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Abstract
The purpose of this study is to identify the key factors that influence the availability of groundwater resources in a 10-year 
period in the Gonabad region of Iran using a maximum entropy model. For this purpose, 165 qanats were selected in 2004 
that had yields of more than 3 l/s. By reviewing similar studies, 13 factors were considered to have an influence on ground-
water potential exploited by the qanats, including: slope aspect; drainage density; fault density; distance from faults or other 
fractures; land use; lithology; plan curvature; profile curvature; qanat density; distance from rivers; land slope; stream power 
index (SPI); and topographic wetness index (TWI). The results indicated that qanat density had the greatest influence on the 
groundwater potential in a given area. Additionally, the increased importance of this factor with the occurrence of drought 
indicates that qanats are appropriate structures for exploiting groundwater and that they were well sited when they were 
originally constructed. Other important factors that influence groundwater potential are SPI, TWI and lithology factors. 
This indicates the importance of the slope, water accumulation area and rock characteristics in the groundwater potential. 
Additionally, there were significant changes in the distribution of areas with a high to low groundwater potential over a 
10-year period. Reducing the number of effective factors in 2014 modeling showed that with the occurrence of drought and 
the limitation of areas with groundwater potential, the factors affecting zoning of the groundwater potential are also limited.
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Introduction

Groundwater is one of the main and most important sources 
of water used by communities for various purposes (Prad-
han 2009; Neshat et al. 2014) because of low temperature 
variations, better sustainability than surface water against 
short-term droughts, easy access and low utilization costs 
(Jha et al. 2007). There are limited spaces in aquifers for 
water storage, so it is necessary to exploit these resources 
with knowledge of groundwater conditions (Bera and Ban-
dyopadhyay 2012). The infiltration of rainwater and snow-
melts into the soil and/or pore space and discontinuous rocks 
causes the natural recharge of aquifer (Nampak et al. 2014). 
Accordingly, the distribution and quantity of groundwater 

can be influenced by climatic conditions as well as surface 
and subsurface characteristics of the earth such as alluvial 
properties, quantity and quality of fractures in subsurface 
rocks, land use, geomorphic facies and topographic features 
(Saud 2010; Senthil Kumar and Shankar 2014).

In arid zones, most human civilizations are located on 
the basis of ready access to water resources, especially to 
groundwater (Bera and Bandyopadhyay 2012). In these 
regions, groundwater resources are an important tool for 
sustainable development (Subyani 2005; Bayumi 2008). 
Therefore, understanding the factors influencing the avail-
ability of groundwater is important in managing the quality 
and quantity of these resources.

A large number of statistical models and learner machine 
methods can predict how to distribute groundwater poten-
tial using independent natural variables. These include: the 
support vector machine (SVM); the boosted regression tree 
(BRT); multivariate adaptive regression splines (MARS); 
logistic multiple regression (LMR); generalized additive 
model (GAM); and random forest (RF) models (Naghibi 
et al. 2016, 2017a; Mair and El-Kadi 2013; Sorichetta et al. 
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2013; Rodriguez-Galiano et al. 2014; Naghibi and Pourgha-
semi 2015; Gutiérrez et al. 2009; Zabihi et al. 2016). One 
of the learning machine models is the maximum entropy 
method that operates on the basis of the statistical-probabil-
istic distribution of key factors. This model has been used 
in different fields of the natural sciences for assessing issues 
such as the forecasting of species distribution, crop planting 
zonation, landslide susceptibility evaluation, processing of 
earth features and groundwater characteristics mapping (Ari-
yanto 2015; Bajat et al. 2011; Convertino et al. 2013; Davis 
and Blesius 2015; Dyke and Kleidon 2010; Elith et al. 2011; 
Huset 2013; Jaime et al. 2015; Kim et al. 2015; Kornejady 
et al. 2017a; Kumar and Stohlgren 2009; Liu et al. 2012; 
Mert et al. 2016; Moosavi and Niazi 2016; Park 2015; Peter-
son 2011; Phillips et al. 2004; Pueyo et al. 2007; Rahmati 
et al. 2016b; Shen et al. 2015; Thuiller et al. 2005; Townsend 
Peterson et al. 2007; Wahyudi et al. 2012; Wang and Bras 
2011; Warren and Seifert 2011; Williams 2010; Wollan et al. 
2008; Yackulic et al. 2013; Yu et al. 2014).

Maximum entropy (MaxEnt) model does not define strict 
assumptions prior to research which can be considered as 
a powerful advantage. Importantly, it can also handle data 
from various measurement scales. Assuming that the poten-
tial of groundwater in the study area is affected by the occur-
rence of droughts, the following goals and innovations were 
considered in this study: (1) the use of the natural drainage 
properties of a qanat as a suitable index of the groundwater 
potential; (2) the assessment of spatial and temporal varia-
tions of groundwater potential using the maximum entropy 
model in one of the great plains of eastern Iran in a 10-year 
period; and (3) the determination of the most effective fac-
tors in reducing or/and sustainability the groundwater poten-
tial in the study area.

Study area

The authors selected the Gonabad Region in the eastern part 
of Iran as a case study to assess temporal and spatial changes 
of groundwater potential. The Gonabad Region is located 
in the Razavi Khorasan Province, Iran, between 34°02′ to 
34°26′N latitude and 58°16′ to 59°01′E longitude (Fig. 1). 
It covers an area of approximately 2188.91 km2. The topo-
graphical elevation of the study area varies between 894 
and 2774 m above sea level. The mean annual point pre-
cipitation is recorded as 160 mm in the Gonabad weather 
station (IRIMO 2016). Based on information provided by 
the Geological Survey of Iran (GSI 1997), about 44% of 
the lithology covering the study area falls within the units 
described as Qt2 including low level pediment fan and valley 
terraces deposit. Most of the area (89%) is covered by range-
land land use type. Exploitation of groundwater resources 
in this region includes semi-deep and deep wells, springs, 

and qanats. The Gonabad Region faces major challenges 
in the management of scarce freshwater resources under 
pressures of increasing population, economic development, 
climate change, pollution and overabstraction. Assessment 
of groundwater is very vital within this region, since ground-
water supplies drinking water and irrigation requirements. 
Also, the people living in this region depend on irrigated and 
dry farming agriculture.

Methodology

The steps in this research are presented in Fig. 2. In the first 
step, data preparation was carried out. Four types of data 
were utilized in this study: digital elevation model (DEM)-
derived factors, distance factors, density factors and land 
factors. Then, the best factors were selected. In this research, 
several conditions were considered for selecting the factors 
that could be used in modeling: firstly, the lack of correlation 
performed through the PCA test; secondly, the contribution 
rate in modeling; thirdly, the impact of each factor on the 
training and testing process; and fourthly, the similarity of 
accuracy in the training and testing process. To evaluate time 
variations, the model was implemented two times and with 
a 10-year interval. In the next step, the model performance 
was evaluated using the receiver operating with a character-
istic) ROC) index. Finally, after determining the most effec-
tive factors, the results were interpreted.

Qanat inventory map

Usually, qanats areas are constructed on plains or on large 
waterways in mountainous areas where the groundwater 
table is high. In this study, the locations of qanats in 2004 
were obtained from a topographical map with 1:50,000-scale 
and this was ground-truthed by the e field visits using a GPS 
device (Fig. 1). The profile of qanat system and its compo-
nents can be found in Naghibi et al. (2015).

Geo‑environmental factors

After reviewing the results of studies on the potential of 
groundwater, 13 effective and key factors were determined 
and their respective maps were prepared in ArcGIS 10.3.1 
software. The methods used to develop the relevant factors 
from these data are discussed below.

Slope aspect

Changes in the slope aspect lead to differences in the 
amount of solar energy that is received by the land sur-
face, which in turn affects soil moisture content, the type, 
extent and distribution of the canopy cover, and ultimately 
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evapotranspiration (Dai et al. 2001; Sidle and Ochiai 2006; 
Rahmati et al. 2016b; Naghibi et al. 2018). A slope aspect 
map was compiled from the DEM data (30 × 30 m) and has 
been classified into nine classes, four basic directions, four 
subsidiary directions and no direction or flat (Fig. 3j).

Drainage density

In each region, the pattern and drainage density are 
closely related to the hydrological characteristics. Also 
factors such as geology, topography, soil type, infiltra-
tion, water absorption capacity in soil, canopy cover and 
climate affect the shape and density of drainage (Manap 
et al. 2013). High levels of drainage reduce the infiltration 

and increase the runoff. Therefore, areas with low drain-
age density are suitable for underground water develop-
ment (Dinesh Kumar et al. 2007; Magesh et al. 2012).

The drainage network of the study area was extracted 
from topographic maps with a scale of 1:50,000 that were 
produced by Iran National Cartographic Center in 2013. 
Drainage density is the ratio of the total streams length 
to the area occupied by them (Singh and Prakash 2002). 
To calculate the drainage density, the total length of the 
stream per pixel (30 × 30 m) is divided into its area. Then 
the values of each pixel were assigned to its center. Finally, 
a drainage density map was developed using an interpo-
lation technique. The drainage density calculated in the 
study area is in the range of 0–1.53 km/km2 (Fig. 3e).

Fig. 1   Location of Gonabad 
Region in Iran and Razavi Kho-
rasan Province
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Fault density

Lineaments such as faults and other deep fractures can 
cause surface and subsurface water exchange (Davoodi 
Moghaddam et al. 2013). The faults of the study area were 
extracted from geological maps with a scale of 1:100,000 
that were produced by the Geological Survey Department of 
Iran (1997). The fault density map was prepared in the same 
way as the drainage density map and its range was between 
0 and 18.64 km/km2 (Fig. 3f).

Fault distance

The map of distance to fault (m) was prepared based on the 
Euclidean distance algorithm using ArcGIS 10.3.1 software. 
The range of values for this factor is between 0 and 22,976 m 
(Fig. 3c).

Land use

Land use can affect runoff, infiltration and the recharge of 
aquifers in different areas (Anbazhagan et al. 2005; Bhat-
tacharya 2010; Naghibi et al. 2017b). Land use is the only 
factor that can change significantly during the 10-year period 
of study. Therefore, two land use maps for the years 2004 
and 2014 were prepared. The land use map was prepared 
using Landsat 7 images and maximum likelihood algorithm 
via supervised classification (Rahmati et al. 2016a, b). In the 
studied area, five types of land use were identified includ-
ing: agricultural land, fallow land, orchards, rangeland, and 
urban land. The largest and lowest land uses are rangeland 
and orchard, respectively (Fig. 3g).

Lithology

Lithology influences various characteristics of an aquifer, 
especially its porosity and permeability (Chowdhury et al. 
2010; Rahmati and Melesse 2016). These two characteristics 
affect the existence and movement of groundwater (Shahid 
et al. 2000; Ozdemir 2011). Usually, suitable aquifers have 
been reported in alluvial deposits of Quaternary formations 
(Rahmati et al. 2016b).

The lithology layer of the study area was extracted from 
geological maps with a scale of 1:100,000 that were pro-
duced by Geological Survey Department of Iran (1997). The 
lithology of investigation area consists of two sequences of 
sedimentary and volcanic rocks and unconsolidated deposits 
of Quaternary age (Fig. 3h).

Plan curvature

The characteristics of landforms have been used as an effec-
tive factor in many geomorphological evaluation studies, 
such as the presence and distribution of groundwater, karst 
features, gullies, and landslides. The shape of the ground 
can alter surface drainage and sediment transfer to rivers 
(Jenness 2013). To prepare this layer, the digital elevation 
model (DEM) of the study area and ArcGIS 10.3.1 software 
were used (Fig. 3i).

Profile curvature

The profile curvature can affect the flow velocity. Nega-
tive values (convex shape) increase the flow velocity and 
decrease infiltration, and positive values (concave shape) 

Fig. 2   Flowchart study in this 
research
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reduce the flow velocity and increase infiltration (Jenness 
2013).

To prepare profile curvature like plan curvature, the 
digital elevation model of the study area and ArcGIS 
10.3.1 software were used (Fig. 3b).

Qanat density

Qanats act as natural groundwater drainage systems (Per-
rier and Salkini 1991). The existing qanats in the study area 
are very old and have been gradually built according to the 

Fig. 3   The map of factors used in the MaxEnt model. a Aspect, b profile curvature, c distance from faults, d distance from river, e drainage den-
sity, f fault density, g land use, h lithology, i plan curvature, j slope, k SPI, and l TWI
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potential of the aquifer and the need for water in the region. 
Therefore, an increasing density of qanats in each region 
indicates a suitable groundwater potential at the time of con-
struction. The topographic maps of the study area with a 
scale of 1:50,000 that contain the district’s qanat data were 
used to prepare the qanat density layer (Fig. 3m).

Distance to river

Several studies have been conducted on the impact of river 
flows on groundwater status (Gooseff et al. 2005; Carde-
nas et al. 2004; Storey et al. 2003; Deepa et al. 2016). So 
increasing the distance from the rivers, especially rivers with 

Fig. 3   (continued)
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permanent flows or rivers with a longer period of flow, can 
have a negative impact on groundwater potential. To pro-
vide this layer, topographic maps with a scale of 1:50,000 
and Spatial Analyst extension in ArcGIS 10.3.1 were used 
(Fig. 3d).

Slope degree

Slope degree is an important factor in the study of ground-
water conditions (Al Saud 2010; Ettazarini 2007; Kornejady 
et al. 2017b). This factor can affect the runoff, infiltration 
and recharge processes. As the slope increases, the runoff 
moves more quickly and this reduces the infiltration of water 
into the soil and reduces the recharge potential (Sarkar et al. 
2001; Adiat et al. 2012). The DEM of the study area was 
used to prepare this layer (Fig. 3j).

Stream power index (SPI)

The stream power index is a measure of the erosive force of 
a stream (Moore et al. 1991). Increasing the SPI reduces the 
infiltration time, increases turbidity and reduces infiltration. 
Accordingly, this index was considered as an effective factor 
in determining the likelihood that recharge will take place 
to an aquifer from a flowing stream. The SPI was calculated 
using Eq. 1 (Moore et al. 1991) (Fig. 3k):

where Bs is the specific catchment area (m2) and α is the 
local slope gradient (°).

Topographic wetness index

Topographic wetness index (TWI) quantifies the impact 
of topography on some hydrological characteristics. This 
index describes the process of collecting water at different 
places and the effect of gravity on the infiltration of water 
into an aquifer and to move downslope (Ghorbani Nejad 
et al. 2017). The index also determines the role of topogra-
phy on the moisture content of soils in a given region and on 
the spatial distribution of soil moisture (Moore et al. 1991; 
Pourghasemi et al. 2013; Davoodi Moghaddam et al. 2013). 
The TWI index was calculated using Eq. 2 (Moore et al. 
1991):

where α is the cumulative upslope area draining from a point 
(per unit contour length) and β is the slope angle at the point 
(Fig. 3l).

(1)SPI = Bs × tan �

(2)TWI = ln

(
�

tan �

)
,

Combination of groundwater potential factors

The best combination of parameters used to assess the poten-
tial of groundwater was determined by checking the pairwise 
correlation between all factors using principal component 
analysis (PCA). The use of parameters that are well corre-
lated with each other may cause errors in determining how 
prospective an area is for providing a groundwater resource. 
The optimal combination of factors is determined by elimi-
nating inefficient factors. For this purpose, factors that are 
highly correlated with other factors are eliminated. The 
choice of these factors is based on the extent of correlation 
with other factors and by expert opinion. In this study, a cor-
relation of 0.7 was considered as the maximum acceptable 
value for the correlation between factors (Kornejady et al. 
2017a) (Table 1).

Maximum entropy model

The theory of information and statistical principles are the 
basis of MaxEnt. The concept of entropy was first defined 
by Shannon (1948) as the expected amount (average) of the 
data contained in the conditions studied. This concept was 
presented based on Boltzmann’s H-theorem as:

where E is the expected amount for a factor and I is the data 
content. In this equation, the negative natural logarithm can 
be used to express the probability distribution of the fac-
tors. The logarithm with an increasing trend for independ-
ent sources is a suitable measure for entropy. According to 
the above equation, the average data were considered to be 
the expected amount. This is consistent with the probability 
theory that the mean of observational data is equal to the 
expected amount of a random variable (Ross 2014). Based 
on Jaynes’ definition of maximum entropy, “the best proba-
bility distribution that can represent an unknown probability 
distribution function (pdf) subject to a set of testable infor-
mation (expected values of different variables) is the one 
with the largest entropy” (Jaynes 1957a, b); if the results of 
a phenomenon are unknown, the information obtained will 
be greater and the entropy will be larger. Accordingly, when 
all restrictions are considered for the phenomenon under 
investigation, the best estimate of the pdf can be obtained, 
which can be accepted as the final result. In this case, the 
designated pdf has maximum entropy and the maximum 
information is obtained from the effective factors (Shannon 
1948, 1951).

Like all other probability functions, two conditions for the 
entropy of 𝜋̂ must be observed: (1) based on a statistical princi-
ple for all observable phenomena, assign a positive probability 

(3)H(X) = E[I(X)] = E[− ln(𝜋̂(x))],
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for each x; (2) the sum of all probabilities assigned to x must be 
one. By applying the two conditions above, Eq. 3 changes as:

In fact, in this study, there is a collection of random places 
x from the larger set X, and appropriate qanat in each location 
is considered as the response variable (Y). In the spaces with 
these qanats, y = 1 and in the absence y  = 0. MaxEnt is a gener-
ative model. This model performs learning through probability 
distribution P(x, y) or conditional probability P(x|y), while the 
discriminative models perform learning through the condi-
tional probability P(y|x). The implementation of discriminative 
models requires information about the presence and absence of 
phenomena, and the preparation of these data requires exten-
sive studies) Vapnik and Vapnik 1998; Ng and Jordan 2001). 
Generative models can provide better predictions with little 
training information. This ability can be very useful in cases 
where accessible information is limited (Edvardsen et al. 2011; 
Edwards et al. 2005; Feeley and Silman 2011; Guisan et al. 
2006; Niamir et al. 2011; Robertson et al. 2010).

If the existence and absence data are available, MaxEnt 
can be implemented as a deterministic model (Baldwin 2009; 
Berger et al. 1996; Halvorsen 2012). In this study, only pres-
ence data was used. Accordingly, the generative model is 
introduced based on Byes’ rule (Elith et al. 2010; Phillips and 
Dudík 2008; Phillips et al. 2009):

where P(y = 1|x) is the probability for the existence of qanat 
on site x, P(x|y = 1) is the probability of existence in the site 
x given that the qanat is present (equivalent to π(x) in Max-
Ent), P(y = 1) is the complete occurrence, and P(x) is the 
probability that the x site will be selected (P(x) is equivalent 
to 1/|X|, that is, the probability of selecting the x site from 
the X-set).

Another form of the above equation is:

According to the probability distribution in generative mod-
els, P(x) can be rewritten as:

If the probability of presence and absence is equal 
(P(y = 0) = P(y = 1) = 0.5), the equation can be simplified as:

In this study, the potential of groundwater in the study 
area was determined using the maximum entropy model in 

(4)H(X) = −
∑

x∈X

𝜋̂(x) ln 𝜋̂(x).

(5)P(y = 1|x) = P(x|y = 1)P(y = 1)

P(x)
,

(6)P(y = 1|x) = �(x)P(y = 1)|X|.

(7)

P(x) =
∑

y

P(x|y) = P(x|y = 1)P(y = 1) + P(x|y = 0)P(y = 0).

(8)P(y = 1|x) = P(x|y = 1)

P(x|y = 1) + P(x|y = 0)
.

Ta
bl

e 
1  

M
at

rix
 o

f p
ai

rw
is

e 
co

rr
el

at
io

n 
be

tw
ee

n 
gr

ou
nd

w
at

er
 p

ot
en

tia
l f

ac
to

rs
 in

 th
e 

stu
dy

 a
re

a

Fa
ct

or
s

A
sp

ec
t

Pr
ofi

le
 c

ur
va

-
tu

re
Fa

ul
t d

ist
an

ce
R

iv
er

 d
ist

an
ce

D
ra

in
ag

e 
de

ns
ity

Fa
ul

t d
en

si
ty

La
nd

 u
se

Li
th

ol
og

y
Pl

an
 c

ur
va

tu
re

Q
an

at
 d

en
si

ty
Sl

op
e

SP
I

TW
I

A
sp

ec
t

1.
00

0
0.

00
1

−
 0.

09
7

0.
09

7
−

 0.
08

0
0.

12
6

0.
08

0
−

 0.
16

7
0.

00
7

−
 0.

07
7

0.
07

5
0.

02
0

−
 0.

06
6

Pr
ofi

le
 c

ur
va

tu
re

1.
00

0
−

 0.
00

7
0.

00
2

−
 0.

00
7

0.
00

6
−

 0.
01

2
−

 0.
01

4
−

 0.
46

9
−

 0.
00

4
0.

01
2

0.
26

0
0.

15
4

Fa
ul

t d
ist

an
ce

1.
00

0
−

 0.
10

8
0.

19
0

−
 0.

44
3

−
 0.

23
1

0.
34

2
−

 0.
01

0
0.

29
5

−
 0.

24
1

−
 0.

12
5

0.
19

0
R

iv
er

 d
ist

an
ce

1.
00

0
−

 0.
69

9
−

 0.
06

3
0.

11
3

−
 0.

44
9

0.
00

9
−

 0.
25

6
0.

37
6

0.
13

4
−

 0.
22

4
D

ra
in

ag
e 

de
n-

si
ty

1.
00

0
−

 0.
01

3
−

 0.
12

3
0.

46
4

−
 0.

01
3

0.
29

7
−

 0.
41

3
−

 0.
15

2
0.

24
3

Fa
ul

t d
en

si
ty

1.
00

0
0.

05
5

−
 0.

36
3

0.
00

8
−

 0.
11

5
0.

04
8

0.
04

4
−

 0.
06

2
La

nd
 u

se
1.

00
0

−
 0.

14
1

0.
01

0
−

 0.
04

7
0.

14
1

0.
03

6
−

 0.
12

1
Li

th
ol

og
y

1.
00

0
−

 0.
02

2
0.

28
2

−
 0.

41
2

−
 0.

17
4

0.
26

1
Pl

an
 c

ur
va

tu
re

1.
00

0
−

 0.
00

8
0.

04
9

−
 0.

41
6

−
 0.

31
8

Q
an

at
 d

en
si

ty
1.

00
0

−
 0.

18
6

−
 0.

08
4

0.
12

7
Sl

op
e

1.
00

0
0.

28
8

−
 0.

48
3

SP
I

1.
00

0
0.

46
1

TW
I

1.
00

0



Environmental Earth Sciences (2018) 77:369	

1 3

Page 9 of 20  369

the MaxEnt software 3.3.3 k. MaxEnt is a machine learn-
ing model based on the presence of a phenomenon (Gra-
ham et al. 2008; Hernandez et al. 2008; Kornejady et al. 
2017a; Phillips et al. 2006; Quinn et al. 2013; Wisz et al. 
2008). One of the applications of these models is to study 
areas with inappropriate access.

Of course, it should be noted that if the distribution of 
input data is not appropriate, modeling only based on the 
phenomenon presence will be prone to error (Austin 2007; 
Hortal et al. 2008; Loiselle et al. 2008; McCarthy et al. 
2011; Reddy and Dávalos 2003; Robertson et al. 2010; 
Veloz 2009; Wolmarans et al. 2010). In the present study 
to resolve this problem, all the qanats in the study area 
were investigated. MaxEnt is able to use the data in a con-
tinuous and categorized manner. This will make the results 
more accurate and reduce computational errors.

This model estimates the best probabilistic distribution 
of potential areas by connecting input factors and existing 
potential areas (Elith et al. 2010; Kleidon et al. 2010; Med-
ley 2010; Moreno et al. 2011; Nieves et al. 2011). Initially, 
MaxEnt prepares a first map. This map has the same pixels 
in terms of potential groundwater probability. Then, by 
adding each of the influential factors, the characteristics 
and limitations of the susceptible areas are extracted and 
the accuracy of the first map is improved. This operation 
continues until the best probability distribution function 
(using the maximum entropy function) and groundwater 
potential map are obtained.

Model validation

To validate the MaxEnt model, a success rate curve (SRC) 
and a prediction rate curve (PRC) should be plotted. These 
curves are plotted using both the training and testing data-
sets. In both curves, the vertical axis is related to the cor-
rect detection rate of places with groundwater potential 
and the horizontal axis is related to the correct detection 
rate of places without groundwater potential. The area 
under the SRC (AUSRC) represents the accuracy and the 
area under the PRC (AUPRC) represents the prediction 
power or generalization of the model. When this value is 
closer to one, the accuracy of the model increases (Metz 
1978; Pearce and Ferrier 2000; Pontius and Schneider 
2001).

Determining the most important factors affecting the 
potential of groundwater can be useful in managing water 
resources. In the MaxEnt model, the jackknife test is used 
to determine the most important factors. In addition, the 
different classes and ranges of each factor have a different 
effect on the groundwater potential. Determining the most 
important range of each factor was determined using the 
response curve.

Data format and the determination of parameters 
in MaxEnt

The map of all factors studied was converted to ASCII for-
mat and the coordinates of the used qanats were prepared in 
the form of a CSV file; then, both sets of data were entered 
into the model. The background points and convergence 
thresholds were selected as 10,000 and 10−5, respectively. 
To better learn the proper pattern and ensure the effective-
ness of the plateau, the number of replicates was increased to 
5000. Since the type of features and the number of samples 
are different, selecting the “auto” option allows the model to 
use the appropriate adjustment values (Phillips et al. 2006).

Results and discussion

Initial selection of appropriate factors

According to the results of the PCA test (Table 1), the pair-
wise correlation between the drainage density and the river 
distance has a maximum value (− 0.699) and a pairwise cor-
relation between the profile curvature and the slope aspect 
has a minimum value (0.001). Also, the results showed that 
the pairwise correlation of all factors was less than 0.7, so 
none of the considered factors were eliminated and all were 
entered into the model.

Running the model at two different times

As stated above, in the present study, for the purpose of 
examining time variation, the potential of groundwater in 
the 2 years of 2004 and 2014 was investigated. With the 
initial implementation of the model, it became clear that 
aspect, plan curvature and profile curvature in 2004 and 
aspect, drainage density, fault distance, fault distance, 
plan curvature and land use in 2014 had no effect on the 
accuracy of the model and, even with their elimination, the 
accuracy of the model increased in the implementation of 
2014. To compare the results of groundwater potential in 
the two studied times, groundwater potential maps of the 
study area were classified according to natural break dis-
tance into five classes as very low, low, medium, high and 
very high (Pourghasemi and Rossi 2017; Pourghasemi and 
Kerle 2016; Rahmati et al. 2016a) (Fig. 4). The density of 
suitable qanats, the percentage of different groundwater 
potential classes, the kappa index and the Chi square test 
results for two-time implementation are provided in Table 2. 
In all cases, the largest area is dedicated to classes with the 
least groundwater potential. By improving the groundwater 
potential (increase class), the area decreases. Accordingly, 
the percentages of different groundwater potential classes 
in both years 2004 and 2014 have statistically significant 
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Fig. 4   Groundwater potential 
maps: a 2004, b 2014

Table 2   Areal percentage of models’ classes, qanat densities, discordance and concordance (2004–2014)

Class 2004 2014 2004–2014

Class area (%) Chi square Qanat density Class area (%) Chi square Qanat density Kappa index Level of agreement

Very low 65.73 139.59 0.0000094 76.81 207.95 0.0000059 0.77 Strong
Low 18.04 P value < 0.05 0.0000870 14.87 P value < 0.05 0.0000300 0.19 Very weak
Medium 11.17 0.0002000 5.72 0.0000720 0.13 Very weak
High 4.55 0.0004200 2.15 0.0001500 0.12 Very weak
Very high 0.50 0.0011000 0.45 0.0006000 0.14 Very weak
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disagreement at 95% confidence level (P value b 0.05). This 
result is common in natural processes and shows the role of 
different natural conditions in the existence or absence of the 
phenomenon studied. The Kappa test results show that the 
groundwater potential in 2004 and 2014 have a strong agree-
ment in very low classes and very weak agreement in low, 
medium, high and very high classes. The results of Table 2 
indicate a decrease in the area percentage of all classes 
except the very low class in 2014. This result indicates that 
there has been a reduction in groundwater potential in the 
interval between the two studies. Investigating the density 
of appropriate qanats showed that in classes with a higher 
groundwater potential, the density of qanats increased. This 
result indicates that the model is functioning correctly.

The results obtained indicate that the MaxEnt model has 
a high level of accuracy (Fig. 5) for determining the ground-
water potential of the study area in both 2004 and 2014. 
Despite the decrease in the number of suitable qanats in 
2014, implementing the model at the two mentioned times, 
with AUC of about 0.9 for both training and testing, repre-
sents the excellent ability of the model to assess and predict 
the groundwater potential (Pearce and Ferrier 2000).

Most effective factors

The relative contribution of all factors studied in the train-
ing process of the MaxEnt model in both 2004 and 2014 is 
presented in Table 3. The results show that in both 2004 and 

Fig. 5   Accuracy of the model in 
training and validation steps in 
a 2004 and b 2014
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2014, the relative contribution of qanat densities is higher 
than other factors and is about 50% and more than the contri-
bution of various factors in modeling dependent on this fac-
tor. The results also indicate a relatively large change in the 
contribution of the investigated factors over time. In 2014, 
due to the reduction of groundwater potential in different 
parts of the study area, the contribution of qanat density, 
with a 16% increase, has the highest increase, and the con-
tributions of SPI index, lithology and river distance with 
4.9, 2.0 and 2.0% decrease, respectively, have the highest 
reduction. As there are a number of algorithms in the Max-
Ent model, it is difficult to determine the specific contribu-
tion of a given factor. These algorithms can have different 

results in determining the contribution of factors (Phillips 
2012). Accordingly, the assigned contribution, rather than 
reflecting the importance of factor, relates to the role of each 
factor in the modeling process.

The jackknife test using test data for 2004 and 2014 was 
implemented and its results are presented in Fig. 6. The 
graph obtained from the jackknife test includes three types 
of information: (1) model AUPRC when each factor enters 
the model alone (blue part); (2) the AUPRC of the model 
when the model runs with all the factors other than the one 
mentioned at the beginning of the bar (in other words, the 
accuracy of the model with the removal of each factor and 
the presence of the remaining factors—the green part); and 

Table 3   Contribution rate of the various factors on groundwater potential modeling in the MaxEnt model

Factor Qanat density SPI Lithology Land use Slope Drain-
age 
density

TWI River distance Fault Density Fault distance Profile 
curva-
ture

2004
Contribution (%) 47 17.7 7.7 3.5 7.1 3.5 7.1 3.8 1.7 0.9 –

2014
Contribution (%) 63 12.8 5.7 – 5.6 – 9.2 1.8 – – 1.8

Fig. 6   Jackknife of AUC for 
MaxEnt model using test data. a 
2004, b 2014
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(3) model AUPRC when all factors are involved in modeling 
(red part).

The implementation of the model with each of the factors 
independently showed that the qanat density and the SPI 
index in 2004 and the qanat density and the river distance 
in 2014 with the highest AUPRC had the greatest impact on 
the potential for groundwater availability. The results of the 
implementation of the progressive removal of each factor 
(green bar) indicate that the highest decrease in AUPRC 
was obtained by eliminating qanat density from the model. 
Therefore, the sensitivity of the model to the changes in this 
factor is high. The uniqueness of the impact this factor has 
had on other factors cannot compensate for the lack of it and 
the accuracy of the model is reduced. The sensitivity of the 
model to the SPI and river distance factors is not high and 
the lack of these two factors is compensable by other factors. 
These results are consistent with the relative contribution of 
the factors.

The results also showed that the drainage density, dis-
tance and density of faults and the land uses with the lowest 
AUPRC had little effect on the modeling of 2004, and was 
eliminated due to the ineffectiveness of the 2014 modeling 
process. A review of the data show that the limited avail-
ability of information of the number and length of faults, 
the predominance of plain lands and the low diversity of the 
land use is likely to have influenced the low impact of these 
factors on the model output.

The factors can be eliminated from the modeling pro-
cess when they have no effect on the accuracy of the model 
(Kornejady et al. 2017a). With this argument, the factors of 
slope aspect and the plan curvature in 2004 and the slope 
aspect, drainage density, fault density, fault distance, plan 
curvature and land use in 2014 were eliminated in the mod-
eling process. The results show that the reduction in the 
number of factors affecting the modeling process in 2014 
indicates that with the occurrence of drought, many factors 
lose their role in the groundwater potential and determining 
the optimal areas for the potential of groundwater is limited 
to several key factors. However, in 2004, after qanat density 
and the SPI index factors which have a high impact on model 
output, lithology, TWI, slope and river distance factors had 
a moderate impact.

The response of different factors 
to the groundwater potential

By increasing the qanat density in both 2004 and 2014, 
its effect on the groundwater potential increases. Increas-
ing the density of the qanats increases the volume of water 
extracted from aquifers. This parameter should reduce the 
groundwater potential, but increasing the groundwater 
potential by increasing the qanat density indicates the proper 

identification of potential areas and a proper site selection 
when constructing these structures (Figs. 7, 8a).

In general, in both 2004 and 2014, the groundwater 
potential would be reduced by increasing the slope. In 2004, 
the highest groundwater potential was found where slopes 
were about 10–30%, but in 2014 the highest groundwater 
potential was found where slopes were negligible. This is 
due to qanats in mountainous areas which were observed 
to have high discharge rates in 2004, but either dried up or 
the discharge rate dropped significantly in 2014. In 2004, 
the occurrence of high-yielding qanats in mountainous areas 
increased the groundwater potential for areas with a high 
slope. But with the focus of desirable qanats in plain areas 
in 2014, the potential of mountainous areas decreased. Thus, 
with the occurrence of drought, the groundwater potential in 
mountainous areas reduced at a greater rate than in lowland 
areas (Figs. 7, 8d).

The implementation of the model in both 2004 and 2014 
indicates an increase in groundwater potential by increasing 
the TWI index. Since the TWI is increased in low slopes 
and extensive accumulation area, the highest TWI is related 
to the plain area. The existence of an increased trend in the 
groundwater potential with increasing TWI indicates the 
importance of plain areas in terms of this factor. It is likely 
that the decline in the 2004 curve is due to the role of the 
existing qanats in mountainous regions (Figs. 7, 8e).

By investigating the SPI values in the study area, it is 
determined that the high SPI values are related to mountain-
ous regions and low SPI values are related to plain areas. In 
2014, areas with a minimum and maximum SPI have the 
highest potential. This result can be interpreted based on 
the SPI index which is directly related to the contributing 
area and the slope degree. In 2004, groundwater potential 
increased in areas with high SPI values (class 7), but in areas 
with decreased SPI values it was low (class 1). Other areas 
with moderate SPI values (class 4 and 5) showed an increase 
in groundwater potential. The difference in the distribution 
and amount of precipitation in 2004 compared to 2014 can 
raise the amount of recharge to aquifers and, by compensat-
ing for the slope effect, increase the groundwater potential 
in higher SPI classes (Figs. 7, 8c).

Profile curvature was not used due to the lack of signifi-
cant impact on modeling in 2014. Garden and agricultural 
land uses had the greatest impact on the model output in 
2004. Since the extracted water from existing qanats is 
used for the development of garden and agricultural lands, 
increasing the groundwater potential in these two land use 
categories is completely reasonable (Fig. 7j).

In both 2004 and 2014, the groundwater potential was 
reduced with increase in distances from rivers. This is 
consistent with rivers in the study area being important 
recharge features and with their influence on ground-
water recharge declining with distance. With increasing 
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‘distance from river’, the groundwater potentiality values 
reduced drastically (Figs. 7, 8f).

Survey of the lithology map of the area showed that 
the greatest impact on the groundwater potential is related 
to sedimentary rocks, unconsolidated sediments of Qua-
ternary age and igneous rocks. Sedimentary rocks in 
2004 have the highest potential and, with the transfer of 
potential areas to the plains, the impact of the Quaternary 
formations in 2014 was increased. Additionally, uncon-
solidated sediments of Quaternary age are considered to 
have a high groundwater potential, particularly in lowland 
areas, and fractured granite has the most potential of igne-
ous rocks (Figs. 7, 8b).

This factor was not used due to the lack of signifi-
cant impact on modeling in 2004. The impact diagram of 
this factor is a bell-shaped curve, and the greatest impact 
occurs within the range of 0–1.5. Reduced potential in 
these parts is due to area constraints (Fig. 8g).

The distance from the fault factor was only used in the 
2004 modeling. In general, with the increase in the dis-
tance from a fault, the groundwater potential is reduced, 
but the reduction of impact does not have a regular trend. 
Due to the role of water transfer from upstream areas by 
faults, the reason for the potential reduction on getting 
away from the fault can be explained (Fig. 7i).

Fault density was only used in the 2004 modeling. The 
impact of this factor does not show a steady trend. Up to a 
density of about 7, increasing fault density causes impact 
increase on groundwater potential. In the following, after 
a sharp drop, the increasing trend continues. The reason 
for this result can be related to the dual role of faults in 
the transfer of groundwater (Fig. 7h).

Drainage density was only used in the 2004 modeling. 
Drainage density in the study area did not have a uni-
form trend. Up to drainage density factor of about one, 
the impact on groundwater potential decreases, and in 
areas with a drainage factor greater than one, the impact 
increases. The drainage system of the area has a dual 
function. On the one hand, by increasing the drainage 
density, the rate of water discharge during rain increases, 
which leads to a decrease in infiltration. On the other 

hand, the bed and banks of the river are a good place for 
infiltration and the recharge of aquifer, and with increas-
ing drainage density, the extent of these areas is also 
increased. Of course, according to Fig. 7g, the declining 
trend is very irregular and the increasing trend is regular.

Conclusions

Determining the spatial distribution of areas that have a 
high potential for groundwater availability and how these 
areas change over time provide information to help manage 
groundwater resources. Drought is one of the phenomena 
that can change the groundwater potential. In this study, 
using the MaxEnt  model, which is a machine learning 
model, the groundwater potential was modeled for 2 years, 
2004 and 2014, from the arid to semi-arid Gonabad region 
of eastern Iran. The major difference between these 2 years 
is the occurrence of a drought p in the years leading up to 
2014. For the modeling of groundwater potential, 13 fac-
tors including aspect, slope, profile curvature, fault distance, 
drainage density, fault density, land use, lithology, plan cur-
vature, qanat density, slope, SPI and TWI were used.

The modeling accuracy for training and testing data for 
both years 2004 and 2014 achieved an AUC of about 0.9, 
which is indicative of the very good accuracy of the model 
in zoning the groundwater potential. Groundwater potential 
was classified into five categories: very low, low, medium, 
high and very high. The results indicate that in 2 years of 
model implementation, the concordance between four cat-
egories (low, medium, high and very high) was weak.

This result also shows significant changes in the ground-
water potential between 2004 and 2014. However, in both 
years the qanat density factor has the greatest impact on 
the groundwater potential in the study area. As the exist-
ing qanats are very old, the importance of this factor in the 
model suggests that these structures were well sited when 
they were constructed.

An investigation of the most significant factors that con-
tribute to groundwater potential indicated that a number of 
factors could be removed from the model using the 2014 
dataset without reducing the integrity of the model.

Fig. 7   Response of different factors to the groundwater potential in 
2004. a Qanat density, b lithology, c SPI, d slope, e TWI, f river dis-
tance, g drainage density, h fault density, i fault distance and j land 
use

◂
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Fig. 8   Response of different factors to the groundwater potential in 2014. a Qanat density, b lithology, c SPI, d slope, e TWI, f river distance, g profile curvature
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