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Abstract
Climate ensembles utilize outputs from multiple climate models to estimate future climate patterns. These multi-model 
ensembles generally outperform individual climate models. In this paper, the performance of seven global climate model and 
regional climate model combinations were evaluated for Ontario, Canada. Two multi-model ensembles were developed and 
tested, one based on the mean of the seven combinations and the other based on the median of the same seven models. The 
performance of the multi-model ensembles were evaluated on 12 meteorological stations, as well as for the entire domain 
of Ontario, using three temperature variables (average surface temperature, maximum surface temperature, and minimum 
surface temperature). Climate data for developing and validating the multi-model ensembles were collected from three major 
sources: the North American Coordinated Regional Downscaling Experiment, the Digital Archive of Canadian Climatological 
Data, and the Climactic Research Unit’s TS v4.00 dataset. The results showed that the climate ensemble based on the mean 
generally outperformed the one based on the median, as well as each of the individual models. Future predictions under the 
Representative Concentration Pathway 4.5 (RCP4.5) scenario were generated using the multi-model ensemble based on the 
mean. This study provides credible and useful information for climate change mitigation and adaption in Ontario.

Keywords Regional climate model · NA-CORDEX · Multi-model ensemble · Temperature variability · Ontario

Introduction

Climate models are complex mathematical representations 
of the climate system. They are based on established physi-
cal laws such as conservation of mass, energy and momen-
tum (IPCC 2013). These models enable scientists to make 
future climate predictions, and aid in the analysis of climate 
impacts (Herrmann et al. 2016; Li et al. 2016; Wagner et al. 
2017). Although climate models show significant errors 
in certain processes (such as cloud formation, leading to 
potential inaccuracies in timing and magnitude), they can 
provide plausible estimates for future variations in climate, 

particularly for larger scales (Huo and Li 2013; Ragone et al. 
2016; IPCC 2013).

To support climate change mitigation and adaptation, 
many climate modeling studies were conducted to analyze 
the climatic changes over Ontario, Canada. For instance, 
Wotton et al. (2003) used the Canadian Climate Centre cou-
pled Global Climate Model (GCM) and the Hadley Cen-
tre’s HadCM3 GCM to predict future changes in temperature 
and precipitation in Ontario. Wang et al. (2013) developed 
a statistical downscaling tool based on a stepwise cluster 
analysis method to obtain high-resolution climate projec-
tions for Ontario. Wang et al. (2015) developed a coupled 
dynamical-statistical approach to generate future climate 
projections for Ontario. However, many of the previous 
studies over the domain of Ontario were based mainly on 
a single climate model. To the authors’ knowledge, there 
are no studies evaluating the performance of multi-model 
ensembles in Ontario.

An ensemble of multiple models is expected to outper-
form individual members of the ensemble (Barfus and Bern-
hofer 2014; Palmer et al. 2005). Multi-model ensembles are 
generally found to have a better performance than individual 
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models. Ensembles are groupings of distinct models that 
undergo basic statistical calculations to produce a model that 
is more representative of the domain (Yan et al. 2016). In 
its simplest approach, multi-model ensembles are formed by 
merging a number of models with equal weights (Hagedorn 
et al. 2005; Jarsjo et al. 2017; Wallach et al. 2016). As sug-
gested by Hagedorn et al. (2005), the simple multi-model 
ensemble has a higher likelihood for a better score than any 
single model. The most common climate models used are 
GCMs, to perform simulations across the globe (Zhai et al. 
2018). Their largest drawback is their low resolution (Zhao 
et al. 2015). Regional Climate Models (RCMs) are tools 
used to downscale the GCMs to have a higher resolution in 
a relatively smaller area.

The objective of this study is to create, validate and 
evaluate the performance of a multi-model ensemble over 
the domain of Ontario, Canada. This entails the following: 
(1) evaluating the performance of seven GCM and RCM 
combinations for simulating the average and extreme tem-
peratures across Ontario; (2) creating the multi-model mean 
and multi-model median ensembles and testing them over 12 
stations and over the domain of Ontario; and (3) selecting an 
ensemble with the best performance and generating future 
climate predictions for Ontario using the selected multi-
model ensemble. The results observed and gathered from 
this study are beneficial in the processes of decision-making 
and impact analyses for the future.

Methodology

In this study, two climate ensembles were developed based 
on four GCMs and four RCMs for Ontario, Canada. The 
individual GCM/RCM models as well as the developed 

multi-model ensembles were evaluated by comparing model 
results with observational data of the present climate. The 
methodologies used for ensemble development and model 
validation are described as follows.

Study area and data collection

Ontario, the second largest province of Canada in area, cov-
ers approximately 1.076 million km2 (Perera et al. 2000). 
It has a large number of water bodies, such as lakes and 
rivers, which significantly affect the climate in the region. 
The climate in Ontario can typically be considered as humid 
continental, except for parts of Northern Ontario under the 
influence of Hudson’s Bay, which have a more maritime cli-
mate (Perera et al. 2000).

In this study, two sets of historical climate data were col-
lected to validate the performance of the developed multi-
model ensembles: observed data at 12 stations and Climactic 
Research Unit (CRU) gridded data. Twelve stations within 
Ontario, shown in Table 1 and Fig. 1, were chosen to vali-
date the simulated data. The observed data were downloaded 
from the Digital Archive of Canadian Climatological Data 
provided by Environment and Climate Change Canada. Data 
with respect to three climate variables were downloaded: 
average surface temperature (tas), maximum surface temper-
ature (tasmax) and minimum surface temperature (tasmin). 
The time period for each station varied between 1937 and 
2015, depending on when observations began and stopped 
being recorded at the station. The second set of data based 
on observations was the CRU TS v4.00 dataset (Harris et al. 
2014). The CRU TS v4.00 dataset was mainly developed by 
the UK’s Natural Environment Research Council (NERC) 
and the US Department of Energy. It is maintained by the 
UK National Centre for Atmospheric Science (NCAS). 

Table 1  Twelve selected stations

No. Station name Short name Latitude Longitude Elevation Observation 
data time 
period

1 Windsor Airport Windsor 42.28°N 82.96°W 189.6 m 1940–2014
2 London International Airport London 43.03°N 81.15°W 278.0 m 1940–2006
3 Toronto City Center Airport Toronto City 43.63°N 79.40°W 173.4 m 1957–2006
4 Toronto Pearson International Airport Toronto Pearson 43.68°N 79.63°W 76.8 m 1937–2015
5 Wiarton Airport Wiarton 44.75°N 81.11°W 114.0 m 1947–2014
6 Ottawa International Airport Ottawa 45.32°N 75.67°W 222.2 m 1938–2011
7 North Bay Airport North Bay 46.36°N 79.42°W 370.3 m 1939–2014
8 Sault Ste Marie Airport Sault Ste 46.48°N 84.51° W 192.0 m 1945–2012
9 Timmins Victor Power Airport Timmins 48.57°N 81.38°W 383.4 m 1955–2011
10 Sioux Outlook Airport Sioux 50.12°N 91.90°W 294.7 m 1938–2013
11 Moosonee Moosonee 51.27°N 80.65°W 9.1 m 1932–2006
12 Big Trout Lake Big Trout 53.83°N 89.87°W 224.1 m 1953–1992
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Three variables were also downloaded for this dataset, tmp, 
tmpmx and tmpmn. These variables correspond to tas, tas-
max and tasmin, respectively. These data are in a resolution 
of 0.5° and covered a time period from 1901 to 2015.

Multi‑model ensemble

The simulated data were downloaded from the North Ameri-
can Coordinated Regional Downscaling Experiment (NA-
CORDEX) archive, a branch of the International CORDEX 
Initiative (Giorgi et al. 2009; Lucas-Picher et al. 2013). The 
NA-CORDEX models provide large datasets of projec-
tions for historical and future predictions. These individual 
models can generate large uncertainties. This is evident in 
the comparison of the historical and observed data for each 
model. Data with respect to three climate variables and two 
scenarios were downloaded. The variables were tas, tasmax 
and tasmin. They were downloaded with respect to the his-
torical (hist) and Representative Concentration Pathway 4.5 
(RCP4.5) scenarios. Seven GCM and RCM combinations 
(shown in Table 2) were used in the analysis. The historical 
scenario covered a period between 1950 and 2005, while the 
RCP4.5 scenario covered a period between 2006 and 2099.

Multi-model ensembles are a logical and accepted tech-
nique in climate studies (Weigel et al. 2010). The approach 
taken in this study is to give every member of the ensem-
ble equal weights. This method was used to develop two 
multi-model ensembles. The first ensemble developed 
was the multi-model mean ensemble. This ensemble was 

created by taking the average temperature of each climate 
model at each corresponding time interval in the period 
between 1951 and 2005. The second model developed was 
the multi-model median ensemble. This was produced 
using a similar method to the multi-model mean ensemble. 
However, instead of taking the average of all models in a 
time period, the median was found. This was also an indi-
cator of how much of an effect outliers in the simulations 
could have on the results. When comparing the simulated 

Fig. 1  Location of the selected stations

Table 2  GCM and RCM Combinations

Scenario GCM RCM Grid Modeling 
institution

hist CanESM2 CanRCM4 0.44° CCCma
CRCM5 0.44° UQAM
RCA4 0.44° SMHI

EC-EARTH HIRHAM5 0.44° DMI
RCA4 0.44° SMHI

MPI-ESM-LR CRCM5 0.44° UQAM
MPI-ESM-MR CRCM5 0.44° UQAM

RCP4.5 CanESM2 CanRCM4 0.44° CCCma
CRCM5 0.44° UQAM
RCA4 0.44° SMHI

EC-EARTH HIRHAM5 0.44° DMI
RCA4 0.44° SMHI

MPI-ESM-LR CRCM5 0.44° UQAM
MPI-ESM-MR CRCM5 0.44° UQAM
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data to the observed station data, the time period of the 
simulated data was matched with that of the observed data.

Evaluation of model performance

Numerous statistical methods were used to validate the 
CORDEX climate models and multi-model ensembles. 
Firstly, the coefficient of determination  (R2) was used 
as a measure of success of predicting the observed data 
from the simulated data. The coefficient of determination 
is characterized as proportion of variance ‘explained’ by 
the model (Nagelkerke 1991).  R2 ranges from 0 to 1. An 
 R2 value of 1 indicated that the simulated data perfectly 
fit the observation data. Secondly, the root mean square 
error (RMSE) was calculated. The RMSE has been used 
as a standard statistical metric to evaluate climate model 
performance (Chai and Draxler 2014). Thirdly, Taylor dia-
grams were constructed to provide a statistical summary 
of the correlation, RMSE and standard deviation of the 
comparison of each model, and of the multi-model ensem-
ble, with the observed data. Fourthly, a monthly hypoth-
esis test was carried out for each multi-model ensemble 
at each station, resulting in 144 hypothesis tests for each 
variable with the following null and alternate hypotheses 
(Katz 1992):

where H0 represents the null hypothesis and H
a
 represents 

the alternate hypothesis. �1 is the mean of the observed data 
and �2 is the mean of the simulated data. These sample 
means were calculated by finding the monthly average over 
the period of years at the station, then the hypothesis test 
was carried out. The confidence interval at a 90 and 95% 
confidence level was also found, which can be an alternative 
to formal hypothesis testing procedures (Katz 1992). The 
advantage of a confidence interval is that it gives informa-
tion about the differences in the range of magnitudes, rather 
than answering ‘yes’ or ‘no’ to a hypothesis test. In the other 
words, the difference between observed and simulated data 
has a 90% or 95% chance of being contained in that range. 
Finally, monthly bias maps were plotted for each climate 
variable over the domain of Ontario to evaluate the perfor-
mance of each model and the ensembles. Maps for the dif-
ference between the two temperature extremes, tasmax and 
tasmin were also plotted. After evaluating the performance 
of the two ensembles, two maps based on annual tas aver-
ages of the multi-model mean ensemble were plotted for the 
RCP4.5 scenario over two thirty year periods: 2040–2069 
and 2070–2099. This provided a prediction for the trend of 
temperatures until 2099.

(1)H0 ∶ �1 − �2 = 0,

(2)H
a
∶ �1 − �2 ≠ 0,

Results

Validation of model performance with observation 
data at selected stations

Twelve stations were selected within Ontario. The histori-
cal simulated tas, tasmax and tasmin were extracted and 
compared with the observed tas, tasmax and tasmin from 
each station. The data were then statistically evaluated 
to validate the models. Seven GCM and RCM combina-
tions were analyzed at each station, and the multi-model 
mean and median ensembles were generated. The multi-
model ensembles were graphed (shown in Fig. 2) and com-
pared to the observed data using four different statistical 
techniques.

R2 and RMSE values were calculated for each of the 
seven GCM and RCM combinations, as well as for the 
multi-model ensembles. The  R2 and RMSE values for the 
Toronto Pearson station are given in Table 3 as an exam-
ple. The  R2 values compared each of the models to the 
observed data from the stations. The  R2 values for the 
two multi-model ensembles were highest in every station 
under every variable, indicating that they have the high-
est correlation to the observed data. Furthermore, the  R2 
value from the multi-model mean ensemble was higher 
than that of the multi-model median ensemble. This dem-
onstrates that the data used in creating the multi-model 
mean ensemble were not largely affected by outliers and 
have a stronger positive relationship with the observed 
data than any other model.

The RMSE results were similar to  R2. The multi-model 
mean ensemble had the lowest RMSE values at all 12 sta-
tions for the tas variable. Wiarton was the only station 
where the RMSE of the multi-model mean ensemble was 
not lowest in tasmax. Four stations did not have the low-
est RMSE in tasmin: these stations are Wiarton, Toronto 
City, Sault Ste Marie and Ottawa. In each instance where 
RMSE was not lowest in tasmax and tasmin, it was second 
lowest. This is mainly due to one model having a large 
RMSE (such as EC-EARTH - HIRHAM5 under tasmax 
in Wiarton), which distorts the multi-model mean ensem-
ble RMSE. Similar to the  R2 results, the multi-model 
mean ensemble produced lower RMSE values than the 
multi-model median ensemble, indicating that the multi-
model mean ensemble is a more accurate representation 
of the observed data. While the  R2 data show that there 
is a strong relationship between the multi-model mean 
ensemble and observed data, the RMSE shows that the 
multi-model mean ensemble is usually the best predictive 
model of the observation data.

Taylor diagrams (Taylor 2001) were constructed to help 
with the validation process. The monthly  R2, RMSE and 
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standard deviation were graphed (Fig. 3). By observing the 
Taylor diagram, we can see that the point corresponding to 
the multi-model mean ensemble (denoted as Average) is 
closest to the reference point in all the monthly Taylor dia-
grams. This indicates that the multi-model mean ensemble 
has the highest  R2 and lowest RMSE. The Taylor diagrams 
also show that the multi-model mean ensemble is more 
reliable and resembles the observed data much better than 
the multi-model median ensemble. This resulted in the 
rest of the analysis being done using only the multi-model 
mean ensemble.

Hypothesis tests were used to validate the data at 12 sta-
tions. The p values of the 144 hypothesis tests for tas, tasmax 
and tasmin were calculated. Since most of the 144 p values 
were below the significance level of 0.05 (90 for tas, 103 for 
tasmax and 122 for tasmin), the null hypothesis was rejected 
in most of the tests. For the tests where the null hypothesis 
was accepted (mainly in spring, summer, and fall months for 
tas; spring and summer months for tasmin; spring and fall 
months in tasmax), it is implied that the differences between 
observed and simulated data are not statistically significant. 
The results are consistent with the  R2 and RMSE results that 
have been discussed above. However, this cannot ensure that 
the data have been validated by this method, since the sam-
ple sizes are relatively small (about 40–50 depending on the 
period at different stations). It is possible that if the sample 
size grows larger, the null hypothesis may be rejected (Katz 
1992). On the other hand, for the tests where the null hypoth-
esis was rejected, which typically occurred in the winter 
periods or at stations located near large water bodies (for 
example, Sault Ste Marie or Toronto City), the differences 
between the observed and simulated values are statistically 
significant. To cope with the limitations of this validation 
approach and further validate the developed model, a con-
fidence interval approach which is one alternative to formal 
hypothesis testing, was used.

The differences between observed and simulated data 
were also found to calculate the error ranges around these 
numbers. For example, at Big Trout, the average difference 

in tas in January is − 3.38, while the confidence intervals 
for 90 and 95% confidence levels are (− 4.58, − 2.19) and 
(− 4.38, − 2.39), respectively. This is slightly different than 
the RMSE method, since the main purpose of the RMSE 
method is finding a positive number, which indicates the 
relationship between observed and simulated data, where the 
differences are squared. The maximum positive and maxi-
mum negative differences were also calculated. For tas, the 
maximum positive difference is 1.82 °C, and occurs in June 
at Toronto City, while the maximum negative difference is 
− 5.59 °C, and occurs in December at Moosonee. In both 
tasmax and tasmin, the maximum positive difference occurs 
at Sault Ste, 4.23 °C in June for tasmax, and 0.45 °C in May 
for tasmin, while the maximum negative difference occurs 
in the winter period at Moosonee, −5.59 °C in December for 
tasmax, and − 7.31 °C in January for tasmin. Since the mod-
els could not be validated through comparison of the means, 
confidence intervals were used for further model validation.

The confidence interval approach allows the approxima-
tion of ranges where the differences between observed and 
simulated values fall into a certain confidence level (typi-
cally 90% or 95%). The confidence intervals could provide 
the differences between observed and simulated values at 
different stations in different months. The average, maxi-
mum positive and maximum negative differences between 
observed and simulated means were calculated. In tas, the 
average difference is − 0.646 °C, while maximum positive 
and maximum negative differences are 1.82 and − 5.59 °C, 
respectively. In tasmax and tasmin, the values are 0.21, 
4.23, − 3.87 °C and − 2.06, 0.45, − 7.31 °C, respectively. 
The confidence intervals suggest that the multi-model 
ensemble performs well in all months except for the winter 
season and is within an acceptable error range (Suklitsch 
et al. 2011). The calculated average confidence intervals, 
which were obtained by taking the average of absolute differ-
ences of all stations from January to December, were ± 1.27, 
± 1.41, ± 2.16 °C for tas, tasmax and tasmin, respectively. 
When the winter months were omitted from the calcula-
tion, the average confidence intervals obtained by taking the 

Table 3  R2 and RMSE 
values for Toronto Pearson

Model R2 RMSE

GCM RCM tas tasmax tasmin tas tasmax tasmin

CanESM2 CanRCM4 0.92 0.92 0.89 9.95 12.77 13.20
CanESM2 CRCM5 0.93 0.93 0.91 7.84 8.58 10.13
CanESM2 RCA4 0.92 0.92 0.90 12.83 10.86 21.41
EC-EARTH HIRHAM5 0.91 0.91 0.90 11.64 17.81 9.80
EC-EARTH RCA4 0.91 0.92 0.88 9.52 10.21 13.61
MPI_ESM_LR CRCM5 0.92 0.91 0.90 10.13 12.41 9.47
MPI_ESM_MR CRCM5 0.92 0.91 0.90 10.13 12.41 9.47
Multi-Model Mean 

Ensemble
0.95 0.95 0.94 4.99 5.65 6.49
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Fig. 3  Taylor diagrams for 12 stations—tas 
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average of absolute differences of all stations from January 
to December, were ± 0.77, ± 1.27, ± 1.46 °C for tas, tasmax 
and tasmin, respectively. Moreover, the largest confidence 
intervals were found in tas, tasmax and tasmin at 90 and 95% 
confidence levels. In tasmax, the largest interval occurred 
in December at Big Trout, which was (− 4.55, − 2.46 °C) 
and (− 4.76, − 2.25 °C) at the 90% and 95% confidence 
levels respectively. Similarly, in tas and tasmin, the largest 
intervals occurred in December at Moosonee, which were 
(− 6.66, − 4.53 °C) and (− 6.87, − 4.31 °C) for tas, (− 8.39, 
− 6.01 °C) and (− 8.62, − 5.77 °C) for tasmin.

Validation of model performance 
with observation‑based gridded datasets

The grids from the gridded CRU observation data (Harris 
et al. 2014) and NA-CORDEX simulated data were each 
placed on a grid of the map of Ontario, and the closest point 
to each coordinate was found. This enables us to compare 
the temperatures at the specific points while minimizing 
errors. Results from the 12 stations strongly suggest that 
the multi-model mean ensemble resembles the observed 
data more accurately than the multi-model median ensem-
ble. Analyses of the gridded data were only carried out using 
the seven models and the multi-model mean ensemble. Vari-
ous techniques were used to validate the gridded datasets.

The  R2 values were generated by comparing the observed 
and simulated data across every point on the grid. The 
results are shown in Table 4. The  R2 values are highest for 
the multi-model mean ensemble under all three variables. 
These results show that the multi-model mean ensemble and 
observed data have a stronger positive relationship than any 
other model over the entire domain of Ontario.

The RMSE values were also generated to compare the 
observed and simulated data. The RMSE for the multi-model 
mean ensemble is the lowest under tasmax; however, it is the 
third lowest under tas and tasmin. This is due to some indi-
vidual models (such as EC-EARTH - HIRHAM5 under tas-
max) with very large RMSE values, which distort the mean.

The bias at each point on the grids was calculated by find-
ing the difference between the observed and simulated data 
(Fig. 4). This showed locations and periods during the year 
at which the biases are large or small. The maps indicate 
that the simulated models show a larger bias in the win-
ter months, generating values that are lower than observed. 
The models also consistently generate large biases near the 
Great Lakes and Hudson’s Bay. The largest absolute bias was 
11.20 °C at (− 86.32°, 55.96°) which falls right off the shore 
of Northern Ontario, in Hudson’s Bay.

Analysis of temperature variability over Ontario, 
Canada

The developed multi-model mean ensemble was used to 
predict future temperature variability over Ontario. The 
scenario analyzed was the Representative Concentration 
Pathway (RCP) 4.5. This scenario stabilizes a radiative 
forcing of 4.5 W/m2 in 2100, allowing climate models to 
explore the climate system’s response to moderating the 
anthropogenic components in radiative forcing (Thomson 
et al. 2011). Many studies choose to focus on the RCP4.5 
scenario (Laprise et al. 2013; Lee and Wang 2014; Rotstayn 
et al. 2012). The multi-model mean ensemble predicts an 
increase in temperature of 2.89 °C between the fifty-year 
historical period of 1951–2005 and the thirty-year future 
prediction period of 2040–2069 (Fig. 5).

The future temperature projections developed in this 
study have been made available to the public and can be 
downloaded through the Mendeley data portal (https ://doi.
org/10.17632 /6dtpj schn7 .3). These datasets are the multi-
model mean ensemble specific to tas, tasmax, and tasmin 
over the two periods of 2040–2069 and 2070–2099, covering 
the Province of Ontario using a grid of approximately 0.44°. 
This allows open access to high-resolution temperature pro-
jections for assessing climate change impacts on local com-
munities and formulating effective mitigation and adaptation 
strategies for Ontario.

Table 4  R2 values across the 
whole domain

Model R2 RMSE

GCM RCM tas tasmax tasmin tas tasmax tasmin

CanESM2 CanRCM4 0.945 0.946 0.928 16.339 13.321 28.020
CanESM2 CRCM5 0.977 0.969 0.963 6.735 5.679 15.253
CanESM2 RCA4 0.967 0.963 0.946 9.997 8.374 21.100
EC-EARTH HIRHAM5 0.958 0.940 0.963 12.190 19.963 15.117
EC-EARTH RCA4 0.953 0.950 0.933 7.678 8.718 12.217
MPI-ESM-LR CRCM5 0.982 0.974 0.970 3.772 8.341 5.477
MPI-ESM-MR CRCM5 0.982 0.974 0.970 3.772 8.341 5.477
Multi-Model Mean 

Ensemble
0.983 0.977 0.975 4.108 4.511 9.753

https://doi.org/10.17632/6dtpjschn7.3
https://doi.org/10.17632/6dtpjschn7.3
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Discussion

The validation with observation data at the 12 selected 
stations shows that the data from the multi-model mean 
ensemble has a strong positive relationship with obser-
vation data and were insignificantly affected by outliers. 
These results are in agreement with results from Kirtman 
and Min (2009), where the multi-model ensemble has 
the highest correlation, indicating that the multi-model 
ensemble performs better than the individual models. The 
results are similar to those from Lambert and Boer (2001), 
who also state that the multi-model mean tends to have a 
lower RMSE than most individual models. Krishnamurti 
et al. (2000) also discovered an improvement in RMSE 

for a when a multi-model ensemble was used over a single 
model.

Results from the hypothesis tests were also used to vali-
date the model performance. Since most of the 144 p val-
ues were below the significance level of 0.05. According 
to Katz (1992), such statistically significant discrepancies 
do not necessarily suggest poor performance of the model. 
Devineni et al. (2008) used a similar approach where the null 
hypothesis was also rejected. To address the limitations of 
this approach, a confidence interval approach which is one 
alternative to formal hypothesis testing, was used. Results 
from the confidence interval indicated a larger variation in 
temperature in the winter months, similar to Dasari et al. 
(2014). Winter months have yielded larger biases and RMSE 

Fig. 4  Temperature bias: a January, b February, c March, d April, e May, f June, g July, h August, i September, j October, k November, l 
December
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values than winter months in previous studies (Rozante et al. 
2014). Additionally, stations in locations near large water 
bodies such as Big Trout and Moosonee yielded large biases. 
These observations are in agreement with Xue et al. (2017), 
which states that lake surface temperature and ice coverage 
have a large impact on regional climate.

The validation with observation-based gridded datasets 
shows that the multi-model mean ensemble generated  R2 
values larger than any individual model in all three climate 
variables. This is not uncommon as seen by studies done by 
Zhang et al. (2011) and Kirtman and Min (2009). Similarly, 
RMSE for the multi-model mean ensemble is the lowest for 
all climate variables except tasmax. The EC-EARTH - HIR-
HAM5 has a large RMSE value that distorts the mean. This 
model has shown large RMSE under maximum temperatures 
in the past (Mezghani et al. 2017). To find the locations 
and times where large deviations from observed data occur, 
the bias at every coordinate was calculated throughout the 
year. The results show large biases in the winter months. 

Climate models are notorious for having a relatively poor 
performance during winter months due to deficiencies in 
model surface physics (Dasari et al. 2014). Furthermore, 
large biases were observed near large water bodies. One of 
the main unresolved issues in climate modelling is the erro-
neous representation of the lake-ice-atmosphere interaction 
in RCMs (Xue et al. 2017), which is a reason for this large 
uncertainty.

According to the ensemble outputs, the temperature 
would increase by 2.89 °C on average from the period of 
1951–2015 towards 2040–2069. This falls within the range 
of the assumptions of the Government of Ontario, who stated 
an increase in temperatures in the range of 2.50–3.70 °C 
by 2050 (MOECC 2011). This rise in temperatures would 
have adverse effects on many natural resources in Ontario 
(MOECC 2011). For example, water levels are expected to 
decrease due to a reduction in precipitation and increased 
demand. An increase in extreme weather events is expected 
to have direct effects on the energy infrastructure (MOECC 

Fig. 5  30-year annual mean 
temperature over Ontario 
under the RCP4.5 scenario: a 
2040–2069 and b 2070–2099
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2011). Increasing temperatures are also predicted to increase 
costs by $5 billion per year in 2020 to between $21 billion 
and $43 billion per year by the 2050s (Demerse 2016).

Conclusions

Climate models that were accessed through the NA-COR-
DEX were used in creating two multi-model ensembles, 
a multi-model mean ensemble and a multi-model median 
ensemble. Two observation-based datasets were used to 
validate the performance of the developed ensembles. The 
models were tested over 12 stations in Ontario using data 
obtained from the Government of Canada, and the ensem-
bles were also compared over the whole domain of Ontario 
using the CRU TS v4.00 observationally based gridded data.

The multi-model mean ensemble was found to be the 
superior model at all 12 stations. This was evident when 
the evaluation for all seven models as well as the two multi-
model ensembles was carried out. This was an indicator that 
the multi-model mean ensemble was more accurate across 
the domain of Ontario. The rest of the study was completed 
using the multi-model mean ensemble and the results proved 
that it is preferable to the multi-model median ensemble as 
well as every individual model. The future predictions using 
the multi-model ensemble showed a heating trend in all three 
variables analyzed, tas, tasmax and tasmin. This is in agree-
ment with the trends from the International Panel of Climate 
Change’s Fifth Assessment Report.

By far, the largest limitation in this study was the sig-
nificant difference in the nature of the models used in the 
ensemble. These models are likely to have a different num-
ber of variables which is the reason that some are more 
representative of the observed data. This would create 
complications in the statistical methods used to create the 
ensembles. Knowing how many variables are representative 
of each model would help in adding different weights to 
specific models when creating the multi-model ensembles. 
A similar method was used by (Tebaldi and Knutti 2007); 
however, their model weights were based on bias and con-
vergence criteria.
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