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Abstract
Information diffusion techniques and Monte Carlo methods have been widely used in solving all kinds of problems of small 
samples with incomplete data in the field of natural disaster risk assessment such as environmental resource rating, flood 
monitoring and temperature changing. Data are not the only thing that matters for natural disaster risk assessment, but with 
enough data, we can accurately predict the time, place, scale and loss of future disasters. It is important to simulate the com-
plete data scene when there is a minimum sample size. In this paper, we collect temperature data from 3050 meteorological 
stations in China and use the Monte Carlo simulation method to investigate the effect of sample size on estimating the nor-
mal information diffusion. The results show that (1) for the same sample, the information diffusion method is significantly 
better than the traditional histogram method. (2) Using the hard histogram estimation method, the recommended sample 
size is 85 or more, which is slightly larger than the traditional threshold value (i.e., 30), while using the information diffu-
sion estimation method, the recommended sample size decreases to 45 or more. (3) Simulation experiments show that, with 
insufficient samples, both estimation methods, i.e., the information diffusion and the traditional histogram methods become 
invalid because of its poor correlation, low robustness, high RMSE and variance values. These results indicate that the Monte 
Carlo simulation method and information diffusion technique have certain practical reference value in the research of natural 
disaster risk assessment in the case of a small sample.
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Introduction

In the process of natural disaster risk analysis and assessment, 
the sample size is an important part which can affect the pre-
cision of assessment results. If the sample size is too small, 
it will lead to inaccurate and meaningless evaluation results 
(Kong et al. 2015; Myint et al. 2008; Parsons et al. 2016; 
Wang et al. 2015a, b). However, in some cases, it is difficult to 

extract sufficient information from incomplete data from a few 
samples (Hao et al. 2014; Li et al. 2013). To solve the problem 
of lack of information caused by small sample sizes, Professor 
Chong-fu Huang proposed the information distribution and 
diffusion method in 1995 (Kazama et al. 2012; Nagata and 
Shirayama 2012). The method is now widely applied to the 
risk analysis of a variety of disasters including earthquakes, 
floods, hailstorms, city fires, loess collapsibility, and rain-
storms (Levitan and Wronski 2013; Xue and Gencay 2012; 
Li et al. 2012; Bai et al. 2014; Mundahl and Hunt 2011). The 
method is recognized by the industry as the most effective way 
to manage information incompleteness (Feng and Luo 2008; 
Lin 2015; Maillé and Saint-Charles 2014).

But what is information incompleteness? The mathemati-
cal expressions of information completeness are derived from 
its rigorous theory (Xu et al. 2013). The theoretical definition 
of information completeness is too abstract and it is difficult 
to guide the practical activities based on the theory. A sam-
ple size smaller than 30 is statistically considered to cause 

 * Jiafu Liu 
 liujiafu750506@126.com

1 College of Tourism and Geographical, Sciences, Jilin 
Normal University, Siping 136000, China

2 Academy of Disaster Reduction and Emergency 
Management, Beijing Normal University, Beijing 100875, 
China

3 Department of Environment, Institute of Natural Disaster 
Research, Northeast Normal University, Renmin Street, 
Changchun 130024, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-018-7612-2&domain=pdf


 Environmental Earth Sciences (2018) 77:480

1 3

480 Page 2 of 8

information incompleteness (Sun and Zhang 2008; Huang 
2005; Gamboa et al. 2015; Malterud et al. 2015; Perneger 
et al. 2015). Although 30 is given as the threshold for a small 
sample, the concept of the small sample itself is very vague 
(Baio et al. 2015; de Bekker-Grob et al. 2015; Dembkowski 
et al. 2012; Engblom et al. 2016; Schorr et al. 2014).

In the field of environmental geosciences, when studying 
the natural factors such as precipitation, temperature and 
number of earthquakes, the size of the sample is directly 
related to the accuracy of the final result. Therefore, from a 
statistical point of view, we attempt to collect data of 3050 
weather stations in China as the experimental raw data. The 
Monte Carlo method is used to resample the original experi-
mental data to build a probability distribution interval with 
a certain confidence. By comparing the information diffu-
sion method with the traditional hard histogram method, a 
method can be found that can better reflect the actual state 
under the condition of small sample, so that an intuitive 
understanding can be provided when the related scientific 
workers deal with incomplete information. (Andreotti et al. 
2014; Dehghani et al. 2014; Elanique et al. 2012; Haar et al. 
2017; Medhat et al. 2017; Newhauser et al. 2007).

Data and methods

Data and processing

Considering the amount of data have a great impact on the 
experimental results, it requires a large amount of data as the 
basic data source to test which method can be used to obtain 
better results in different sample sizes and find out what 
is the minimum sample size if we want to make the data 
results good enough. This study selected China as the study 
area. Its topography is high in the west and low in the east. 
The climate in China is complex and diverse but distributed 
in an orderly manner from south to north. China locates 
in the northern hemisphere, spans six temperature zones. 
The temperature rises from north to south and also has an 
obvious change with season. There are many meteorologi-
cal stations in the country, which are densely populated in 
the south and sparsely in the north. The overall temperature 
conditions meet the requirements of the experiment. We 
collect all the weather data in June 2016 from weather sta-
tions across the country in the database of China Weather 
Network (http://www.weath er.com.cn/). First, the weather 
site data of extreme weather or abnormal temperature was 
removed through the screening method, and then averaging 
the remaining data, finally we got a total of 3050 temperature 
data of the weather stations (Fig. 1).

Regarding the selected temperature data as the parent Ω, 
the Monte Carlo method is used to resample data in the par-
ent data. Collect n samples (n = 5, 6, 7,…, 1000) randomly, 

and then collect each of these NTH samples we got just now. 
In the case of different pseudo-random numbers, repeat the 
experiment m times (m = 100) [11,17]. We count all the sam-
ple data generated by re-sampling (we can name it data set 
A for distinction) using the traditional histogram statistics 
method (hard histogram) and the improved histogram method 
under the information allocation (soft histogram) separately 
to get dataset B. In the next step, we estimate data set B and 
calculate the expected and standard deviations of the two his-
togram estimates separately. By comparing the correlation 
coefficient and the average value (expectation value) of the 
correlation coefficient between the actual value and the theo-
retical value of the traditional hard histogram and information 
diffusion model, the experimental conclusion can be obtained. 
The core of the experimental design consists of two parts: 
(1) the histogram estimate and (2) the impact of sample size 
on normality information diffusion measure design (Fig. 2):

Monte Carlo simulation method

The Monte Carlo (MC) method, also known as the random 
sampling method, belongs to a branch of computational 
mathematics. It was developed in the 1940s for the field of 
atomic energy. The traditional method could not produce 
results close to the actual values; thus, it was difficult to 
obtain satisfactory results. However, since the Monte Carlo 
method is able to simulate the actual physical processes, it is 
capable of getting reasonable results. Currently, the Monte 
Carlo method is widely used in various subjects (Andreotti 
et al 2014; Dehghani et al. 2014; Elanique et al. 2012; Gam-
boa et al. 2015; Gregory and Graves 2004).

The Monte Carlo (MC) method is very different from 
general calculation methods. The general calculation method 
for solving multi-dimensional complex problems is very dif-
ficult, unlike the Monte Carlo method. Monte Carlo analy-
sis is based on direct tracing of the particles and thus the 
physical aspect is relatively clear and easy to understand. It 
uses the random sampling method that simulates the particle 
transport process reflecting the statistical fluctuation of the 
law without the complexity of multidimensional, multi-fac-
tor models. The limit is a good way to solve complex particle 
transport problems with a clear and simple MC program 
structure. It is easier to obtain intermediate results with MC 
models and they can be applied with great flexibility to a 
variety of problems (Del Moral et al. 2011; Haar et al. 2017; 
Medhat et al. 2017; Tang et al. 2016; Vadapalli et al. 2014).

Besides the advantages, the MC method has a few short-
comings: one of them is the slow convergence speed prob-
lem and error in models of probabilistic nature. Increasing 
the number of simulations to reduce the sampling error 
greatly increases the computational intensity of the model 
(Ableidinger et al. 2017; Dornheim et al. 2015; Newhauser 
et al. 2007; Wang et al. 2015a, b).

http://www.weather.com.cn/
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If experimental calculations are performed directly on the 
basis of existing data, there are some interference conditions 
that cannot be avoided which can lead to errors in the experi-
mental results. Based on the advantages of the MC method, 
many limitations can be avoided early in the experiment, 
and real-world sample data can be simulated more realisti-
cally. Especially in the case of a small sample state, the MC 
method is very suitable to resample the existing data again 
so that we can get accurate experimental results.

The principle of information diffusion and diffusion 
estimation

According to the principle of information diffusion, the 
maternal probability density function estimation is defined 
as diffusion estimation, n > 0, is a constant, so (Bai et al. 

2015; Hao et al. 2014; Li et al. 2013; Liang et al. 2012; Lin 
2015; Maillé and Saint-Charles 2014; Shin 2009):

Type (1) is a diffusion estimation of maternal probabil-
ity density function f(y), µ(x) is called the diffusion func-
tion and n is the window width,

The concrete forms of diffusion µ(x) are the key to the 
diffusion estimation. For different µ(x) values, the results 
can predict different diffusion values. According to the 
theory of molecular diffusion, the function of normal dif-
fusion can be deduced as:

(1)f̂ (y) =
1

nΔn

n∑
i=1

𝜇

(
y − yi

Δn

)
.

(2)x =
y − yi

Δn

.

Fig. 1  Study area map
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Therefore, substituting type (3) in type (1), the normal 
diffusion estimation of the maternal probability density 
function can be deduced as:

where h = σΔn was considered as the window width of the 
standard normal diffusion. From type (4), the normal diffu-
sion estimation f(y) of the parent probability density is not 
only related to the observed values yi and the numbers of the 
observed values n, but also related to the window width H 
of the standard normal diffusion.

When the observations are completed, the observed val-
ues and the number of observed values n are known, and 
the window width h is unknown. For confirming the win-
dow width H, a simple calculation method is adapted for 
checking the width of the window. According to the close 
principle, the empirical formula of window width h can be 
deduced as:

(3)�(x) =
1

�
√
2�

n�
i=1

exp

�
−

�
y − yi

�2
2h2

�
.

(4)f̂ (y) =
1

nh
√
2𝜋

n�
i=1

exp

�
−

�
y − yi

�2
2h2

�
,

where b = max
{
xi
}
, a = min

{
xi
}
; i ∈ (1, n).

Histogram estimation

The hard histogram model is a traditional histogram model. To 
construct a traditional histogram model, it needs to be divided 
into N intervals of width h, then set the midpoint of each inter-
val and select the control point interval. The soft histogram 
estimation is based on the traditional histogram model through 
the distribution of information obtained by improving the his-
togram model. According to the below equation, we calculate 
the probability of each random sample point that falls within 
each section:

The following equation calculates the cumulative 
probability:

where xi is the ITH sample point, hx = 0.5, uj is the midpoint 
of the interval for J.

Normalization of different interval probabilities is presented 
in the following equation:

To investigate the influence of the sample size on informa-
tion diffusion, this experiment uses two indicators: the correla-
tion coefficient and root mean square error [Eqs. (8), (9)]. The 
correlation coefficient (r) is a measure of the degree of correla-
tion between variables. Its value lies between − 1 and 1. For |r| 
close to 1, the correlation between two variables is stronger.

where x̄, ȳ are the mean values of the variables.
The root mean square error is a measure of the difference 

between two variables and is defined by:

h =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.8146(b − a), n = 5

0.5690(b − a), n = 6

0.4560(b − a), n = 7

0.3860(b − a), n = 8

0.3362(b − a), n = 9

0.2986(b − a), n = 10

2.6851(b − a)∕(n − 1), n ⩾ 11

,

(5)�(xi) =
1

hx

√
2�
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2
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2

�
.

(6)qj =
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,

(7)qj = qj∕
∑

qi.

(8)r =

∑n

i=1
(xi − x)(yi − y)

∑n

i=1
(xi − x)

2
(yi − y)

2
,

Fig. 2  Monte Carlo simulation flowchart
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Conclusions

To make the experimental procedure simply and select the 
subsequent impact indicators conveniently in the experi-
ment, first of all, based on the understanding of normal prob-
ability density function, this paper divides this curve into 
nine intervals on [0,54], the midpoint of normal distribution 
interval is [3,9,15,21,27,33,39,45,51], and then the function 
is integrated in each interval to get the normal distribution 
probability under each interval, corresponding to the mid-
point of the normal distribution one by one, which is [0.0
401,0.0655,0.121,0.1747,0.1974,0.1747,0.121,0.0655,0.04
01]. The results are shown in Table 1. Then the resulting 

(9)rmse =

√√√√ n∑
i=1

(xi − yi)
2∕(n − 1).

probability density values are subjected to a hard histogram 
density estimation operation (Table 1).

According to the above experimental scheme, the data 
are compiled and implemented using Python. Using Monte 
Carlo simulation results, the influence of the sample size on 
the diffusion of normal information is shown in Figs. 3 and 
4, respectively.

Figure 3 shows the results of 100 Monte Carlo simula-
tions for the soft histogram coefficient of the correlation 
between the theoretical and simulated value and hard histo-
gram coefficient of the correlation between the theoretical 
and simulated value of the mean (expected). It can be obvi-
ously seen that the correlation coefficient of the theoretical 
value of the soft histogram estimation is much better than 
that of the traditional hard histogram, which shows that the 
soft histogram estimation method can get better experimen-
tal results.

Figure 4 shows the results of 100 Monte Carlo simula-
tions for the soft RMSE and hard histogram coefficient of the 
correlation between the theoretical and simulated value of 
the mean (expected). The conclusions can be drawn from the 
Fig. 3 and Fig. 4 that (1) with the increase in sample size, for 
both the traditional and soft histogram estimation method. 
This is in line with the statistics of the large numbers theo-
rem; hard and soft histogram estimation methods are more 
likely to converge compared to the histogram method. (2) 
With the increase in the sample size, for both soft and hard 
estimation methods, the sample variance converges. (3) To 
achieve the same RMSE or correlation coefficient value, the 
required sample size is far less when the soft approach is 
used (45 or more) as the sample estimation method than 
when the hard approach is used (85 or more).

Table 1  Normal probability density function value in the cumulative 
probability under each section

Extent Midpoint Probability

[0, 6] 3 0.0401
(6,12] 9 0.0655
(12,18] 15 0.1210
(18,24] 21 0.1747
(24,30] 27 0.1974
(30,36] 33 0.1747
(36,42] 39 0.1210
(42,48] 45 0.0655
(48, 54] 51 0.0401

Fig. 3  Sample size estimation for normal diffusion (coefficient of correlation)
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Discussion

Figures 3 and 4 reveal the unique advantages of the soft 
estimation methods in solving the problem of small sample 
sizes (incomplete samples). Small samples can be used with 
the traditional histogram method for the large sample esti-
mation of the effect of the same law; this is also the main 
reason why the current method mentioned in the paper is for 
complete samples under non-extensive applications.

After processing the air temperature data, we found that 
if the traditional hard histogram estimation method is used, 
the ideal convergence state will be achieved when the sample 
size is above 85, while the soft histogram estimation method, 
can obtain good results when the sample size reaches 45; 
so, to get the best sample capture, use a sample size of at 
least 45. Although the soft histogram method requires fewer 
samples than the traditional hard histogram method, the data 
obtained are far superior to the traditional hard histogram 
method. However, with very few sample data, both the tradi-
tional hard histogram estimation method and the soft histo-
gram estimation method cannot get good results, resulting in 
a large final result error. The sample size is still a key factor.

The experimental results show that when the sample size 
reaches the best capture value, the histogram will achieve the 
best convergence. After that, the trend is stable and the fluc-
tuation is very slow. Even if the sample volume is increased, 
there will be no obvious change. Therefore, to reduce the 
consumption of calculation time, when the sample size 
reaches the best capture, that is to say, when the sample 
size of the soft histogram method is 45, stop the sample size 
increase and complete the simulation of the sample size.

For small samples, neither soft nor hard estimation 
methods can effectively solve the problem of incomplete 

information from the process under the inversion of reality. 
In current research efforts, scientists mostly use soft estima-
tion methods for the analysis and evaluation of natural disas-
ter risks. They use smaller samples to analyze the potential 
uncertainties associated with these analyses and to deter-
mine whether they could satisfy users’ production practice 
needs. This could be a future research topic.

The traditional sample size for the community to deter-
mine whether the information is complete is 30, which is 
considered unreasonable. Since the sample size is small, the 
points are relatively large and, therefore, they may be blurry 
between the complete and incomplete information regions. 
Therefore, the soft estimation method is in fact not a good 
solution to the problem of incomplete information. A bet-
ter solution to this problem is needed to increase the model 
accuracy.
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