan curvature, e distance from river, f drain-
age density, g distance from road, h lithology, i land cover, j topogra-

phy wetness index (TWI), k stream power index (SPI), l normalized 
difference vegetation Index (NDVI), and m slope–length (LS)
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formations, soil characteristics, vegetation conditions, pen-
etration rates, and degrees of gravity (Manap et al. 2014). 
High drainage density increases surface runoff rate and thus 
increases gully erosion. Drainage density map generated by 
Line Density Tool in ArcGIS 10.5 and its values classi-
fied into four categories (Conoscenti et al. 2014): 0.6–1.7, 
1.7–2.1, 2.1–2.4, and > 2.4 km/km2.

According to literature review, the distance from road is 
important for the occurrence of gully erosion (Conoscenti 
et al. 2014; Pourghasemi et al. 2017). Roads will enhance 
the gully erosion process using interrupt and concentrate 

overland flow and draining it on downstream slopes (Con-
oscenti et al. 2014). The distance from road map was divided 
into five different buffer zones (Fig. 2h) using quantile clas-
sification (Conoscenti et al. 2014) in ArcGIS 10.5: 0–300 m, 
300–600 m, 600–900 m, 900–1200 m, and > 1200 m.

The lithology layer was generated by digitizing the geo-
logical map prepared by GSDI (1997) (Geological Survey 
Department of Iran, Toroud Sheet at 1:100,000-scale). The 
lithology map according to susceptibility to soil erosion was 
then classified into 12 classes (Table 1).

Fig. 4   (continued)
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Land cover (LC) management has a great influence on the 
geomorphological stability of the slope and the occurrence 
of gully erosion (Zakerinejad and Maerker 2015). In gen-
eral, bare areas and areas with scattered vegetation are more 
susceptible to erosion compared to forest areas, because veg-
etation cover significantly reduces erosive power of surface 
flow (Hayas et al. 2017). The LC map of the study area was 
generated using Landsat 8 images from 31/10/2017 cover-
ing path and row 162 and 36, respectively. To create the LC 
map, a supervised classification using the maximum likeli-
hood algorithm was applied. Four LC types were extracted 
such as irrigation agriculture, desert, range lands, and bare 
rock outcrops. The produced LC was validated using 265 
ground control point (GCP) in the field. Kappa coefficient for 
the final map was estimated by Eq. 1 (Lo and Yeung 2002):

(1)
K =

�

N
∑r

i=1

�

Xii

�

− N
∑r

i=1

�

Xi+ ⋅ X+i

���

N2 −
�r

i=1

�

Xi+ ⋅ X+i

�

,

where r is number of rows in error matrix; Xii is number of 
observations in row i and column i; Xi + is total of observa-
tions in row i; X+i is total of observations in column i; and 
N is total number of observations included in the matrix. 
Kappa coefficient of the generated map was obtained 
97.65%.

The TWI has been used widely to describe the effect of 
topography on the location and size of saturated areas of 
flow surface generation (Moore et al. 1991). TWI estimate 
the probability of water accumulation in soil due to slope 
and upstream catchment area, therefore, is an important 
factor for assessing prone areas to gully erosion (Gómez-
Gutiérrez et al. 2015). The runoff erosion power, discharge 
potential, and carrying capacity are modeled using the men-
tioned factor (Tahmassebipoor et al. 2016). TWI computed 
using Eq. 2 and classified into four categories (Conforti et al. 
2011): < 6, 6–10, 10–13, and > 13.

The SPI is a measure of the erosive power of water flow 
based on the assumption that discharge is commensurate 
to particular catchment area (Conforti et al. 2011). Stream 
power index is one of the most important factors controlling 
slope erosion processes. Regions with high stream power 
have high erosion potential (Gómez-Gutiérrez et al. 2015). 
SPI calculated using Eq. 3 and classified into five categories 
using natural break scheme (Conforti et al. 2011): < 300, 
300–900, 900–1200, 1200–1500, and > 1500:

where AS is the specific catchment’s area (m2/m), and � is 
slope gradient (in degrees).

The NDVI is a measure of surface reflectance and gives 
a quantitative estimation of the vegetation growth and was 
calculated based on Landsat 8 images, which reflects the 
relation between the vegetation condition and gullies (Xie 

(2)TWI = In
(

AS∕ tan �
)

(3)SPI = AS × tan� ,

Slave image Master image

Image registration

Interferogram

Phase unwrapping

Noise filtering Flat effect removal

Phase to hight

Baseline determination

ALOS PALSAR DEM

Fig. 5   InSAR data-processing procedure for DEM production

Table 1   Lithology of the study area (GSI 1997)

Code Lithology Formation AGE Area (km2) %

Jph Phyllite, slate and meta-sandstone Hamadan Phyllites Jurassic 0.33 0.21
PlQc Fluvial conglomerate, Piedmont conglomerate and sandstone – Pliocene–Quaternary 0.15 0.10
Ek Well bedded green tuff and tuffaceous shale Karaj Eocene 3.79 2.44
Qft1 High level piedmont fan and valley terrace deposits – Quaternary 0.05 0.03
K Cretaceous rocks in general – Cretaceous 14.41 9.28
Ed.avs Dacitic-to-andesitic volcano sediment – Eocene 74.81 48.18
E1c Pale-red, polygenic conglomerate and sandstone – Paleocene–Eocene 6.82 4.39
Qft2 Low-level piedmont fan and valley terrace deposits – Quaternary 0.78 0.50
Ed.avb Dacitic-to-andesitic volcano breccia – Eocene 10.89 7.01
Edav Dacitic-to-andesitic volcanic – Eocene 33.52 21.59
Murm Light-red-to-brown marl and gypsiferous marl with sandstone 

intercalations
– Miocene 2.79 1.79

Mur Red marl, gypsiferous marl, sandstone, and conglomerate Upper red Miocene 6.95 4.48



Environmental Earth Sciences (2018) 77:628	

1 3

Page 9 of 22  628

et al. 2017). The NDVI value is calculated by the following 
equation:

where IR is the infrared portion of the electromagnetic 
spectrum and R is the red portion of the electromagnetic 
spectrum. In general, in areas with intensive vegetation, the 
likelihood of gully erosion is low to very low. The NDVI 
map of the study area classified to three classes: <− 0.039, 
− 0.039 to 0.13, and > 0.13 (Rahmati et al. 2016).

The length–slope parameter (LS) is a factor used in the 
RUSLE equation to consider the effect of topography on ero-
sion (Renard et al. 1997). The topographical factor depends 
on the slope–length (L) and the slope steepness (S). This 
parameter is considered as a sediment transport capacity 
index and computed by Eq. 5 (Moore and Burch 1986):

where fa is flow accumulation and � is slope in degrees. 
The LS map was prepared by Raster Calculator Tool in 
the ArcGIS10.5 and classified to five categories (Conforti 
et al. 2011): < 36 m, 36–70 m, 70–110 m, 110–140 m, and 
> 140 m.

Analytic hierarchy process (AHP) knowledge‑based 
technique

Because decision making according to multiple criteria is 
a challenging issue, the application of Multi-criteria Deci-
sion-Making Models (MCDM) was offered in different cases 
(Yacov and Haimes 2011). Decision-making processes are 
often complicated according to multiple inconsistent criteria; 
nevertheless, the MCDM methods have been successfully 
engaged to identify favorite policy alternatives (Kim and 
Chung 2013). The application of MCDM methods in vari-
ous fields of natural hazards has been illustrated in a num-
ber of international literatures (Chitsaz and Banihabib 2015; 
Chen et al. 2016; Wen et al. 2017). AHP is a multi-criteria, 
multi-objective, and semi-quantitative method that were 
introduced by Saaty (1980). In this method, decision-making 

(4)NDVI = IR − R∕IR + R,

(5)LS =
(

fa × cellsize∕22.13
)0.4

× (sin �∕0.0896)1.3,

weights are assigned based on expert knowledge and their 
experience in a form of pairwise relative comparison (Bath-
rellos et al. 2017; Papadakis and Karimalis 2017). Over the 
past two decades, the practical nature of AHP has led to the 
use of it on the large and complex decision-making problems 
(Bathrellos et al. 2012, 2016). In general, AHP consists of 
the following steps:

Step 1: structuring of the decision problem into a hierar-
chical model. A simple AHP model has three levels such as 
goal, criteria, and alternatives.

Step 2: making pairwise comparisons and obtaining the 
judgmental matrix. Bogdanovic et al. (2012) stated that a 
pair comparison has to start with a question on behalf deci-
sion makers. For example, depending on the purpose of the 
decision, the importance of the criteria to each other must 
assign with scales 1–9. Vidal et al. (2010) also stated that 
the mean numbers 2, 4, 6, and 8 have to use to correct the 
comparison (Table 2).

Step 3: calculation of the weight of each criterion 
and alternative (local priority). Local weights of criteria 
and alternatives were obtained according to Eqs. 6 and 7 
(Macharis et al. 2004):

where aj is the values of each inline of column, aij is the 
normalized values of each of the in lines, and n is number 
of criteria.

Step 4: computation of the overall priority (final weight) 
by the following equation:

(6)aij = aj∕

n
∑

i=1

aj aj, j = 1, 2, 3… , n

(7)wij =

n
∑

i=1

aij∕n, aij = 1, 2,… , n ,

(8)AHPScore =

n
∑

j=1

wij ×Wj,

Table 2   Scale of preference between two factors in AHP (Saaty 1980)

Preference factor Degree of preference Definition

1 Equally Two activities contribute equally to the Objective
3 Moderately Experience and judgment slightly to moderately favor one activity over another
5 Strongly Experience and judgment strongly or essentially favor one activity over another
7 Very strongly An activity is strongly favored over another and its dominance is showed in practice
9 Extremely The evidence of favoring one activity over another is of the highest degree possible 

of an affirmation
2,4,6,8 Intermediate Used to represent compromises between the references in weights 1, 3, 5, 7, and 9



	 Environmental Earth Sciences (2018) 77:628

1 3

628  Page 10 of 22

where wij is local priority for ith alternatives in jth criteria 
and Wj is local priority for jth criteria.

Step 5: computation of the inconsistency index by the 
following equation:

where λmax is maximal eigen value and n is number of 
alternatives.

Step 6: calculation of the inconsistency ratio by the fol-
lowing equation:

where RII is called random index and is obtained from 
Table 3. A value of IR less than 0.1 is considered accept-
able (Saaty 1980), because human judgments are not always 
indistinct and there may be because of the nature of scale 
used, would have existed inconsistencies. The ability to 
identify inconsistent judgments through the calculation of 
consistency ratio is considered as one of the strong points 
of AHP (Table 3).

Data‑driven models

Frequency ratio (FR)

Frequency ratio is a bivariate statistical method and a simple 
geospatial assessment tool (Wang and Li 2017) for comput-
ing the probabilistic relationship between dependent (gully 
inventory map) and independent variables (geo-environmen-
tal factors) and is very useful and efficient (Rahmati et al. 
2016). The FR can be described as Eq. 11 (Oh et al. 2017):

where A is the number of pixels with gully erosion for each 
class of geo-environmental factors, B is the number of total 
gullies in study area, C is the number of pixels in each class 
of the geo-environmental factors, and D is the number of 
total pixels in the study area.

Index of entropy (IOE)

Theory of entropy expresses the extent of the disorder, 
instability, uncertainty, and imbalance of a system (Al-
Abadi 2017). This theory was introduced by Boltzmann and 
quantitatively presented by Shannon (1948) (Pourghasemi 
et al. 2012). Actually, theory of entropy expresses a way to 

(9)I.I =
�max − n

n − 1
,

(10)IR=
II

RII
,

(11)FR = ((A∕B)∕(C∕D)),

approximate main parameters among efficient parameters 
of a goal; in the other words, this theory characterizes vari-
ables that are more effective in phenomenon occurrence. 
Details of the mentioned theory and its equations are given 
in Pourghasemi et al. (2012), Jaafari et al. (2014), Al-Abadi 
(2017), and Hong et al. (2017).

After computation of the final weight of each factor and 
multiplying it in categories of that parameter and values 
related to each parameter, weighted maps were added up and 
the final map of gully erosion susceptibility was obtained 
using Eq. 12 (Haghizadeh et al. 2017):

where Wj and Pj are the final weight and the probability 
density for the jth feature.

Weights‑of‑evidence (WofE)

The WofE is one of the bivariate and statistical approaches 
that employed the log-linear form of the Bayesian probabil-
ity method to estimate the relative importance of effective 
factors by statistical means (Xie et al. 2017). The WofE 
model calculates the relationship of between gully erosion-
conditioning factors and gully occurrence according to 
the presence or the absence of the gullies in the study area 
(Razavizadeh et al. 2017) as follows:

where Npix1 is number of gully erosion pixels in a specific 
class, Npix2 is (total number of gully erosion pixels in a map) 
− (number of gully erosion pixels in a class), Npix3 is (num-
ber of pixels in specific class) − (number of gully erosion 
pixels in a specific class), and Npix4 is (total number of pixels 
in a map) − (total number of gully erosion pixels in map) 
− (number of pixels in specific class). A positive weight W+

i
 

indicates that the gully erosion-conditioning factor exists at 
the locations of gully erosion and there is a positive correla-
tion between the presence of the gully erosion-conditioning 
factor and the gully locations and vice versa. Final weight in 
the weights-of-evidence model obtained by Eq. 15 (Rahmati 
et al. 2016; Razavizadeh et al. 2017):

(12)GESM =

n
∑

I=1

(

WJ × Pj

)

,

(13)
W+

i
= loge

[(

Npix1∕
(

Npix1 + Npix2

))

∕
(

Npix3∕
(

Npix3 + Npix4

))]

(14)
W−

i
= loge

[(

Npix2∕
(

Npix1 + Npix2

))

∕
(

Npix4∕
(

Npix3 + Npix4

))]

,

(15)W =

(

C

S(C)

)

Table 3   Random index (Saaty 
and Vargas 2001)

No. criteria 1 2 3 4 5 6 7 8 9 10 11 12

R.I.I 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.56



Environmental Earth Sciences (2018) 77:628	

1 3

Page 11 of 22  628

where W is final weight, and C is difference between positive 
and negative weights. C is negative for a negative correla-
tion between GEFs and GESM and positive for a positive 
relationship (Pourghasemi et al. 2013). S (C) is the standard 
deviation of the contrast. S2

(

W+
)

 is the variance of W+ and 
S2(W−) is the variance of W− . B and B̄ indicate the presence 
and absence of the GEFs, respectively. L is the presence of 
gully, and L̄ is the absence of a gully. After calculation the 
weight of each factor by WofE model, gully erosion suscep-
tibility map (GESM) obtained by the following equation:

Results

Multi‑collinearity analysis

In general, for GESM, considering of multi-collinearity of 
conditioning factors (GEFs) is essential. Multi-collinearity 
indicates a linear correlation that exists among factors. In 
this research, for checking multi-collinearity, the tolerance 
(TOL) and variance inflation factor (VIF) indices are used 
when values of TOL and VIF are ≤ 0.1 and ≥ 5 or 10 indi-
cate multi-collinearity among independent variables, respec-
tively (Park et al. 2017). The results of the multi-collinearity 
analysis among 18 gully erosion-conditioning factors used 
in this study are presented in Table 4. This analysis showed 
that the TOL and VIF of 13 variables including elevation, 
slope degree, slope aspect, plan curvature, distance from 
river, drainage density, distance from road, lithology, LC, 
TWI, SPI, NDVI, and slope–length (LS) were ≥ 0.1 and 
≤ 10, respectively. As a result, these parameters are used for 
preparing the final GESMs by four models.

Applying AHP model

The relative weight of gully erosion-conditioning factors 
obtained from pairwise comparison matrix is shown in 
Table 5. Based on Table 5, it can be seen that the lithology, 
slope, and NDVI with a values of 0.222, 0.176, and 0.137 

(16)C = W+ +W−

(17)S(C) =
√

S2
�

W+
�

+ S2(W−)

(18)S2
(

W+
)

=
1

N{B ∩ L}
+

1

{B ∩ L}

(19)S2(W−) =
1

{

B̄ ∩ L
} +

1
{

B̄ ∩ L̄
} ,

(20)GESM =

R=N
∑

R=1

W.

are the most important factors, respectively. This result is 
in line with Golestani et al. (2014), Gomez-Gutierrez et al. 
(2009), and Rahmati et al. (2016). Gómez-Gutiérrez et al. 
(2015) stated that vegetation cover strongly reduces the 
erosive of flow surface and as a result have a high effect 
in gully erosion occurrence. Golestani et al. (2014) proved 
that the areas with gentle slope are susceptible for surface 
flow accumulation and gully erosion. Rahmati et al. (2016) 
indicated that the lithology properties are very important in 
gully erosion. In contrast, factors of aspect, plan curvature, 
and TWI with score values of 0.019, 0.015, and 0.012 had 
the lowest impact on the gully erosion, respectively. Factors 
of LC, elevation, distance from road, drainage density, SPI, 
LS, and distance from stream are located in the ranks of 4 
to 10. The inconsistency ratio (IR) for pairwise compari-
son matrix of criteria is obtained 0.032; the ratio indicates 
an appropriate degree of inconsistency for this approach 
(modeling by AHP). In addition, the relationship among the 
gully erosion locations and the classes of conditioning fac-
tors are presented in Table 6. By the way, the inconsistency 
ratio (IR) for each pairwise comparison matrix is shown in 
Table 6. According to Table 5, all IR values are less than 0.1. 
After computation of weights of criteria and their classes, 
to GESM using AHP, Eq. 21 is used in ArcGIS10.5 by 
Weighted Tool as follows:

Table 4   Multi-collinearity Analysis among gully erosion-condition-
ing factors

Factors Collinearity statistics

Tolerance VIF

LS 0.464 2.154
Lithology 0.644 1.552
NDVI 0.489 2.044
Plan curvature 0.518 1.929
LC 0.633 1.581
SPI 0.283 3.529
TWI 0.209 4.786
Rain 0.049 20.208
Slope 0.274 3.648
Dense stream 0.337 2.967
Dis-stream 0.145 6.919
elevation 0.651 1.535
Convergence index 0.099 10.115
Aspect 0.614 1.629
Soil texture 0.035 28.78
Dis-fault 0.023 34.7
Dis-road 0.456 5.32
Profile curvature 0.05 15.56
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Table 5   Relationship between gully erosion and gully conditioning factors using IOE and AHP models

Factors Classes Domain 
pixels (%)

Gully pixels (%) IOE AHP
(

Pij

)

Hj Ij Mean Pij Wj W classes Wfactors

W IR

Elevation (m) < 850 31.07 91.59 0.91 0.00 0.87 0.65 0.96 0.50 0.032 0.085
850–950 29.47 8.41 0.09 0.31 0.26
950–1050 25.20 0.00 0.00 0.00 0.13
1050–1150 11.69 0.00 0.00 0.00 0.07
> 1150 2.57 0.00 0.00 0.00 0.03

Slope (°) < 5 63.83 93.97 0.83 0.23 1.26 0.30 0.37 0.95 0.053 0.176
5–10 19.57 6.03 0.17 0.44 0.03
10–15 8.69 0 0.00 0.00 0.01
15–20 4.22 0 0.00 0.00 0.00
20–30 2.32 0 0.00 0.00 0.00
> 30 1.37 0 0.00 0.00 0.00

Aspect F 4.46 13.71 0.34 0.53 0.38 1.00 0.38 0.34 0.064 0.019
N 7.84 7.31 0.10 0.00 0.10
NE 15.41 18.10 0.13 0.38 0.13
E 17.21 24.31 0.16 0.42 0.16
SE 18.62 22.85 0.14 0.39 0.14
S 16.64 9.69 0.06 0.00 0.06
SW 9.75 1.83 0.02 0.12 0.02
W 6.31 1.46 0.03 0.00 0.03
NW 3.76 0.73 0.02 0.12 0.02

Plan curvature (100/m) Concave 37.75 37.66 0.33 0.53 0.34 1.01 0.34 0.32 0.025 0.015
Flat 29.49 40.22 0.45 0.52 0.50
Convex 32.76 22.12 0.22 0.00 0.18

Dis-stream 0–100 40.14 47.90 0.29 0.52 0.05 0.83 0.04 0.29 0.075 0.024
100–200 28.92 27.24 0.23 0.49 0.23
200–300 19.24 18.46 0.23 0.49 0.23
300–400 6.46 4.94 0.18 0.45 0.18
> 400 5.25 1.46 0.07 0.26 0.07

Drainage density (m/m2) 0.6–1.7 24.92 0.00 0.00 0.00 0.81 0.48 0.39 0.05 0.062 0.052
1.7–2.1 24.91 6.03 0.13 0.38 0.10
2.1–2.4 25.45 42.60 0.87 0 0.26
> 2.4 24.72 51.37 1.08 0 0.59

Dis-road (m) 0–300 5.01 37.29 0.51 0.50 0.20 2.92 0.60 0.51 0.043 0.067
300–600 4.95 12.25 0.17 0.43 0.17
600–900 4.43 13.35 0.21 0.47 0.21
900–1200 3.81 4.94 0.09 0.31 0.09
> 1200 81.80 32.18 0.03 0.14 0.03
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The results of gully erosion susceptibility map produced 
by AHP method are shown in Fig. 6a. It has reclassified 
into five susceptibility classes: very low, low, moderate, 
high, and very high based on natural break classification 

(21)

GESMAHP =
[(

elevationw × 0.085
)

+
(

slopew × 0.176
)

+
(

aspetw × 0.019
)

+
(

plan curvaturew × 0.015
)

+
(

dis streamw × 0.024
)

+
(

drinage densityw × 0.052
)

+
(

dis roadw × 0.067
)

+
(

lithologyw × 0.226
)

+
(

LCw × 0.085
)

+
(

TWIw × 0.012
)

+
(

SPIw × 0.04
)

+
(

NDVIw × 0.137
)

+
(

LSw × 0.031
)]

method (Xie et al. 2017). According to Fig. 6a, the very high 
susceptibility level is located in the south part of the study 
area. This area covered with Qft1 and Qft2 that have sensi-
tive lithological units to erosion. In contrast, very low gully 
erosion susceptible areas widely distributed in the northern 
parts of area due to the Outburst of igneous rocks and low 
depth of soil. Area of the susceptibility classes are shown 
in Table 6. Based on Table 6, from total of the study area 
(416.82 km2), 17.5% (72.88 km2) is located in very low sus-
ceptibility class, 22.86% (95.20 km2) in low susceptibility, 
25.49% (106.16 km2) in moderate susceptibility, 28.31% 
(117.9 km2) in high, and 5.85% (24.36 km2) in very high 
susceptibility class.

Table 5   (continued)

Factors Classes Domain 
pixels (%)

Gully pixels (%) IOE AHP
(

Pij

)

Hj Ij Mean Pij Wj W classes Wfactors

W IR

Lithology Jph 4.61 0 0 0 0.82 2.19 1.79 0.00 0.052 0.226
PlQc 7.96 22.26 0.11 0 0.10
Ek 0.91 0 0 0 0.00
Qft1 1.58 27.37 0.66 0.40 0.63
K 4.42 0 0 0 0.01
Ed.avs 17.97 0 0 0 0.01
E1c 2.76 0 0 0 0.01
Qft2 46.77 45.26 0.04 0 0.04
Ed.avb 2.62 0 0 0 0.01
Edav 8.05 0 0 0 0.01
Murm 0.67 2.37 0.13 0 0.12
Mur 1.67 2.74 0.06 0.25 0.06

LC Agriculture 0.34 0 0 0 0.98 3.93 3.86 0.12 0.068 0.108
Salt pan 4.99 76.46 0.98 0.04 0.58
Range 60.76 23.54 0.02 0.00 0.26
Bare rock 33.91 0.00 0.00 0.00 0.05

TWI < 6 7.63 7.86 0.33 0.00 0.74 0.79 0.58 0.30 0.035 0.012
6–10 26.81 26.33 0.31 0.52 0.18
10–13 15.36 17.55 0.36 0.00 0.50
> 13 50.20 48.26 0.30 0.00 0.02

SPI < 300 0.01 0 0.00 0.00 0.19 0.56 0.107 0.27 0.039 0.04
300–900 81.97 87.39 0.38 0.53 0.31
900–1200 11.23 9.32 0.29 0.52 0.08
1200–1500 3.91 2.38 0.22 0.48 0.13
> 1500 2.88 0.91 0.11 0.35 0.21

NDVI < − 0.039 53.63 21.57 0.005 0.040 0.44 0.69 0.304 0.98 0.063 0.137
− 0.039 to 0.13 46.21 66.54 0.019 0.109 0.02
> 0.13 0.16 11.88 0.98 0 0.01

LS (m) < 36 28.64 29.43 0.21 0.00 0.81 0.97 0.78 0.04 0.06 0.031
36–70 18.04 16.27 0.19 0.45 0.09
70–110 17.57 24.68 0.29 0.00 0.15
110–140 21.52 23.95 0.23 0.00 0.25
> 140 14.24 5.67 0.08 0.00 0.47
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Table 6   Area percentage of the 
susceptibility classes in different 
models. Gully cells training set 
and gully cells testing set falling 
in each susceptibility class and 
SCAI values

Susceptibility classes Area (km) Gully training 
set

Gully valida-
tion set

All gully set (%) SCAI

Area % Area % Area %

AHP Very low 72.88 17.50 0 0 0 0 0 0
Low 95.20 22.86 0 0 0 0 0 0
Moderate 106.16 25.49 0 0.55 0 0 0.55 45.97
High 117.90 28.31 0.12 23.84 0.07 23.77 47.61 0.59
Very high 24.36 5.85 0.37 75.60 0.24 76.23 151.83 0.04

FR Very low 107.61 25.82 0 0 0 0 0 0
Low 44.25 10.62 0 0 0 0 0 0
Moderate 149.82 35.94 0 0.18 0 0 0.47 76.45
High 109.97 26.38 0.38 77.33 0.25 81 158.65 0.17
Very high 5.16 1.24 0.11 22.49 0.06 18 40.88 0.03

IOE Very low 69.75 16.75 0 0 0 0 0 0
Low 76.97 18.48 0 0 0 0 0 0
Moderate 135.40 32.51 0 0.92 0.05 15.07 16.00 2.03
High 123.93 29.76 0.23 46.77 0.15 48.99 95.75 0.31
Very high 10.45 2.51 0.25 52.31 0.11 35.94 88.25 0.03

WofE Very low 21.24 5.10 0 0 0 0 0 0
Low 126.61 30.40 0 0 0 0 0 0
Moderate 181.89 43.67 0.01 2.40 0.03 10.14 12.55 3.48
High 71.35 17.13 0.20 40.48 0.15 47.25 87.73 0.20
Very high 15.40 3.70 0.28 57.12 0.13 42.61 99.73 0.04

Fig. 6   Gully erosion susceptibility maps a AHP, b FR, c WofE, and d IOE
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Applying FR model

The FR values were estimated based on spatial relationship 
of gully erosion locations and 13 conditioning factors. As 
shown in Table 7, when a class of a factor has the FR value 
higher than 1, it may be assumed that the class is susceptible 
to gully erosion. Application of the frequency ratio model 
showed that most gully erosion locations are located at ele-
vations of < 916 m. Elevation class < 916 m has the high-
est FR value of 2.95, followed by 916–1065 m. Elevations 
higher than 1065 m had the lowest frequency ratio (0.00). 
Rahmati et al. (2016) stated that gully distribution is mainly 
controlled by topographic factors such as elevation. In the 
case of slope degree, it could be seen that the classes of < 5° 
had higher FR values (1.47), followed by 5°–10°. In Slope 
degree higher than 10°, gully erosion has not observed. This 
result is in line with Ghorbani Nejad et al. (2016) that proved 
light slopes because of surface flow accumulation, increases 
the likelihood of gully erosion occurrence. The FR trend 
of the slope aspect factor showed that classes of flat, east, 
northeast, and southeast with FR higher than 1 have a clear 
positive correlation with gully erosion and flat faces with 
higher FR value (3.08) have the most correlation with gully 
occurrence. This result is in line with Rahmati et al. (2016). 
For plan curvature factor, flat areas proved to be the most 
susceptible to gully erosion with the highest FR value of 
1.36. The concave and convex classes had the lowest FR 
values (1 and 0.68), respectively. The relationship between 
distance from river and gullies revealed that there is a strong 
and indirect correlation between them. Class of 0–100 m 
had the highest FR value (1.19), followed by 200–300 m, 
100–200 m, 300–400 m, and > 400 m. The spatial relation-
ship between gullies with drainage density revealed that high 
FR value is related to high and very high density areas and 
gully erosion was not occur at drainage density lower than 
1.7 km/km2. In addition, results showed that class > 2.4 km/
km2 with the highest density, had the highest FR value (2.08) 
and had the strongest relationship with gully erosion suscep-
tibility. The correlation between the gully locations and the 
distance from road showed that the class less than 300 m had 
the highest FR weight (7.45), expresses high gully erosion 
susceptibility in this range of distance from road. In con-
trast, classes > 1200 m with the lowest FR value (0.39) had 
a weak relation with gully erosion. For the geology factor, 
the high level piedmont fan and valley terrace deposits class 
had the highest FR value (7.32), indicating high suscepti-
bility in this area, followed by light-red-to-brown marl and 
Gypsiferous marl with sandstone intercalations and fluvial 
conglomerate, piedmont conglomerate, and sandstone with 
FR values of 3.27 and 2.80, respectively. For the LC, it can 
be seen that the salt pan class has FR value of 13.35, showed 
that the gully erosion susceptibility in this LC is high. The 
analysis of FR model for the relationship between gully 

erosion locations and TWI showed that class of 10–13 with 
the highest FR (1.14) had strong influences on gully erosion 
occurrence. For the SPI factor, the class 300–900 had the 
highest FR value (1.07), followed by classes 900–1200 with 
FR (0.83). In the case of NDVI, class of − 0.039 to 0.13 with 
highest FR (1.44) had strong relation with gully erosion. For 
the LS factor, class of 70–110 m, 110–144 m, and < 36 m 
with FR values of higher than 1, represent strong relation 
with gully erosion. Finally, In order to generate a gully ero-
sion susceptibility map, the GESM was calculated by sum-
ming each weighted factor using the following equation:

FR model provides values of GEMS ranging from 3.32 
to 115.12. The gully erosion map was divided into five sus-
ceptibility classes include very low, low, moderate, high, 
and very high (Fig. 6b) using the natural breaks method 
(Cao et al. 2016). Each class in the study was consisted of 
25.82%, 10.62%, 35.94%, 26.38%, and 1.24% of total study 
area, respectively (Table 6). The mean and standard devia-
tion of this model are 6.12 and 7.21. Most of the high and 
very high susceptibility classes are located in the south part 
of study area because of the high lineament density, lower 
slope, and prone nature of surface and subsurface materials 
for gully erosion.

Applying weight of evidence model

To apply the WoE modeling, map of every factor is crossed 
with the GIM using the ArcGIS 10.5, and the density of 
the gullies calculated in each class. The resultant weights 
and the spatial relationship between the gully erosion 
occurrence and classes of each conditioning factor based 
on WofE model are shown in Table 7. Negative weights 
indicate negative spatial relationship and positive weights 
indicate a positive relationship between gully erosion loca-
tions and conditioning factor. Classes with positive weights 
are prone area for gully erosion and vice versa. To generate 
the final GESM map, weight of classes of each conditioning 
factor is summed using Eq. 23 in the weighted sum option 
by Spatial Analyst Tool in ArcGIS 10.5 (Fig. 6c). The final 
produced GESM by WofE model ranges from about − 98.32 
to 199.17. Obviously, larger GESM values indicate a higher 
susceptibility to gully erosion. The produced map based on 
these values was classified into five classes including very 
low, low, moderate, high, and very high using the natural 
break method (Xie et al. 2017). The areas in the very low, 
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Table 7   Relationship between gully erosion and 13 conditioning factors using FR and WofE models

Factors Classes Pixels in domain Gully pixels FR Weight of evidence (WofE)

No % No % w+ w− C S© W

Elevation (m) < 916 144,184 31.07 501 91.59 2.95 1.08 − 2.10 3.19 0.15 20.69
916–1065 136,753 29.47 46 8.41 0.29 − 1.25 0.26 − 1.52 0.15 − 9.84
1065–1229 116,939 25.20 0 0 0 0 0.29 − 0.29 0.04 − 6.80
1229–1473 54,252 11.69 0 0 0 0 0.12 − 0.12 0.04 − 2.91
> 1473 11,917 2.57 0 0 0 0 0.03 − 0.03 0.04 − 0.61

Slope (°) < 5 296,189 63.83 514 93.97 1.47 0.39 − 1.79 2.18 0.18 12.14
5–10 90,815 19.57 33 6.03 0.31 − 1.18 0.16 − 1.33 0.18 − 7.42
10–15 40,342 8.69 0 0 0 0 0.09 − 0.09 0.04 − 2.13
15–20 19,587 4.22 0 0 0 0 0.04 − 0.04 0.04 − 1.01
20–30 10,752 2.32 0 0 0 0 0.02 − 0.02 0.04 − 0.55
> 30 6360 1.37 0 0 0 0 0.01 − 0.01 0.04 − 0.32

Aspect F 20,691 4.46 75 13.71 3.08 1.13 − 0.10 1.23 0.12 9.88
N 36,378 7.84 40 7.31 0.93 0 0.01 − 0.01 0.04 − 0.13
NE 71,504 15.41 99 18.10 1.17 0 − 0.03 0.03 0.05 0.68
E 79,841 17.21 133 24.31 1.41 0.35 − 0.09 0.44 0.10 4.38
SE 86,401 18.62 125 22.85 1.23 0.21 − 0.05 0.26 0.10 2.54
S 77,240 16.64 53 9.69 0.58 0 0.08 − 0.08 0.04 − 1.78
SW 45,242 9.75 10 1.83 0.19 0 0.08 − 0.08 0.04 − 1.95
W 29,298 6.31 8 1.46 0.23 0 0.05 − 0.05 0.04 − 1.17
NW 17,450 3.76 4 0.73 0.19 0 0.03 − 0.03 0.04 − 0.72

Plan curvature (100/m) Concave 175,174 37.75 206 37.66 1.00 0.00 0.00 0.00 0.09 − 0.04
Flat 136,839 29.49 220 40.22 1.36 0.31 − 0.17 0.48 0.09 5.46
Convex 152,032 32.76 121 22.12 0.68 − 0.39 0.15 − 0.54 0.10 − 5.24

Dis-stream 0–100 186,250 40.14 262 47.90 1.19 0.18 − 0.14 0.32 0.09 3.69
100–200 134,216 28.92 149 27.24 0.94 − 0.06 0.02 − 0.08 0.10 − 0.87
200–300 89,259 19.24 101 18.46 0.96 0 0.01 − 0.01 0.05 − 0.20
300–400 29,954 6.46 27 4.94 0.76 0 0.02 − 0.02 0.04 − 0.37
> 400 24,362 5.25 8 1.46 0.28 0 0.04 − 0.04 0.04 − 0.91

Drainage density (m/m2) 0.6–1.7 115,633 24.92 0 0.00 0.00 0 0.29 − 0.29 0.04 − 6.71
1.7–2.1 115,588 24.91 33 6.03 0.24 − 1.42 0.22 − 1.64 0.18 − 9.15
2.1–2.4 118,095 25.45 233 42.60 1.67 0.52 − 0.26 0.78 0.09 8.99
> 2.4 114,725 24.72 281 51.37 2.08 0.73 − 0.44 1.17 0.09 13.68

Dis-road (m) 0− 300 23,233 5.01 204 37.29 7.45 2.02 − 0.42 2.43 0.09 27.50
300–600 22,969 4.95 67 12.25 2.47 0.91 − 0.08 0.99 0.13 7.57
600–900 20,573 4.43 73 13.35 3.01 0 − 0.10 0.10 0.05 2.13
900–1200 17,696 3.81 27 4.94 1.29 0 − 0.01 0.01 0.04 0.27
> 1200 379,570 81.80 176 32.18 0.39 0 1.32 − 1.32 0.05 − 25.40
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low, moderate, high, and very high gully erosion susceptibil-
ity classes were 5.10% (21.24 km2), 30.40% (126.61 km2), 
43.67% (181.89  km2), 17.13% (71.35  km2), and 3.70% 
(15.40 km2), respectively:

(23)

GESMWofE =

[(

elevationWofE

)

+

(

slopeWofE

)

+

(

aspetWofE

)
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(

plan curvatureWofE

)
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(

dis streamWofE

)

+

(

drinage densityWofE

)

+

(
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)

+
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)
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)

+

(

SPIWofE

)

+

(

NDVIWofE

)

+

(

LSWofE

)]

.

Applying index of entropy (IOE)

The results of index of entropy model for GESM are shown 
in Table 5. According to it, factors of LC, lithology, and 
elevation with weights of 3.86, 1.79, and 0.96 have had the 
greatest impact on the gully erosion. In contrast, factors of 
distance to stream, stream power index, and NDVI with 0.04, 
0.107, and 0.304 scores had the lowest impact on gully ero-
sion, respectively. The parameters of stream length (LS), dis-
tance from road, TWI, drainage density, slope aspect, slope 
degree, and plan curvature are located in the next ranks. 
The relation between classes of parameters and gully erosion 
locations by index of entropy model is shown in Table 5.

Table 7   (continued)

Factors Classes Pixels in domain Gully pixels FR Weight of evidence (WofE)

No % No % w+ w− C S© W

Lithology Jph 21,343 4.61 0 0 0 0 0.05 0 0 0
PlQc 36,827 7.96 122 22.30 2.80 1.03 − 0.17 1.20 0.10 11.70
Ek 4209 0.91 0 0 0 0 0.01 0 0 0.00
Qft1 7323 1.58 150 27.42 17.32 2.87 − 0.30 3.18 0.10 33.14
K 20,435 4.42 0 0 0 0 0.05 0 0 0
Ed.avs 83,112 17.97 0 0 0 0 0.20 0 0 0
E1c 12,773 2.76 0 0 0 0 0.03 − 0.03 0.04 − 0.66
Qft2 216,334 46.77 248 45.34 0.97 − 0.03 0.03 − 0.06 0.09 − 0.67
Ed.avb 12,098 2.62 0 0 0 0 0.03 0 0 0
Edav 37,232 8.05 0 0 0 0 0.08 0 0 0
Murm 3100 0.67 12 2.19 3.27 1.19 − 0.02 1.20 0.29 4.12
Mur 7715 1.67 15 2.74 1.64 0.50 − 0.01 0.51 0.26 1.94

LC Agriculture 1553 0.34 0 0 0 0 0 0 0.04 − 0.08
Salt pan 23,077 4.99 419 76.60 15.35 2.75 − 1.40 4.15 0.10 41.10
Range 281,023 60.76 128 23.40 0.39 − 0.95 0.67 − 1.62 0.10 − 16.09
Bare rock 156,848 33.91 0 0 0 0 0.41 0 0 0

TWI < 6 35,395 7.63 43 7.86 1.03 0 0.00 0.00 0.04 0.06
6–10 124,428 26.81 144 26.33 0.98 − 0.02 0.01 − 0.03 0.10 − 0.26
10–13 71,269 15.36 96 17.55 1.14 0.13 − 0.03 0.16 0.11 1.42
> 13 232,953 50.20 264 48.26 0.96 − 0.04 0.04 − 0.08 0.09 − 0.91

SPI < 300 67 0.01 0 0 0 0 0.00 0.00 0.04 0.00
300–900 380,374 81.97 478 87.39 1.07 0.06 − 0.36 0.42 0.13 3.27
900–1200 52,106 11.23 51 9.32 0.83 0 0.02 − 0.02 0.04 − 0.47
1200–1500 18,131 3.91 13 2.38 0.61 0 0.02 − 0.02 0.04 − 0.37
> 1500 13,367 2.88 5 0.91 0.32 0 0.02 − 0.02 0.04 − 0.47

NDVI <− 0.039 248,854 53.63 118 21.57 0.62 − 0.47 0.36 − 0.83 0.09 − 9.20
− 0.039 to 0.13 214,442 46.21 364 66.54 1.44 0.37 − 0.48 0.84 0.09 9.27
> 0.13 749 0.16 65 11.88 0 0.00 0.00 0.00 0.04 − 0.04

LS (m) < 36 132,893 28.64 161 29.43 1.03 0.03 − 0.01 0.04 0.09 0.41
36–70 83,721 18.04 89 16.27 0.90 − 0.10 0.02 − 0.12 0.12 − 1.08
70–110 81,518 17.57 135 24.68 1.40 0 − 0.09 0.09 0.05 1.83
110–140 99,840 21.52 131 23.95 1.11 0 − 0.03 0.03 0.05 0.64
> 140 66,073 14.24 31 5.67 0.40 0 0.10 − 0.10 0.04 − 2.17



	 Environmental Earth Sciences (2018) 77:628

1 3

628  Page 18 of 22

The final GESM using index of entropy model was gener-
ated using the following equation:

The result of this summation is a continuous interval of 
values from 0.96 to 8.22, which represents the gully erosion 

(24)
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+
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.

susceptibility index. A natural break classification scheme 
was used to divide the values into five classes (Fig. 6d) and 
a susceptibility map was prepared. According to the gully 
erosion susceptibility map generated with the IOE model, it 
was found that 16.75%, 18.48%, 32.51%, 29.76%, and 2.51% 
of the total area falls in the very low, low, moderate, high, 
and very high susceptible classes, respectively.

Validation and sensitivity analysis

The success rate and prediction rate curves are used to ver-
ify the accurate of the gully erosion susceptibility results 
(Guo-liang et al. 2017). Validation was performed by com-
parison of gully locations and the produced gully erosion 
susceptibility maps. Both success rate and prediction rate 

Fig. 7   Prediction and success rates a AHP, b FR, c WofE, and d IOE
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curves of the gully erosion susceptibility maps were verified 
using training and validating data set, respectively. These 
rates can assess using AUC that ranges from 0.5 to 1.0. The 
AUC values can be classified as follows: 0.5–0.6, poor; 
0.6–0.7, average; 0.7–0.8, good; 0.8–0.9, very good; and 
0.9–1, excellent (Rahmati et al. 2016). Results of success 
rate and prediction rate are shown in Table 8 and Fig. 7. The 
results showed that value of success rate is 0.973 (97.3%) 
for AHP model that are better than success rates of 0.917 
(91.7%) FR, 0.925 (92.5%) IOE, and 0.921 (92.1%) WofE 
models. In addition, prediction rate of 0.954 (95.4%) using 
AHP model is better than prediction rates of 0.912 (92.1%) 
FR, 0.939 (93.9.7%) IOE, and 0.926 (92.6%) WofE models. 
Results indicated that four model had excellent performance 
in prediction prone areas to gully erosion and can be used 
as an effective method to perform gully erosion suscepti-
bility maps. In addition, the seed cell area index (SCAI) 
validation technique proposed by Süzen and Doyuran (2004) 
was applied in this study. SCAI shows the density of gullies 
among the landslide susceptibility zones. In general, high 
and very high susceptibility classes have very small SCAI 
values (Pawluszek and Borkowski 2017). Results of SCAI 
indicator are shown in Table 6. According to Table 6, SCAI 
values of the four models are desirable in the high and very 
high susceptibility classes.

Discussion

Data-driven and knowledge-based models reflect two dif-
ferent perspectives in spatial modeling. A knowledge-based 
approach is based on field campaigns, expert knowledge 
and experience, evidence of varying quality, and guidelines, 
while a data-driven approach is based on the observational 
data. The advantages of AHP approach are (1) flexibility, 
intuitive appeal to the decision makers, and its ability to 
check inconsistencies, (2) the AHP method break down a 
decision problem into its constituent sections and builds 
hierarchies of criteria and calculate the importance of each 

criterion, (3) AHP reduces bias in decision making by pro-
viding a useful mechanism for checking consistency of 
the evaluation measures and alternatives, and (4) the AHP 
method supports group decision making. The main disad-
vantages of AHP are (1) the number of pairwise compari-
sons may become very large in this model, and, therefore, 
become a difficult task, (2) the artificial limitation of the use 
of the 9 point scale is another disadvantage and may diffi-
cult to distinguish for decision maker that one alternative is 
3 or 5 times more important than another, and (3) in AHP 
model, compensation between good scores on some criteria 
and bad scores on other criteria can occur. Therefore, impor-
tant information may be missing (Macharis et al. 2004). 
The results of the comparison performed in this research 
stated that knowledge-based models such as AHP and data-
driven classification methods such as FR, WofE, and IOE 
had the excellent (AUC = 0.9–1) prediction capabilities for 
identifying prone areas to soil erosion that these results are 
in agreement with Dube et al. (2014), Wang et al. (2015), 
Rahmati et al. (2016), Pawluszek and Borkowski (2016), 
Wu et al. (2016); and Xie et al. (2017). Dube et al. (2014) 
applied weights-of-evidence model for gully erosion hazard 
assessment in Mbire District—Zimbabwe and indicated that 
this model had high accuracy in prediction of prone areas 
to gully erosion. Wang et al. (2015) used certainty factor 
and index of entropy models for assessment of landslide 
susceptibility in the Qianyang County of Baoji City, China. 
Their results showed that IOE model with prediction rate 
of 80.88% had good accuracy in identification of suscep-
tible areas to landslide. Rahmati et al. (2016) investigated 
GESM using bivariate statistical models including weights-
of-evidence and frequency ratio and stated that frequency 
ratio model with (AUC = 78.11%) had better accuracy in 
comparison to WofE model (AUC = 70.07%). Pawluszek 
and Borkowski (2016) considered impact of DEM-derived 
factors and AHP model for landslide susceptibility map-
ping in the region of Roznow Lake, Poland. Their results 
indicated that AHP model had high capability in prediction 
of susceptible areas to landslide. Wu et al. (2016) prepared 

Table 8   Area under the curve 
(AUC)

Models Variables Area Standard error Asymptotic 
significant

Asymptotic 95% confidence 
interval

Lower bound Upper bound

AHP Prediction 0.954 0.000 0.000 1.000 1.000
Success 0.973 0.000 0.000 1.000 1.031

FR Prediction 0.912 0.008 0.000 0.799 1.009
Success 0.917 0.004 0.000 0.801 1.004

IOE Prediction 0.939 0.000 0.000 0.923 1.009
Success 0.925 0.003 0.000 0.856 1.024

WofE Prediction 0.926 0.002 0.000 0.871 1.043
Success 0.921 0.005 0.000 0.816 1.021
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a landslide susceptibility map using statistical index (SI), 
frequency ratio (FR), and certainty factor (CF) models in 
a Geographic Information System (GIS) for the Gangu 
County, Gansu Province, China and stated that FR model 
with prediction accuracy of 75.62% had performed better 
than CF model. Xie et al. (2017) compared weights-of-evi-
dence, logistic regression, and support vector machine mod-
els and evaluated their results by SBAS-InSAR monitoring 
for landslide susceptibility mapping in China and showed 
that WofE model with prediction rate of 0.812 had good pre-
diction capability in identifying the prone areas to landslide.

Conclusions

Gully erosion is one of the most hazards in the Toroud Water-
shed that it causes loss of soil and the destruction of infra-
structure. Therefore, an accurate assessment of the probabil-
ity of gully erosion occurrence is required for conservation 
of natural resources such as soil and reducing its potential 
risks. For this purpose, four GIS-based models such as AHP, 
FR, WofE, and IOE models as expert knowledge and data-
driven techniques were used to generate the gully erosion 
susceptibility maps for the study area in Semnan Province, 
Iran. Performance of four models was compared by AUC 
and SCAI methods. To produce gully erosion susceptibility 
maps in the study area, among 18 geo-environmental fac-
tors selected based on literature review, data accessible, and 
field surveys, 13 gully erosion-conditioning factors were used 
for modeling purposes. The final gully susceptibility maps 
were classified based on natural break algorithm. Results of 
validation showed that the gully erosion susceptibility maps 
generated by four models show good prediction efficiency 
and the four models have been used successfully to produce 
gully erosion susceptibility maps for the study area. There-
fore, the gully erosion susceptibility maps generated in this 
research are an important tool for planners, decision makers, 
and engineers. They can make affordable, rapid, and well-
grounded decisions to minimize and avoid the damage and 
losses caused by existing and future gullies, or avoid the high 
and very high susceptible zones, by appropriate preventive 
measures and mitigation procedures.

Acknowledgements  The study was supported by College of Agricul-
ture, Shiraz University (Grant No. 96GRD1M271143).

References

Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, 
Bendaoud EA (2017) Landslide susceptibilitymapping using 
analytic hierarchy process and information value methods along 
a highway road section in Constantine, Algeria. Arab J Geosci 
10:194

Al-Abadi AM (2017) Modeling of groundwater productivity in north-
eastern Wasit Governorate, Iraq using frequency ratio and Shan-
non’s entropy Models. Appl Water Sci 7: 699–716

Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastas-
siou D, Chousianitis KG (2012) Potential suitability for urban 
planning and industry development by using natural hazard maps 
and geological—geomorphological parameters. Environ Earth Sci 
66(2):537–548

Bathrellos GD, Karymbalis E, Skilodimou HD, Gaki-Papanastas-
siou K, Baltas EA (2016) Urban flood hazard assessment in 
the basin of Athens Metropolitan city, Greece. Environ Earth 
Sci 75(4):319

Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Prad-
han B (2017) Suitability estimation for urban development using 
multi-hazard assessment map. Sci Total Environ 575:119–134

Bogdanovic D, Nikolic D, Ilic I (2012) Mining Method Selection by 
Integrated AHP and PROMETHEE Method. Anais da Academia 
Brasileira de Ciências 84:219–233

Cao C, Xu P, Wang Y, Chen J, Zheng L, Niu C (2016) Flash flood 
hazard susceptibility mapping using frequency ratio and statistical 
index methods in coalmine subsidence areas. Sustainability 8:948

Cerdà A, Giménez-Morera A, Bodí MB (2009) Soil and water losses 
from new citrus orchards growing on sloped soils in the western 
Mediterranean basin. Earth Surf Proc Land 34:1822–1830

Cerdà A, González-Pelayo O, Giménez-Morera A, Jordán A, Pereira P, 
Novara A, Brevik EC, Prosdocimi M, Mahmoodabadi M, Keesstra 
S, García Orenes F, Ritsema C (2015) The use of barley straw 
residues to avoid high erosion and runoff rates on persimmon 
plantations in Eastern Spain under low frequency high magnitude 
simulated rainfall events. Soil Res 54(2):154–165

Cerdà A, González-Pelayo O, Giménez-Morera A, Jordán A, Pereira P, 
Novara A, Brevik EC, Prosdocimi M, Mahmoodabadi M, Keesstra 
S, Orenes FG, Ritsema CJ (2016) Use of barley straw residues 
to avoid high erosion and runoff rates on persimmon plantations 
in Eastern Spain under low frequency-high magnitude simulated 
rainfall events. Soil Res 54(2):154–165

Cerdà A, Keesstra SD, Rodrigo-Comino J, Novara A, Pereira P, Brevik 
E, Jordán A (2017a) Runoff initiation, soil detachment and con-
nectivity are enhanced as a consequence of vineyards plantations. 
J Environ Manag 202:268–275

Cerdà A, Rodrigo-Comino J, Giménez-Morera A, Keesstra SD (2017b) 
An economic, perception and biophysical approach to the use of 
oat straw as mulch in Mediterranean rainfed agriculture land. Ecol 
Eng 108:162–171

Chen W, Li W, Chai H, Hou E, Li X, Ding X (2016) GIS-based land-
slide susceptibility mapping using analytical hierarchy process 
(AHP) and certainty factor (CF) models for the Baozhong region 
of Baoji City, China. Environ Earth Sci 75:63

Chitsaz N, Banihabib ME (2015) Comparison of different multi criteria 
decision-making models in prioritizing flood management alterna-
tives. Water Resour Manag 29:2503–2525

Conforti M, Aucelli PC, Robustelli G, Scarciglia F (2011) Geomor-
phology and GIS analysis for mapping gully erosion susceptibility 
in the Turbolo stream catchment (Northern Calabria, Italy). Nat 
Hazard 56:881–898

Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, 
Ma¨rker M (2013) A GIS-based approach for gully erosion sus-
ceptibility modelling: a test in Sicily, Italy. Environ Earth Sci 
70:1179–1195

Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, 
Ma¨rker M (2014) Gully erosion susceptibility assessment by 
means of GIS-based logistic regression: a case of Sicily (Italy). 
Geomorphology 204(1):399–411

Ding Q, Chen W, Hong H (2017) Application of frequency ratio, 
weights of evidence and evidential belief function models in land-
slide susceptibility mapping. Geocarto Int 32(6):619–639



Environmental Earth Sciences (2018) 77:628	

1 3

Page 21 of 22  628

Dube F, Nhapi I, Murwira A, Gumindoga W, Goldin J, Mashauri DA 
(2014) Potential of weight of evidence modelling for gully ero-
sion hazard assessment in Mbire District—Zimbabwe. Phys Chem 
Earth 67:145–152

European Commission (EC): Communication from the Commission 
to the Council, the European Parliament, the European Economic 
and Social Committee and the Committee of the Regions (2006) 
Thematic Strategy for Soil Protection, COM 231 Final. Brussels

Geology Survey of Iran (GSI) (1997) http://www.gsi.ir/Main/Lang_en/
index​.html

Gόmez-Gutiérrez A, Schnabel S, Felicı´simo AM (2009) Modelling 
the occurrence of gullies in rangelands of southwest Spain. Earth 
Surf Process Landf 34:1894–1902

Golestani G, Issazadeh L, Serajamani R (2014) Lithology effects on 
gully erosion in Ghoori chay Watershed using RS & GIS. Int J 
Biosci 4(2):71–76

Gómez-Gutiérrez A, Conoscenti C, Angileri SE, Rotigliano E, Sch-
nabel S (2015) Using topographical attributes to evaluate gully 
erosion proneness (susceptibility) in two mediterranean basins: 
advantages and limitations. Nat Hazards 79(1):291–314

Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, 
Shyamsundar P, Noble I (2013) Policy: sustainable development 
goals for people and planet. Nature 495(7441):305–307

Guo-liang D, Yong-shuang Z, Javed I, Zhi-hua Y, Xin Y (2017) Land-
slide susceptibility mapping using an integrated model of infor-
mation value method and logistic regression in the Bailongjiang 
watershed, Gansu Province, China. J Mt Sci 14(2):249–268

Haghizadeh A, Siahkamari S, Haghiabi AH, Rahamti O (2017) Fore-
casting flood-prone areas using Shannon’s entropy model. J Earth 
Syst Sci 126:39

Hayas A, Vanwalleghem T, Laguna A, Peña A, Giráldez JV (2017) 
Reconstructing long-term gully dynamics in Mediterranean agri-
cultural areas. Hydrol Earth Syst Sci 21:235–249

Hong H, Chen W, Xu C, Youssef A, Pradhan B, Bui D (2017) Rain-
fall-induced landslide susceptibility assessment at the Chongren 
area (China) using frequency ratio, certainty factor, and index of 
entropy. Geocarto Int 32(2):139–154

Iranian Department of Water Resources Management (IDWRM) (2013) 
Weather and climate report. http://www.thrw.ir/. Accessed 25 Jun 
2013

Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) 
GIS-based frequency ratio and index of entropy models for land-
slide susceptibility assessment in the Caspian forest, northern 
Iran. Int J Environ Sci Technol 11:909–926

Jiuchun Y, Shuwen Z, Liping C, Fei L, Tianqi L, Yan G (2017) Gully 
erosion regionalization of black soil area in Northeastern China. 
Chin Geogra 27:78–87

Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Mon-
tanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardg-
ett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The 
significance of soils and soil science towards realization of the 
United Nations Sustainable Development Goals. Soil 2:111–128

Keesstra S, Nunes J, Novara A, Finger D, Avelar D, Kalantari Z, Cerdà 
A (2018) The superior effect of nature based solutions in land 
management for enhancing ecosystem services. Sci Total Environ 
610:997–1009

Kim Y, Chung ES (2013) Assessing climate change vulnerability with 
group multi-criteria decision making approaches. Climatic Chang 
121(2):301–315

Kirchhoff M, Rodrigo Comino J, Seeger M, Ries JB (2017) Soil ero-
sion in sloping vineyards under conventional and organic land 
use managements (Saar-Mosel valley, Germany). Cuadernos de 
Investigación Geográfica 43:119–140

Kornejady A, Heidari K, Nakhavali M (2015) Assessment of landslide 
susceptibility, semi-quantitative risk and management in the Ilam 
dam basin, Ilam. Iran Environ Resour Res 3(1):85–109

Kornejady A, Ownegh M, Bahremand A (2017) Landslide susceptibil-
ity assessment using maximum entropy model with two different 
data sampling methods. Catena 152:144–162

Kuhnert PM, Henderson AK, Bartley R, Herr A (2010) Incorporating 
uncertainty in gully erosion calculations using the random forests 
modelling approach. Environmetrics 21:493–509

Ligonja PJ, Shrestha RP (2015) Soil erosion assessment in kondoa 
eroded area in Tanzania using universal soil loss equation, geo-
graphic information systems and socioeconomic approach. Land 
Degrad Dev 26(4):367–379

Lo CP, Yeung AKW (2002) Concepts and techniques of geographic 
information system. Pearson Education Inc., New Jersey

Macharis C, Springael J, Brucker KD, Verbeke A (2004) PRO-
METHEE and AHP: the design of operational synergies in multic-
riteria analysis, strengthening PROMETHEE with ideas of AHP. 
Eur J Oper Res 153:307–317

Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF 
(2014) Application of probabilisticbased frequency ratio model 
in groundwater potential mapping using remote sensing data and 
GIS. Arab J Geosci 7(2):711–724

Märker M, Pelacani S, Schröder B (2011) A functional entity approach 
to predict soil erosion processes in a small Plio-Pleistocene Medi-
terranean catchment in Northern Chianti, Italy. Geomorphology 
125(4):530–540

Mekonnen M, Keesstra SD, Baartman JE, Stroosnijder L, Maroulis J 
(2017) Reducing sediment connectivity throughman-made and 
natural sediment sinks in the minizr catchment, Northwest Ethio-
pia. Land Degrad Dev 28(2):708–717

Moore ID, Burch GJ (1986) Physical basis of the length-slopejuctor in 
the Universal soil loss equation. Soil Sci Soc Am J 50:1294–1298

Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a 
review of hydrological, geomorphological, and biological applica-
tions. Hydrol Process 5:3–30

Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility 
mapping for a part of tectonic Kelkit Valley (Eastern Black Sea 
region of Turkey). Geomorphology 94(3):401–418

Oh H, Lee S, Hong SM (2017) Landslide susceptibility assessment 
using frequency ratio technique with iterative random sampling. 
J Sens 1–21

Papadakis M, Karimalis A (2017) Producing a landslide susceptibil-
ity map through the use of analytic hierarchical process in fini-
kas watershed, North Peloponnese, Greece. Am J Geogr Inf Syst 
6(1A):14–22

Pawluszek K, Borkowski A (2017) Impact of DEM-derived factors and 
analytical hierarchy process on landslide susceptibility mapping 
in the region of Ro_zno´w Lake, Poland. Nat Hazards 86:919–952

Pourghasemi HR, Mohammady M, Pradhan B (2012) Landslide sus-
ceptibility mapping using index of entropy and conditional prob-
ability models in GIS: safarood basin, Iran. CATENA 97:71–84

Pourghasemi HR, Pradhan B, Gokceoglu C, Moezzi KD (2013) A com-
parative assessment of prediction capabilities of Dempster-Shafer 
and Weights-of-evidence models in landslide susceptibility map-
ping using GIS. Geo, Nat Haz Risk 4(2):93–118

Pourghasemi HR, Yousefi S, Kornejady A, Cerdà A (2017) Perfor-
mance assessment of individual and ensemble data-mining tech-
niques for gully erosion modeling. Sci Total Environ 609:764–775

Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F (2016) 
Gully erosion susceptibility mapping: the role of GIS based 
bivariate statistical models and their comparison. Nat Hazards 
82:1231–1258

Rahmati O, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, 
Feizizadeh B (2017) Evaluating the influence of geo-environ-
mental factors on gully erosion in a semi-arid region of Iran: An 
integrated framework. Sci Total Environ 579:913–927

Razavizadeh S, Solaiman K, Massironi M, Kavian A (2017) Mapping 
landslide susceptibility with frequency ratio, statistical index, and 

http://www.gsi.ir/Main/Lang_en/index.html
http://www.gsi.ir/Main/Lang_en/index.html
http://www.thrw.ir/


	 Environmental Earth Sciences (2018) 77:628

1 3

628  Page 22 of 22

weights of evidence models: a case study in northern Iran. Environ 
Earth Sci 76:499

Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New 
York

Saaty TL, Vargas GL (2001) Models, methods, concepts, and applica-
tions of the analytic ‎hierarchy process. Kluwer Academic Pub-
lisher, Boston

Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide 
susceptibility assessment methods: multivariate versus bivariate. 
Environ Geol 45(5):665–679

Svoray T, Michailov E, Cohen A, Rokah L, Sturm A (2012) Predict-
ing gully initiation: comparing data mining techniques, analyti-
cal hierarchy processes and the topographic threshold. Earth Surf 
Proc Land 37:607–619

Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S (2016) Spa-
tial analysis of groundwater potential using weights-of-evidence 
and evidential belief function models and remote sensing. Arab 
J Geosci 9:79

USDA-SCS (1966) Procedure for determining rates of land damage, 
land depreciation, and volume of sediment produced by gully ero-
sion. Technical Release No. 32. US GPO 1990-261-419:20727/
SCS.US Government Printing Office, Washington, DC

Vidal AL, Sahin E, Martelli N, Berhoune M, Bonan B (2010) Apply-
ing AHP to select drugs to be produced by anticipation in 
chemotherapy compounding unit. J Exp Syst Appli, Adelphi 
37(2):1528–1534

Wang Q, Li W (2017) A GIS-based comparative evaluation of ana-
lytical hierarchy process and frequency ratio models for landslide 
susceptibility mapping. Phys Geogr 38(4):318–337

Wang Q, Li W, Chen W, Bai H (2015) GIS-based assessment of land-
slide susceptibility using certainty factor and index of entropy 

models for the Qianyang County of Baoji city, China. J. Earth 
Syst. Sci 124(7):1399–1415

Water Resources Company of Semnan (WRCS) (2015) Precipitation 
and temperature reports. http://www.Semna​nrw

Wen F, Xin-sheng W, Yan-bo C, Bin Z (2017) Landslide susceptibil-
ity assessment using the certainty factor and analytic hierarchy 
process. J Mt Sci 14(5):906–925

Wu Y, Li W, Wang Q, Liu Q, Yang D (2016) Landslide susceptibility 
assessment using frequency ratio, statistical index and certainty 
factor models for the Gangu County, China. Arab J Geosci 9:84

Xie Z, Chen G, Meng X, Zhang Y, Qiao L, Tan L (2017) A com-
parative study of landslide susceptibility mapping using weight 
of evidence, logistic regression and support vector machine and 
evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment 
in Bailong River Basin, China. Environ Earth Sci 76:313

Yacov Y (2011) Harmonizing the omnipresence of MCDM in technol-
ogy, society, and policy. Chapter 2

Yilmaz C, Topal T, Süzen ML (2012) GIS-based landslide susceptibil-
ity mapping using bivariate statistical analysis in Devrek (Zongul-
dak-Turkey). Environ Earth Sci 65(7):2161–2178

Zabihi M, Mirchooli F, Motevalli A, Darvishan AK, Pourghasemi HR, 
Zakeri MA, Sadighi F (2018) Spatial modelling of gully erosion in 
Mazandaran Province, northern Iran. Catena 161:1–13

Zakerinejad R, Maerker M (2015) An integrated assessment of soil 
erosion dynamics with special emphasis on gully erosion in the 
Mazayjan basin, southwestern Iran. Nat Hazards 79:25–50

Zhou C, Ge L, Dongchen E, Hsingchung C (2005) A case study of 
using external DEM in InSAR DEM generation. Geo-spat Inform 
Sci 8(1):14–18. https​://doi.org/10.1007/BF028​26985​

http://www.Semnanrw
https://doi.org/10.1007/BF02826985

	GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique
	Abstract
	Introduction
	Materials and methods
	Study area
	Methodology
	Data preparation
	Gully inventory map (GIM)
	Gully erosion-conditioning factors

	Analytic hierarchy process (AHP) knowledge-based technique
	Data-driven models
	Frequency ratio (FR)
	Index of entropy (IOE)
	Weights-of-evidence (WofE)


	Results
	Multi-collinearity analysis
	Applying AHP model
	Applying FR model
	Applying weight of evidence model
	Applying index of entropy (IOE)
	Validation and sensitivity analysis

	Discussion
	Conclusions
	Acknowledgements 
	References


