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Abstract
In Scopia basin, central Greece, a hydrochemical investigation was completed. Groundwater samples from 41 sites were used 
to assess the natural and anthropogenic impacts in groundwater, utilizing the principal component analysis (PCA) involved 
with the inverse distance weighted (IDW) interpolation modeling and hierarchical cluster analysis (HCA). Best fit model to 
explain the spatial distribution of both hydrochemical parameters and PCA was chosen by optimizing the IDW interpolator’s 
parameters. Precision of the model was picked based on less root-mean-squared prediction error (RMSPE) amongst predicted 
and actual values measured at the same locations. Groundwater exhibit Ca–Mg–HCO3 as the dominant hydrochemical type 
and their greater part are mixed waters with non-dominant ion. Interpolation models demonstrate high estimations of nitrates 
in zones with agricultural activities and high estimations of nickel and chromium in regions with the strong presence of 
ultrabasic rocks. Dominant part of the groundwater samples surpasses in many cases the European Community (EC) drink-
ing water permissible limits. Thus, they are unsuitable for human consumption. PCA illustrated four factors, which clarified 
80.62% of the aggregate variance of data and HCA classified two statistically significant clusters of sampling sites. Results 
show natural procedures ascribed to the weathering of the minerals contained in the ultrabasic rocks and anthropogenic 
influences related to the use of fertilizers and wastewater leak. In light of FAO standards and Richards’s classification, the 
groundwaters are reasonable for irrigation purposes, featuring waters with low sodium hazard and moderate salinity hazard.

Keywords  Groundwater hydrochemistry · Principal component analysis · Hierarchical cluster analysis · Inverse distance 
weighting · Scopia basin

Introduction

The groundwater bodies are associated with the earth’s solid 
phase (soils, rocks), and they change subjectively through 
natural procedures (McArthur et al. 2004; Bourette et al. 
2009; Jiang et al. 2009; Mills et al. 2011) and different 
anthropogenic impacts. Agrarian practices, for example, 
fertilizers, pesticides, animal wastes (Ju et al. 2006; Jackson 

et al. 2008; Hansen et al. 2011; Magesh et al. 2012) and resi-
dential development (wastes and refuse) (Mull et al. 1992; 
Stollenwerk 1996; Eiswirth et al. 2000; Wakida and Lerner 
2005) play a critical part in water resources quality degra-
dation. However, for the sustainable management of water 
resources, there is a requirement for understanding the water 
quality deterioration from diffusive or nonpoint contamina-
tion sources, as well as the background chemistry related 
to the natural geochemical forms. These factors may not 
distinguish the chemical composition of groundwater alone 
(Kyoung-Ho et al. 2014). Thus, in recent years, different 
methods have been created for the proficient administration 
and prediction of groundwater quality. Such methods are 
Multivariate Statistical Analysis (MSA) and GIS. The MSA 
with the techniques of Principal Component Analysis (PCA) 
and Hierarchical Cluster Analysis (HCA) is a quantitative 
and autonomous approach of groundwater classification 
permitting the grouping of groundwater samples and the 

 *	 Nikos Charizopoulos 
	 nchariz@gmail.com

1	 Lab. of Mineralogy‑Geology, Agricultural University 
of Athens, Iera Odos 75, 118 55 Athens, Greece

2	 Department of Geology, Laboratory of Hydrogeology, 
University of Patras, Rio, 26110 Patras, Greece

3	 Department of Ichthyology and Aquatic Environment, 
University of Thessaly, Odos Fitokou, 384 46 Volos, Greece

http://orcid.org/0000-0002-1451-0576
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-018-7564-6&domain=pdf


	 Environmental Earth Sciences (2018) 77:380

1 3

380  Page 2 of 18

correlation between chemical parameters and groundwa-
ter samples (Cloutier et al. 2008). The PCA can uncover a 
straightforward basic structure inside a multivariate dataset 
by diminishing the dimensions of the original variables into 
new principal components (Jolliffe 2002) and constitute a 
standout amongst the most vital statistical techniques for 
the elucidation of groundwater chemistry (Dunteman 1989). 
Clustering is an unsupervised technique of data grouping, 
utilizing a given measure of similarity. In a hydrogeochemi-
cal study, a cluster analysis serves the purpose of isolating 
a group of representative clusters (also known as water type 
or a hydrogeochemical facies) that reflects the processes 
generating the natural variation found in an hydrogeo-
chemical parameter (Nguyen et al. 2015). Furthermore, the 
depiction of Geochemical data in a GIS platform shown as 
an integrated tool to investigate factors which control the 
hydrogeological processes. The Inverse Distance Weighting 
method (IDW) of ArcGIS Geostatistical Analyst applica-
tion is a commonly used interpolation technique, which is 
used to obtain the spatial distribution of groundwater quality 
parameters (Asadi et al. 2007; Arif et al. 2014). The IDW in 
correlation with different techniques, most particular, krig-
ing is more straightforward to programming and does not 
require pre-modeling or subjective expectations in choosing 
a semi-variogram model (Henley 1981; Tomczak 1998). In 
the IDW, the optimal interpolator can be achieved by opti-
mizing a set of parameters; the number of the neighbors to 
be included, the least numbers of the neighbors, the shape 
and section type, the major/minor axis of shape type and 
the optimal power value. PCA, HCA, and IDW consist of a 
scientifically robust way of quantifying data, and they have 
been applied successfully in the combination or individually 
on a hydrochemical groundwater researcher. For instance, 
Olmez et al. (1994) found that PCA is a valuable tool in 
helping to differentiate among several possible sources of 
groundwater pollution, each having similar gross Geochemi-
cal characteristics. Demirel and Güler (2006) applied PCA, 
HCA and Geochemical modeling systems to decide the 
principal factors and mechanisms controlling the chemistry 
of groundwaters in the Mediterranean coastal aquifer, Mer-
sin–Erdemli basin (Turkey). Monjerezi et al. (2011) utilized 
a coordinated utilization of HCA and PCA and found that 
the chemical character of groundwater in the lower Shire 
River valley in Malawi is extremely changeable, with local-
ized areas of predominantly brackish water. They applied 
the IDW technique to model the spatial distribution of the 
hydrogeochemical factors. Yidana (2010) performed PCA 
and HCA to classify groundwater samples spatially and 
determine the probable sources of variation in groundwater 
salinity in southeastern Ghana. Gong et al. (2014) compare 
the accuracy of IDW and Kriging interpolations to estimate 
groundwater arsenic concentration in Texas USA. They 
found that the correlation coefficient between the measured 

and estimated arsenic levels was greater with IDW than 
Kriging Gaussian, Kriging spherical or Co-Kriging interpo-
lations when analyzing data from wells in the entire Texas. 
Ghosh and Kanchan (2014) coupled geochemical analysis of 
various parameters with statistical analysis (PCA and HCA) 
to distinguish the pollution zones of groundwater in the cen-
tral alluvial tract of the Bengal plain of India. They applied 
the IDW for spatial interpolation and mapping for both Geo-
chemical parameters and statistical analysis outcomes.

Scopia basin is the study region of the present work. It 
is arranged in the Domokos plateau in the Central Greece 
and undergoes the impacts of urbanization, seriously irri-
gated farming activity and the broad utilization of fertilizers. 
Furthermore, a broad ophiolites mass constitutes the basin’s 
bedrock influencing groundwaters naturally. The hydrological 
status of Scopia basin has been recognized by the specialized 
reports of IGME (2010) and the Ministry of Environment 
and Energy (Ypen 2012) under the Directive (2000/60) of 
the European Council (EC 1998). However, none of these 
specialized reports, neither past analysis, have utilized PCA in 
blend with an optimized set of IDW parameters such as power 
value, shape type (circle/ellipse) and section type (divided cir-
cle/ellipse into one sector, four sectors, four sectors with 45° 
offset and eight sectors). Accordingly, this study introduces a 
new approach to IDW interpolation modeling for both ground-
water hydrochemical parameters and PCA factors spatial dis-
persion. The method applied in the Scopia basin so as to: (a) 
uncover natural procedures and anthropogenic activities rep-
resenting groundwater quality and their spatial distribution, 
(b) decide the propriety of groundwater for human utilization 
in the study zone, with the comparison of the concentrations 
of the main and trace elements in groundwater with the values 
established by the EC. In addition, (c) distinguish the suitabil-
ity of groundwater for irrigation purposes as per FAO irriga-
tion water guidelines and Richards diagram.

Study site

Site description

Scopia basin is arranged between latitudes 39°12′N and 
39°02′N and longitudes 22°17′E and 22°36′E. It is the 
hydrological basin of the upper part of Enippeas River, 
which originates from the Othrys Mount, and runs through 
the southeast plain of Thessaly and streams into the Pinios 
River in central Greece (Fig. 1). Geographically, the basin 
consists mainly of a flat central and northern part, the high 
central peaks of Othrys Mount to the south and east and 
small territory hills to the north and west. It covers a region 
of 438.79 km2 and has a perimeter of 116.06 km indicative 
of a large-sized basin. The lowest and highest points are 
281 m and 1633 m, respectively, while the mean altitude 



Environmental Earth Sciences (2018) 77:380	

1 3

Page 3 of 18  380

is 629 m, classifying the basin site as a semi-mountainous 
(Fig. 1) (Charizopoulos and Psilovikos 2015). The climate 
is portrayed from June to August as super dry, as per Lang’s 
drought index (Trewartha and Horn 1980), and the irriga-
tion period lasts from the past 10 days of April until the end 
of September. The yearly precipitation is 697.9 mm, and 
the mean yearly temperature is 14.8 °C. In winter, tempera-
tures fall beneath zero and in summer transcends 40 °C. The 
aggregate yearly runoff is 49.7 × 106 m3 for the period Octo-
ber 2009–March 2011 (Charizopoulos 2013).

Geological and hydrogeological settings of the area

The study area is a part of the Pelagonian Geotectonic 
Zone of Eastern Greece, which is mainly characterized by 
the ophiolite series and the Schist–chert formation (Xypo-
lias et al. 2010). It presents a complex Geological struc-
ture, because of the intense tectonic activity. The oldest 
Geological formation in the study area dates back to the 
Triassic–Cretaceous age and includes ophiolites (Perido-
tites and Diabases), which also comprises part of the basin 
margin and the bedrock of the plain of the basin (Moun-
trakis 1985; Katsikatsos et al. 1986; Karmis 2010). The 
lithology of the study area consists of (a) alluvial deposits 
with mainly clays and conglomerates and a thickness up to 
200 m. They are found in the central plain of the basin. (b) 
Neogene sediments with marls, clays, gravels, conglom-
erate and Marly limestone found in the south part of the 
basin. (c) Upper Cretaceous–Paleocene Flysch. It outcrops 
at the north and east parts of the basin (Fig. 2) and con-
sists mainly of conglomerates, Marly carbonate sediments, 

and clay sandstones. (d) Upper Cretaceous transgressive 
carbonate sediments mainly at the south part of the basin 
(Fig. 2) with a thickness of 200–300 m. (e) Triassic–Cre-
taceous Schist–chert formation and ophiolites (Karmis 
2010). The ophiolites include Dunites with Chromites, 
Peridotites, Diabases, Gabbros and pillow lavas with a 
high concentration of alkali compounds (Na2O 3.4–5.4% 
and K2O 0.1–1.7%). Serpentinites are also found in the 
area as a metamorphic product of ultrabasic rocks (Fer-
riére 1982). They occur in the south and northwest parts 
of the basin (Fig. 2). Groundwater in the study area is 
represented by Karst springs, spring from the fractured 
formations and a significant unconfined aquifer. In the 
west part of the area, close to the villages Neochori and 
Anavra, Karst springs discharge the karstified carbonate 
sediments. During the wet period, the discharge rate of 
the springs exceeds 50 l/s and a portion of the karst water 
flows towards the Enippeas River (Charizopoulos 2013). 
Some of the karst springs fall dry during the dry period. 
At the southeast and northwest parts of the basin, ground-
water circulates through the fracture zone of the ophiolites 
and the flysch formations. Springs with low discharge rates 
(1–2 l/s) emerge. A highly productive shallow unconfined 
aquifer is developed in the alluvial deposits at the central 
plain of the basin. The recharge of the aquifer takes place 
by direct infiltration of precipitation, the lateral feed of the 
karst water of carbonate rocks and the lateral feed on the 
Enippeas River. A large number of boreholes with depths 
from 65 to 125 m and discharge rates from 30 to 80 m3/h 
exploit the unconfined aquifer for drinking and mainly for 

Fig. 1   Geomorphological set-
ting map of Scopia basin
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irrigation purposes. The absolute groundwater level ranges 
about 404–484 m (IGME 2010).

Methodology

Data collection and chemical analysis

An aggregate of 41 groundwater samples was gathered 
in April 2010, since, in the wet period every one of the 
springs is functioning, while in the dry period most of 
the springs fall dry. Groundwater samples were gathered 
from 8 spring’s outlets which discharge from ophiolites 
(S1), karst aquifer (S2–S5) and flysch (S6–S8) and 33 
boreholes (B1–B33) in the plain of the basin (Fig. 2). 
The sites of groundwater tests were recorded utilizing a 
Garmin Dakota 20 GPS (Fig. 2). The samples were gath-
ered in two polyethylene bottles (100 and 1000 ml volume) 
and were stored in a frozen cooler amid the fieldwork. The 
initial segment of 100 ml was filtered through 0.45-µm 
pore size Millipore filters and acidified to pH about 2 with 
65% ultra pure HNO3. It was utilized for the determina-
tion of heavy metals concentration (Fe, Mn, Cu, Cr, Ni, 
Pb, Cd, Co and Zn). The second non-acidified part (1 l) 
was held to determine major cations and anion analysis 
(CO2, Ca2+, Mg2+, Na+, K+, HCO3

−, Cl−, SO4
2−, NO3

−, 
NH4

+, PO4
3−, F−, Br−, I2) (Lloyd and Heathcote 1985; 

APHA 1998; Appelo and Postma 2005). All the water 
samples were stored in the icebox in the laboratory at a 
temperature of 4 °C and were analyzed inside 3 days in 

the wake of sampling. Total Hardness, Temporal Hard-
ness, CO2 and also Cl− were determined using titration 
kits (Total Hardness: ManVer Buret Titration Method 
8226, Temporal Hardness: Buret Titration Method, HCl 
0.1N Titrant, Methyl red indicator, CO2: Titration Method, 
0.0227 Ν Sodium Hydroxide Standard Solution Titrant, 
Phenolphthalein indicator and Cl−: Buret Titration Method 
AgNO3 0.1 N Titrant and K2CrO4 indicator). SO4

2−, NO3
−, 

ΝΗ4
+, PO4

3−, F−, Br− and I− were determined by spectro-
photometry (HACΗ DR/3000) utilizing the appropriate 
HACH kits (SO4

2− Sulfaver 4 Method 8051, NO3
− Cad-

mium Reduction Method 8039, ΝΗ4
+ Nessler Method 

8038, PO4
3− Phosver 3 Method 8048, F− SPADNS Method 

8029, Br: DPD Method 8016 and I2: DPD Method 8031). 
The elements Ca2+, Mg2+, Fe, Mn, Cu, Cr, Ni, Pb, Cd, Co, 
and Zn were determined by an atomic absorption spec-
troscopy (GBC/908AA), with a detection limit for heavy 
metals the value of 0.001 mg L− 1, which is the lower fur-
thest limit of detection. The Na+ and K+ were determined 
utilizing a Flame photometer (ΙΝTECH/420). Every one 
of the analysis was led in the lab of the Institute of Min-
eralogy and Geology of the Agricultural University of 
Athens. The charge-balance error for major ionic species 
because of the conceivable deviation of the analytical pro-
cedure was under 5%, and it was statistically acceptable 
(Freeze and Cherry 1979; Reed and Mariner 1991). Since 
the purpose of this study is the assessment of natural and 
anthropogenic impacts in groundwater based on major and 
trace elements, farther C isotope analyses in groundwater 
samples for an extensive approach of C in groundwater 
were not performed.

Fig. 2   Geology setting map of 
Scopia basin
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Multivariate statistical analysis

In the present study, the MSA performed with statistical 
packet SPSS 19, with the methods PCA and HCA.

Principal component analysis

The PCA method establishes participation of individual 
chemicals in influence several factors, which commonly 
affect hydrochemistry (Vega et al. 1998). PCA is used to 
study all the existing variations (standard, unique and error) 
producing components to “extract” the largest percentage 
of variance with the minimum number of factors. The steps 
of PCA process are:

1.	 Construction of the correlation matrix, which shows 
what variables have high correlation and will count in 
factor extraction. Two indicators are used to check the 
effect of the PCA implementation on the data (a) the 
Kaiser–Meyer–Olkin index (KMO) which is an indica-
tor of data adequacy (> 0.50) and checks if the original 
variables can be factorized efficiently (Norusis 2011) 
and (b) Bartlett’s test of sphericity which compares the 
correlation matrix with a matrix of zero correlations 
(identity matrix); it checks if there is a certain redun-
dancy between the variables that can be summarized 
with a few numbers of factors (p < 0.05) (Cattell 1978).

2.	 Factor extraction, which considers just factors that have 
eigenvalues greater than “1” (Davis 2002).

3.	 Factors rotation with the Varimax method (Kaiser 1958) 
to achieve a more significant distribution of the weights 
of the different variables on the components (Davis 
2002).

4.	 Calculation of factor scores, which indicates the contri-
bution of each factor at every site (Voudouris 2009).

Hierarchical cluster analysis

The CA is an effective tool that reveals the fundamental 
structure or underlying conduct of a dataset without making 
a priori suppositions about the data to classify the objects of 
the system into categories or clusters in light of their near-
ness or similarity. In CA, the distance between samples is 
utilized as a measurement of similarity (Otto 1998; Vega 
et al. 1998). The outcome is a dendrogram which gives a 
visual portrayal of the clustering procedure by showing a 
figure of the groups and their proximity with a significant 
reduction in dimensionality of primary data (Kruskal and 
Landwehr 1983). There are two major categories of CA: 
hierarchical and non-hierarchical. The hierarchical CA 
(HCA) is the most widely recognized approach in which 
clusters are formed sequentially, starting with the most iden-
tical pair of objects and forming higher clusters step by step 

and used in this work. The squared Euclidean distance was 
used as a similarity or dissimilarity measurement, whereas 
Ward’s linkage method was used to link clusters (Ward 
1963). Ward’s method is capable of minimizing the distort-
ing effect or sum of squared distances of centroids from two 
hypothetical groups generated at each stage (Lambrakis et al. 
2004). The combination of these methods has been observed 
as the best in optimal results in HCA (Lambrakis et al. 2004; 
Mencio´ and Mas-Pla 2008; Lin et al. 2012). The observed 
water quality data, xji were standardized by z scale transfor-
mation as given below:

where xji value of the jth water quality parameter measured 
at ith site xj mean (spatial) value of the jth parameter, and 
sj standard deviation (spatial) of the jth parameter (Machiwal 
and Jha 2015).

GIS interpolation modeling

The depiction of the spatial distribution of hydrochemical 
parameters as well as factor scores was achieved with the 
Inverse Distance Weighted (IDW) interpolation modeling. 
The attribute of this method is that nearby locations are 
more likely to have similar values and the linear interpolator 
weights the interpolated data ẑ(x0) , at unsampling location 
x0, as follows (Fortin et al. 2005; Mantzafleri et al. 2009):

In Eq.  (2), the z(xj) is the value of the water quality 
parameter z at the sampling location j, m is the number of 
neighboring sampling sites, wj are the weights according 
to the distance between the unsampling location x0 and the 
sampling locations xj such that.

∑m

j=1
wj = 1 . The formula 

of IDW method is finally obtained as follows (Fortin et al. 
2005; Zisou and Psilovikos 2012).

where power parameter k is the distance influence coeffi-
cient, dij is the distances between the unsampling location i 
(x0) and the sampling locations j (xj). Weights in IDW can be 
raised to the power of k (i.e., Linear, squared, cubed, etc.), so 
as the distance increases, the weights decrease rapidly. The 
power of k can also be optimized. The optimization process 
calculates several models and chooses the power value that 
leads to the model with the minimum Root Mean Square 

(1)z =
xji − xj

sj
,

(2)ẑ
(

x0
)

=

m
∑

j=1

wj × z
(

xj
)

.

(3)ẑ
�

x0
�

=

∑m

j=1
z
�

xj
�

× d−k
ij

∑m

j=1
d−k
ij

,
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Prediction Error (RMSPE). IDW assumes that the simulated 
surface is being driven by the local variation which can be 
captured through the neighborhood. Changing neighborhood 
options (shape, sectors and the number of neighbors) may 
lead to a better model. The shape confines how far and where 
to look for the measured values, which will be utilized in the 
prediction. If the neighborhood is divided into sectors, the 
maximum and minimum constraints will be applied to each 
sector (Esri 2012). The interpolation accuracy of the method 
was measured by computing the Mean Prediction Error 
(MPE) and the RMSPE for the data. The MPE of the inter-
polated values was calculated with the following Eq. (4):

RMSPE is the square root of the average squared distance 
of a data point from the fitted line calculated with the follow-
ing Eq. (5):

where xi and x̂i are the measured and estimated values, 
respectively, of the ith data points, and n is the total num-
ber of data points (Gong et al. 2014; Wilford et al. 2016). 
The optimal value is determined by minimizing RMSPE, 
which is finally a summary statistic quantifying the error 
of the predicted surface (Esri 2012). In this study, with the 
aim of selecting the best-fitting, interpolation model based 
on the minimum RMSPE value (Eq. 5), weight raised to 
optimize power, circle/ellipse shapes were used and also 
four different neighborhood sectors (a, one sector; b, four 
sectors; c, four sectors with 45° offset and d, eight sectors). 
Although all the IDW parameters may be optimized, the 
following assumptions were made to simplify the method: 
(1) the neighborhood type was standard, (2) the neighbor-
ing points considered in the process, were minimum 10 and 
maximum 15, (3) the anisotropy angle was set in 0° and (4) 
the minor semi-axes were set equal to three times the major 
semi-axes in ellipse shape type. The anisotropy factor (the 
ratio of the major to the minor semi-axes lengths) was 1 for 
circle and 0.36 for ellipse shape type. All the above counts 
were acknowledged by applying the Geostatistical Analyst 
of the Arc 10.0 GIS® software (Philip and Watson 1982; 
Watson and Philip 1985).

(4)MPE =
1

n

n
∑

i=1

(x̂i − xi).

(5)RMSPE =

√

√

√

√

1

n

n
∑

i=1

(x̂i − xi)
2
,

Results and discussion

Hydrochemical data and IDW interpolation 
modeling

Table 1 presents the Univariate statistics summary (n = 41) 
for 24 water quality parameter values, hardness, total 
(TH), TDS, Eh, pH, electric conductivity (EC) and water 
temperature (T°C).

Table 2 summarizes the results of the accuracy assess-
ment of IDW interpolation method for various hydrochem-
ical parameters. The goodness-of-fit criteria suggested that 
the best-fitting models, to understand the spatial distri-
bution of the hydrochemical parameters, are the ellipse 
shape type and neighborhood deviation of four sectors for 
TDS and ΝΟ3

−, ellipse/eight sectors for SO4
2− and Cd and 

ellipse/one sector for Ni. Furthermore, it is observed that 
the best-fitting, interpolation model represented by circle 
shape type and neighborhood deviation of one sector for 
Mg2+ and Cl− and circle/eight sectors for Cr.

Physicochemical parameters

The pH ranges from 6.9 to 8.2. The spring presents lower 
values (6.9–7.4), while the boreholes have a basic charac-
ter with pH from 7.1 to 8.2 due to the hydrolysis of magne-
sium-bearing minerals, such as Olivines of ophiolitic ori-
gin, contained in the alluvial deposits. Eh with values from 
200 to 630 mV shows that the oxidizing conditions prevail 
in the study area, and this is enhanced by the presence of 
nitrates and sulfates. EC ranges from 283 to 1138 µS cm− 1. 
Springs present EC values from 283 to 1138 µS cm− 1, 
while boreholes from 416 to 947 µS cm− 1. The highest 
EC values in S6, S8 springs and B31 and B33 boreholes 
found at the northeast and southwest parts of the basin, 
are related to the farming activities and the presence of 
septic tanks. TDS varies from 350.5 to 1035.0 mg L− 1. In 
spring, the TDS values range from 350.5 to 1035 mg L− 1, 
while in boreholes from 456.7 to 965.1 mg L− 1. The low-
est TDS values are measured at the southeast part of the 
basin in karst springs. It is obviously associated with the 
high flow rates within karstified carbonate formations and 
the smaller residence time therein. The best-fit interpola-
tion model for TDS as it was presented by ellipse shape 
type and neighborhood deviation of four sectors (Table 2), 
shows high values in the north and southwest areas of 
the study site associated with urban wastewater and cul-
tivation methods (Fig. 3a). The values of Total Hardness 
ranges from 11.8 to 36.9 od H with 78% of the samples 
with values above 18 odH; thus the majority of the samples 
is characterized as hard waters.
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Main elements

Among cations, Ca2+ is the most abundant with concentra-
tion from 8.8 to 215.2 mg L− 1. In springs water, the concen-
tration ranges from 75.2 to 215.2 mg L− 1, while in boreholes 
from 8.8 to 155.2 mg L− 1. The high values are attributed 
to the dissolution of carbonate minerals and are measured 
in karst springs. Mg2+ is the second most abundant cation 
with concentration from 5.5 to 91.4 mg L− 1. The inter-
polation model shows that the highest concentrations are 
observed in boreholes, which are fed from the ophiolites (Β1 
91.4 mg L− 1, B2 68.4 mg L− 1, Β8 74.8 mg L− 1). The lowest 
is found in karst springs and springs from flysch formation 
(S4 5.5 mg L− 1, S5 10.0 mg L− 1) (Fig. 3b). Na+ concen-
tration ranges from 2.5 to 36.3 mg L− 1 in the springs and 

from 0.94 to 61.5 mg L− 1 in boreholes. This is related to the 
dissolution of sodium-rich pillow lavas and anthropogenic 
activities such as the use of sodium-rich dung as fertilizer, 
which is a very common agricultural practice in the study 
area. K+ concentration is very low from not detected (ND) 
to 11.4 mg L− 1. Among anions HCO3

− is the most abun-
dant with concentration from 244 to 488 mg L− 1 in springs 
and 280.6–549 mg L− 1 in boreholes (Table 1), because of 
the dissolution of the carbonate minerals. Cl− concentra-
tion ranges from 7.1 to 95.7 mg L− 1, while the 80% of the 
samples show values below 40 mg L− 1. The best-fit inter-
polation model (Table 2) shows high estimations of Cl− in 
the North and Southwest margins of the basin. They are 
associated with boreholes B9 (67.4 mg L− 1), B11 (95.7 mg 
L− 1), B17 (74.5 mg L− 1) and spring S8 (67.4 mg L− 1) in 

Table 1   Chemical analyses and descriptive statistics of Scopia basin groundwater

a MAV max acceptable value given by the Dir 98/83/EC
b Tot. hardness total hardness

Springs (n:8) Boreholes (n:33) MAVa

Units Min Max Mean SD Median Min Max Mean SD Median

T oC 11.4 16.1 14.4 1.6 14.6 14.5 18.5 15.9 0.8 15.8 25
EC µS cm− 1 283.0 1,138.0 629.4 274.3 556.0 416.0 947.0 643.4 146.5 618.0 –
TDS mg L− 1 350.5 1,035.0 660.3 214.4 636.5 456.7 965.1 653.3 125.1 641.8 350.5
pH 6.9 7.4 7.2 0.2 7.3 7.11 8.2 7.6 0.2 7.6 6.5–9.5
Eh mV 200.1 630.0 349.6 148.6 289.8 225.0 332.7 262.0 28.0 246.3 –
O2 mg L− 1 3.1 6.9 5.3 1.7 6.4 3.9 8.4 6.58 0.84 6.5 –
CO2 mg L− 1 60.0 230.0 134.5 63.9 107.5 45.0 155.0 99.0 28.6 103.0 –
Tot. hardnessb odH 11.8 36.9 22.5 8.0 20.5 13.3 29.0 21.6 4.1 21.6 –
Ca2+ mg L− 1 75.2 215.2 126.8 47.76 105.6 8.8 155.2 97.1 35.18 100.0 100
Mg2+ mg L− 1 5.5 46.6 20.5 13.2 17.3 12.9 91.4 34.7 18.8 27.62 50
Na+ mg L− 1 2.5 36.3 14.5 10.8 11.9 0.94 61.5 25.6 14.3 21.0 200
K+ mg L− 1 0.39 11.4 3.5 3.79 1.56 ND 2.0 0.4 0.52 0.2 12
NH4

+ mg L− 1 ND 0.53 0.08 0.18 0.01 ND 0.45 0.09 0.12 0.04 0.5
HCO3

− mg L− 1 244.0 488.0 388.9 75.8 390.4 280.6 549.0 384.9 54.05 372.1 –
Cl− mg L− 1 10.6 67.4 27.0 18.4 23.0 7.1 95.7 29.5 21.7 18.1 250
SO4

2− mg L− 1 2.5 131.4 38.8 48.0 11.6 0.5 91.2 36.7 28.4 31.7 250
NO3

− mg L− 1 6.2 90.2 38.9 34.8 25.1 11.9 134.6 43.6 25.1 41.4 50
PO4

3− mg L− 1 0.08 0.38 0.24 0.11 0.26 0.1 0.75 0.43 0.16 0.44 ≈ 6.69
Br− mg L− 1 0.02 0.64 0.12 0.21 0.03 ND 0.26 0.05 0.06 0.03 0.01
I− mg L− 1 ND 1.01 0.17 0.34 0.04 ND 0.4 0.08 0.1 0.04 –
F− mg L− 1 ND 0.71 0.35 0.23 0.37 ND 0.65 0.25 0.17 0.21 1.5
Fe mg L− 1 0.106 0.221 0.138 0.037 0.122 0.075 0.231 0.153 0.044 0.144 0.2
Mn mg L− 1 < 0.001 0.008 0.003 0.002 0.002 < 0.001 0.046 0.010 0.011 0.005 0.05
Ni mg L− 1 0.012 0.211 0.127 0.064 0.128 0.015 0.289 0.141 0.068 0.143 0.02
Cr mg L− 1 < 0.001 0.062 0.022 0.026 0.007 < 0.001 0.121 0.040 0.034 0.042 0.05
Cd mg L− 1 < 0.001 < 0.001 – – – < 0.001 0.040 0.006 0.008 0.001 0.005
Zn mg L− 1 < 0.001 0.004 0.001 0.001 0.001 < 0.001 0.318 0.045 0.078 0.007 0.10
Pb mg L− 1 < 0.001 < 0.001 – – – < 0.001 0.125 0.005 0.022 0.001 0.01
Co mg L− 1 < 0.001 < 0.001 – – – < 0.001 < 0.001 – – – –
Cu mg L− 1 < 0.001 < 0.001 – – – < 0.001 0.024 0.002 0.004 0.001 2.0
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Scopia village and are related to agrarian and municipal 
wastes (Fig. 3c). SO4

2− concentration varies between 2.5 
and 131.4 mg L− 1 in the springs and from 0.5 to 91.2 mg 
L− 1 in boreholes (Table 1). The best-fitting model for the 
spatial distribution of sulfates (Table 2) indicates high con-
centrations in North of the study area. It is attributed to the 
oxidation of pyrites of ophiolitic origin but also to the use 
of sulfur–ammonium fertilizers in the cultivated plain of 
the study range (Fig. 3d). Regarding NO3

− is the second 

most abundant anion among anions and ranges from 6.2 
to 90.2 mg L− 1 in spring waters as well as from 11.9 to 
134.6 mg L− 1 in boreholes. NO3

− concentration in 29% of 
the water samples surpasses the European drinking water 
threshold limit (EC 1998). The best IDW predicted interpo-
lator model as expressed by ellipse shape type and neighbor-
hood deviation of four sectors (Table 2), present high values 
of ΝΟ3

− in specific areas where groundwaters suffered by 
intense cultivation and related to the application of nitrogen 

Table 2   Values of the goodness-
of-fit criteria to select the 
best-fit interpolation model of 
hydrochemical parameters

A Sector type a, one sector; b, four sectors; c, four sectors with 45° offset; d, eight sectors
k: ≥1
MPE: best value is close to 0, RMSPE: best value is the lowest

Variable Sector typeA Shape type

Circle Ellipse

Optimized 
power value

Goodness-of-fit 
criteria

Optimized 
power value

Goodness-of-fit 
criteria

k MPE RMSPE k MPE RMSPE

TDS a 1.00 0.32 131.79 1.71 − 10.98 129.14
b 1.07 − 4.64 130.22 2.07 − 13.06 128.46
c 1.10 − 2.24 132.79 1.80 − 10.76 128.99
d 1.36 − 3.97 133.09 2.21 − 12.79 129.13

Mg2+ a 1.09 − 0.55 11.77 1.51 0.39 12.96
b 1.53 − 0.33 12.14 1.70 0.71 13.03
c 1.55 0.03 12.15 1.74 0.65 13.12
d 1.71 0.09 12.35 1.76 0.74 13.11

Cl− a 1.00 − 0.17 20.18 1.10 − 0.60 21.01
b 1.22 − 0.89 20.45 1.26 − 1.28 20.90
c 1.21 − 0.51 20.41 1.18 − 0.87 20.85
d 1.32 − 0.75 20.46 1.26 − 1.27 20.81

SO4
2− a 1.95 − 1.03 30.69 2.35 − 2.99 28.94

b 1.98 − 1.52 30.16 2.37 − 3.24 28.70
c 2.00 − 1.32 30.26 2.32 − 3.00 28.78
d 2.05 − 1.42 30.20 2.40 − 3.17 28.74

ΝΟ3
− a 1.50 0.89 26.10 1.34 − 0.53 25.32

b 1.30 0.32 25.27 1.50 − 1.23 25.18
c 1.44 0.42 25.47 1.55 − 1.00 25.37
d 1.54 0.23 25.39 1.52 − 1.20 25.19

Ni a 1.00 0.001 0.070 1.00 0.003 0.067
b 1.00 0.002 0.070 1.00 0.002 0.068
c 1.00 0.002 0.070 1.00 0.002 0.068
d 1.00 0.002 0.070 1.00 0.002 0.068

Cr a 1.63 − 0.000 0.032 1.00 0.000 0.033
b 1.77 0.000 0.032 1.00 0.000 0.033
c 1.71 0.000 0.032 1.00 0.000 0.033
d 1.70 0.000 0.031 1.00 0.000 0.033

Cd a 1.00 0.000 0.007 1.00 0.000 0.007
b 1.00 0.000 0.007 1.07 0.000 0.007
c 1.00 0.000 0.007 1.14 0.000 0.007
d 1.11 0.000 0.007 1.12 0.000 0.006
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fertilizers (Fig. 4a). NH4
+ values range from ND to 0.53 mg 

L− 1 (Table 1). The highest concentrations are reported in 
residential and cultivated regions.

Trace elements

Regarding trace elements, Ni is the most abundant with 
concentration from 0.012 to 0.289 mg L− 1. In 93% of the 
groundwater samples, Ni surpasses the European drinking 
water limit of 0.02 mg L− 1. The spatial distribution guide 
of Ni in light of the best IDW interpolation model with 
ellipse shape type and neighborhood deviation of one sec-
tor (Table 2) is delineated in Fig. 4b. The high content of 
Ni is credited to the weathering of nickel-bearing minerals 
of the ultrabasic rocks found in the study area. Total iron is 
the second most abundant trace element with concentration 
from 0.075 to 0.231 mg L− 1. In 21% of the groundwater 
samples, total iron surpasses the drinking water threshold 
point of 0.2 mg L− 1 (EC 1998). The presence of iron in the 

study region is related to the presence of iron oxides in the 
clay sediments of ophiolitic origin.

The concentration of Crtot ranges from BDL to 0.121 mg 
L− 1, and 34% of the groundwater samples exceed 0.05 mg 
L− 1, which is the European drinking water threshold limit. 
The goodness-of-fit criteria recommended that the best-fit-
ting model for the spatial distribution of Crtot is represented 
by circle shape type and neighborhood deviation of eight 
sectors (Table 2). The presence of the element is caused 
by the weathering of the minerals contained in the ophi-
olites, which cover a major piece of the study range (Fig. 4). 
Externally, the northwest margin of the area an abandoned 
open mine of chromite is found, which collects surface 
water of the area. Mn content ranges from below detection 
limit (BDL) to 0.046 mg L− 1 and only in one borehole the 
concentration surpasses the 0.05 mg L− 1, of the European 
drinking water thresholds limit. Mn has a geogenic origin 
and is caused by the weathering of the minerals contained in 
the ophiolites. Cd values range from BDL to 0.040 mg L− 1, 
while in 24% of the groundwater samples, the concentration 

Fig. 3   a TDS spatial distribution, b Mg2+ spatial distribution, c Cl− spatial distribution, d SO4
2− spatial distribution
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Fig. 4   a ΝΟ3
− spatial distribution, b Ni spatial distribution, c total Cr spatial distribution, d Cd spatial distribution (BDL: Below detection limit)
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is recorded above the drinking water limit of EC, which is 
0.005 mg L− 1. The best-fit interpolation model presents the 
high values of the Cd in the Southwest part of the basin. It 
can be credited both to the presence of the component in the 
minerals contained in ophiolitic rocks and the use of phos-
phate fertilizers in the cultivated part of the area (Fig. 4d). 
As indicated by Alloway (1995) and Kabata-Pendias and 
Pendias (2001), Cd is a fundamental trace component in 
phosphate fertilizers. The Zn values range from BDL to 
0.318 mg L− 1, exceeding in four boreholes the European 
drinking water limit of 0.10 mg L− 1. Zn is contained in 

pesticides, which are utilized in the cultivated plain in the 
area. The Cu and Pb concentrations range in BDL values 
of all water samples. Only borehole B1 present value of 
0.024 mg L− 1 for Cu and 0.125 mg L− 1 for Pb which is 
above the 0.01 mg L− 1 EC value.

Groundwater classification

The Piper outline (Fig. 5a) uncovers two principal water 
types in the study region. The greater percentage of the 

Fig. 6   Saturation index dia-
grams of several minerals for 
groundwater samples
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samples (90%) belongs to the first group with dominant 
hydrochemical type Ca–Mg–HCO3 (Fig.  4a). The sec-
ond group represents 10% of the water samples with a 
Ca–Mg–Na–HCO3 water type. In the extended Durov dia-
gram (Durov 1948), is obtained that the most of the samples 
(55%) belong to the fields fourth and sixth (Fig. 5b).

The next dominant fields, with a rate of 31%, are the first, 
second and third. Most of these samples are displayed in 
the first field (Ca–HCO3) and considered as fresh waters 
(Appelo and Postma 2005), younger than groundwaters of 
the other types. The rest of the samples concerning cation 
exchange waters with hydrochemical processes determined 
by the phases of Mg–HCO3 and Na–HCO3. The seventh and 
eight fields are represented by the 14% of the samples, con-
cerning waters which the reverse cation exchange phenom-
enon is in full advance. In this category, the samples with 
high pollution load belong, having mainly anthropogenic 
origin, while the hydrochemical processes determined by 
the phases of Ca–Cl and Mg–Cl.

Origin of groundwater elements

The PHREEQC software (Parkhurst and Appelo 2013) was 
utilized for the determination of saturation indices of specific 
minerals. The saturation index (SI), shows if a solution is in 
equilibrium, undersaturated or supersaturated with regards to 
a solid phase (Merkel and Planer-Friedrich 2008). The SI is 
expressed by the ratio SI = log(IAP/K). The ΙΑP and K are the 
ion activity product and the mineral equilibrium constant at 
a given temperature, respectively. A negative value indicates 
undersaturation (possible mineral solution) and a positive value 
indicates supersaturation (possible mineral precipitation). If the 
SI is equal to zero, it reflects the solubility equilibrium with 
respect to the mineral phase of the water, a phenomenon which 
rarely achieved in nature (Appelo and Postma 2005). In the 
Scopia basin, every one of the samples is undersaturated with 
respect to evaporate mineral phases gypsum (CaSO4·6H2O) 
(− 4.49 < SI < − 1.18), anhydrite (CaSO4) (− 4.74 < SI < − 1.43) 
and fluorite (CaF2) (− 3.53 < SI < − 0.81). Undersaturated with 

respect in siderite (FeCO3) (− 1.16 < SI < + 0.36) and magne-
site (MgCO3) (− 1.46 < SI < + 0.81) are water samples in 88% 
and 90%, respectively (Fig. 6). The phenomenon is suggesting 
that these phases are minor in the host rocks of Scopia basin. 
The majority of the samples is saturated in calcite (CaCO3) 
(− 0.05 < SI < + 1.1) in 98% percentage and in aragonite 
(CaCO3) (− 0.02 < SI < + 0.95) and dolomite (CaMg(CO3)2) 
(− 0.43 < SI < + 2.22) in 93% (Fig. 6). The oversaturation of 
calcite, aragonite, and dolomite indicates that these minerals 
play a significant role in controlling the groundwater chemis-
try in the mixing zone. Calcite is an essential mineral which 
tends to dissolve or precipitate quite rapidly in natural waters 
(Alley 1993). Moreover, waters in the Meteoric environment, 
as long as they are still in contact with carbonates, maybe 
several times oversaturated with respect to calcite (James and 
Choquette 2013). In Fig. 6, the plots of the obtained SI and 
their classes are presented. Negative SI values represent the 
undersaturated conditions, while the positive SI values the 
oversaturated conditions.

Table 3   Correlation matrix of 
chemical data of Scopia basin 
groundwater’s

High correlation >0.75, Moderate correlation >0.65

Ca Mg Na Cl SO4
2− NO3

− NH4
+ Cr Pb Ni

Ca 1
Mg − 0.50 1
Na 0.34 0.09 1
Cl 0.44 0.18 0.63 1
SO4

2− 0.66 0.10 0.65 0.65 1
NO3

− 0.64 0.03 0.36 0.31 0.78 1
NH4

+ 0.26 0.38 0.56 0.59 0.62 0.39 1
Cr − 0.22 0.19 0.19 − 0.03 0.02 − 0.04 0.21 1
Pb − 0.31 0.51 − 0.21 − 0.14 − 0.18 − 0.10 − 0.10 − 0.14 1
Ni − 0.14 0.05 0.09 0.05 − 0.05 − 0.09 0.10 − 0.11 − 0.20 1

Table 4   Factor loadings of the varimax rotated 4-factor model

Significant loads >0.75, Moderate loads >0.65

Variable Factor Communality

I II III IV

Ca 0.61 − 0.55 − 0.36 − 0.31 0.90
Mg 0.20 0.90 0.20 0.12 0.91
Na 0.78 − 0.07 0.23 0.16 0.69
Cl 0.80 0.04 − 0.03 0.15 0.66
SO4

2− 0.93 − 0.08 − 0.07 − 0.17 0.90
NO3

− 0.71 − 0.12 − 0.20 − 0.36 0.69
NH4

+ 0.79 0.21 0.24 0.16 0.75
Cr 0.05 0.01 0.94 − 0.12 0.90
Pb − 0.17 0.81 − 0.27 − 0.27 0.84
Ni 0.05 − 0.05 − 0.12 0.91 0.84
Total variance (%) 36.70 18.46 13.00 12.46 80.62
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Multivariate statistical analysis

Principal component analysis

Table 3 presents the chemical data correlation matrix of 
Scopia basin groundwaters. A high correlation (> 0.75) is 
seen between SO4

2− with NO3
− (0.78) and moderate cor-

relation between Ca with SO4
2− (0.66) credited to the uti-

lization of fertilizers. Furthermore, moderate correlation 
(0.65) between Na with SO4

2− and Cl with SO4
2− has been 

observed, associated with wastewater leaks. Utilization of 
PCA extracted four factors that clarify the 80.62% of the 
aggregate variance. The technique showed trustworthy as the 
Keiser–Meyer–Olkin index, and Bartlett’s test of spheric-
ity were 0.62 (> 0.50) and 0.00 (< 0.05) respectively, while 
communalities were above (> 0.5) which implies the satis-
factory efficiency of the 4-factor model (Table 4). Table 5 
represents the results of the assessment of the accuracy of 
the IDW interpolation method for PCA factors.

Factor I Accounts 36.7% of the variance of the infor-
mation matrix and contains noteworthy loads of SO4

2− and 
Cl− as well as moderate loads of NH4

+, Na+, NO3
− and 

Ca2+. It portrays the anthropogenic effect on the ground-
water quality. The high correlation between SO4

2− Cl− and 
Na+ is related to the leakage of agricultural and municipal 

wastes (Sikora et al. 1976). The correlation between Ca2+ 
and NO3

− (0.65) is connected with the use of fertilizers as 
ΝΗ4ΝΟ3·CaCO3 (22% N and 33% ΝCaCO3) (Tisdale and 
Nelson 1975), which is very common in cultivated regions 
of the study area. Figure 7a depicts the spatial distribution 
of factor I as represented by ellipse shape type and neighbor-
hood deviation of four sectors (Table 5). The high values of 
the factor prevail in residential and cultivated areas, due to 
the absence of drainage system and the intensive usage of 
fertilizers respectively.

Factor II Accounts 18.4% of the variance of the infor-
mation matrix and contains critical loads of Mg and Pb. It 
portrays the geogenic effect on the groundwater quality and 
is related to the weathering of the magnesium-bearing min-
erals that are contained in the ophiolites. The goodness-of-fit 
criteria suggested that the best-fitting model for the spatial 
distribution of factor II expressed by circle shape type and 
neighborhood deviation of one sector (Table 5). Figure 7c 
demonstrates that the positive values of the factor appear in 
the northwest part of the region, where ophiolites prevail.

Factor III Records 13% of the fluctuation of the informa-
tion matrix with a noteworthy load of Crtot and portrays the 
impact of the weathering of chromites that are contained in 
the ophiolites. The best-fit model to understand the spatial 
distribution of factor III is the circular shape type with four 

Table 5   Values of the goodness-
of-fit criteria to select the 
best-fit interpolation model of 
PCA factors

A Sector type a, one sector; b, four sectors; c, four sectors with 45° offset; d, eight sectors
k: ≥1
MPE: best value is close to 0, RMSPE: best value is the lowest

Variable Sector typeA Shape type

Circle Ellipse

Optimized 
power value

Goodness-of-fit 
criteria

Optimized 
power value

Goodness-of-fit 
criteria

k MPE RMSPE k MPE RMSPE

Factor I a 1.66 − 0.04 0.92 2.17 − 0.09 0.89
b 1.81 − 0.06 0.91 2.28 − 0.11 0.88
c 1.82 − 0.05 0.92 2.19 − 0.10 0.89
d 1.92 − 0.06 0.92 2.33 − 0.10 0.89

Factor II a 1.00 − 0.03 0.77 1.05 0.02 0.82
b 1.15 − 0.02 0.78 1.19 0.04 0.81
c 1.16 0.00 0.78 1.20 0.03 0.82
d 1.29 0.01 0.79 1.23 0.04 0.82

Factor III a 1.42 − 0.02 0.93 1.00 − 0.00 0.97
b 1.54 − 0.02 0.92 1.27 − 0.00 0.98
c 1.55 − 0.02 0.93 1.50 − 0.01 0.99
d 1.65 − 0.02 0.93 1.37 − 0.00 0.98

Factor IV a 1.00 − 0.00 1.07 1.00 0.03 1.01
b 1.00 0.01 1.06 1.00 0.02 1.04
c 1.00 0.01 1.05 1.00 0.02 1.04
d 1.00 0.02 1.04 1.00 0.02 1.03
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sector’s type (Table 5). The high values of the factor occur 
around the old chromite mine and in regions where aquifers 
are fed by ultramafic rocks. In addition to the parts of the 
alluvial deposits, where the clastic material of ophiolitic 
origin prevails in the lithology, factor III shows high values 
(Fig. 7c).

Factor IV Shows a significant load of Ni and accounts 
12.46% of the variance of the total matrix. The best-fitting, 
interpolation model for the spatial distribution of the factor 
is an ellipse shape type and a neighborhood deviation of one 
sector (Table 5). The factor describes the weathering of the 
nickel-rich minerals of the ophiolites (Fig. 7d).

Hierarchical cluster analysis

HCA was applied to groundwater sampling sites, according 
to their hydrogeochemical parameters, to be matched at each 
sampling site, the number of the cluster. Based on the den-
drogram, the 41 sampling sites categorized into two statisti-
cally significant clusters (Fig. 8a). The first cluster contains 
31 sampling sites and is connected with natural influences 

in groundwaters. It includes aquifers with a lateral feed from 
the consolidated carbonate and ultrabasic rocks. The second 
cluster comprises ten sampling sites with significant anthro-
pogenic pollution loads. In this cluster sampling, sites with 
high values of EC (684–1138 µS cm− 1) are included. This 
fact is connected with the use of fertilizers and wastewater 
leak. The spatial distribution of all groundwater sampling 
sites is characterized by the two clusters over the geologic 
formations of the study area. These are shown in Fig. 8b. It 
is obtained that the sites of cluster II are lying in villages and 
in areas of intensive agriculture activity, where alluvial and 
flysch geological formations appear. In these regions, the 
significant loads of factor I are also found (Fig. 7a).

Water suitability

Chemical analyses in the present study have shown that the 
mean total hardness values are going from > 21.6 dH. These 
values characterize groundwaters as hard waters. The con-
centrations of NO3

−, total Fe, Ni, Cr, Cd and Zn in 29, 21, 
93, 34, 24 and 10% of the samples, respectively, surpasses 

Fig. 7   Spatial distribution of factor analysis scores: a Factor I, b Factor II, c Factor III, d Factor IV
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the drinking water limit of E.C. The boreholes B1, B2, B3, 
B24 and springs S2, S3, and S4 are utilized for water supply, 
required in the Scopia region, while borehole B20 is utilized 
for both irrigation purposes and human utilization (Charizo-
poulos 2013). The comparison with the EC drinking water 
standards demonstrated an excess of NO3

− for B24, Mg for 
B1, B2, and B3, Fe for B2 and B3, Cr for B20 and B24, Ni 
and Pb for B1. Thus, just groundwaters from the carbonate 
rocks at the southern part of the region are appropriate for 
human utilization (Fig. 2). The suitability of groundwater 

for irrigation purposes estimated with the sodium adsorption 
ratio (SAR) and Richards diagram (Richards 1954). SAR 
values range from 0.02 to 1.27. These values in combination 
with EC values demonstrate that the degree of restriction 
on the use of irrigation water ranges from none to slight or 
moderate, in accordance with FAO irrigation water standards 
(Ayers and Westcot 1994). As indicated by Richards outline, 
waters classified to fields C2.S1 and C3.S1 (Fig. 9a). In the 
field, C2.S1 is arranged most of the examples (76%), featur-
ing waters with low sodium hazard and moderate salinity 

Fig. 8   a Clusters dendrogram 
showing two clusters of natural 
and anthropogenic influences in 
groundwater in the study area, 
b Geographical location of 41 
groundwater sampling sites 
according to their correspond-
ing cluster over the geologic 
formations of the study area
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hazard. Water that falls in the medium salinity hazard class 
(C2) can be used in most cases without any special practices 
for salinity control (Sappa et al. 2014). In the category C3.S1 
classified 24% of the samples, concerning waters with low 
sodium hazard and high salinity hazard. These waters are 
unsuitable for the cultivation of plants sensitive to salinity 
and the irrigation of soils with limited drainage (Fig. 9b).

Conclusions

In the present study, a new approach to IDW interpolation 
modeling of groundwaters has been proposed and HCA was 
also applied to assess the natural and anthropogenic impacts 
in Scopia basin groundwaters in Central Greece. The IDW 
parameters optimized to achieve the best-fit model of both 
hydrochemical parameters and PCA factors spatial distribu-
tion. The results predicted by the IDW interpolator com-
pared with the actual values measured at the same locations 
based on less root-mean-squared prediction error. The good-
ness-of-fit criteria suggested that the finest IDW models, 
to understand the spatial distribution of the hydrochemical 
parameters, are defined by the ellipse shape type and neigh-
borhood deviation of four sectors for TDS and ΝΟ3

−, ellipse/
eight sectors for SO4

2− and Cd and ellipse/one sector for Ni. 
The best interpolation model for TDS demonstrates high 
values in the north and the southwest areas of the study site 

related to urban wastewater and cultivation methods. The 
best-fitting model for the spatial distribution of SO4

2− dem-
onstrates high concentrations in North of the study area. It 
is ascribed to the oxidation of pyrites of ophiolitic origin 
but also to the use of sulfur–ammonium fertilizers in the 
cultivated plain in the study area. The best IDW predicted 
interpolator model presents high values of ΝΟ3

− in specific 
areas where groundwaters suffered by intense cultivation and 
related to the application of nitrogen fertilizers. The most 
accurate interpolation model presents the high values of the 
Cd in the Southwest part of the basin. It can be credited both 
to the existence of the component, in the minerals contained 
in ophiolitic rocks and also in the use of fertilizers in the 
cultivated part of the basin. Furthermore, it is observed that 
the best-fitting, interpolation model represented by circle 
shape type and neighborhood deviation of one sector for 
Mg2+ and Cl−. The model demonstrates high estimations 
of Cl− in the North and Southwest margins of the basin. 
The goodness-of-fit criteria suggested that the most accurate 
model for the spatial distribution of Crtot is represented by 
circle shape type and neighborhood deviation of eight sec-
tors. The presence of the element is caused by the weather-
ing of the minerals contained in the ophiolites, which cover a 
big part of the study area. The best-fit models to understand 
the spatial distribution of the PCA factors determined by 
ellipse/four sectors, circle/one sector, circle/four sectors, and 
ellipse/one sector for factor I, factor II, factor III, and factor 

Fig. 9   a Diagram of irrigation water hazard classification, for samples of springs (red) and boreholes (blue) based on total salts (EC) and SAR 
(Richards 1954), b Irrigation water suitability map based on Richards classification
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IV, respectively. HCA presents two statistically significant 
clusters. The outcomes demonstrate that geogenic processes 
ascribed to the weathering of the minerals contained in the 
ultrabasic rocks and anthropogenic influences related to 
the utilization of fertilizers and wastewater leak impact 
the groundwater chemistry and quality. Groundwaters are 
unsuitable for water supply needs and suitable for irrigation 
purposes, presenting in their majority low sodium hazard 
and moderate salinity hazard.
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